Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski* , Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0 .
\]

Definition 1

A linear operator \(\Psi_2 (h) : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(h \in \mathbb{R}^n \) is called 2-factor operator, if

\[
\Psi_2 (h) = F'(x^*) + P^\perp F'(x^*)h ,
\]

where

\(P^\perp \) - denotes the orthogonal projection on \((\text{Im} F'(x))^\perp \) in \(\mathbb{R}^n [1] \).

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n \), \(h \neq 0 \), if the operator \(\Psi_2 (h) \) has the property:

\[
\text{Im} \Psi_2 (h) = \mathbb{R}^m .
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where

$$K_2(x^*) = \text{Ker}F^\ast(x^*) \cap \text{Ker}^2 P^\bot F^\ast(x^*),$$

$$\text{Ker}^2 P^\bot F^\ast(x^*) = \{h \in R^n : P^\bot F^\ast(x^*)[h] = 0\}.$$ (3)

We need the following assumption on F:
A1) completely degenerated in x^*:
$$\text{Im} F^\ast(x^*) = 0.$$ (4)
A2) operator F is 2-regular in x^*:
$$\text{Im} F^\ast(x^*)h = R^m \quad \text{for} \quad h \in K_2(x^*), \quad h \not= 0.$$ (5)
A3)
$$\text{Ker} F^\ast(x^*) \not= \{0\}.$$ (6)

If F satisfies A1 in x^*, then

$$K_2(x^*) = \text{Ker}^2 F^\ast(x^*) = \{h \in R^n : F^\ast(x^*)[h] = 0\}.$$ (7)

In [1] it was proved, that if $n=m$, then the sequence

$$x_{k+1} = x_k - \left\{\hat{F}^\ast(x_k) + P_k^\bot F^\ast(x_k) h_k\right\}^{-1} \cdot \left\{F(x_k) + P_k^\bot F^\ast(x_k) h_k\right\},$$ (8)

where

$$P_k^\bot$$ - denotes orthogonal projection on $\left(\text{Im} \hat{F}^\ast(x_k)\right)^\bot \quad \text{in} \quad R^n,$

$$h_k \in \text{Ker} \hat{F}^\ast(x_k), \quad \|h_k\| = 1$$

converges Q-quadratically to x^*.

The matrices $\hat{F}^\ast(x_k)$ obtained from $F^\ast(x_k)$ by replacing all elements, whose absolute values do not increase $\nu > 0$, by zero, where $\nu = \nu_k = \|F(x_k)\|^{\frac{(1-\alpha)/2}{\alpha}}$, $0 < \alpha < 1$.

In the case $n = m+1$ the operator

$$\left\{\hat{F}^\ast(x_k) + P_k^\bot F^\ast(x_k) h_k\right\}^{-1}$$

in method (8) is replaced by the operator

$$\left[\hat{F}^\ast(x_k) + P_k^\bot F^\ast(x_k) h_k\right]^{-1}$$ (9)

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined $(n > m)$ and degenerated in x^*.
2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$$H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker} F'(x^*), \quad h \neq 0.$$

$$P = P_{H^\perp} \quad \text{denotes the orthogonal projection} \quad R^n \text{ on } H^\perp$$

$$f_i'(x) = P\left(f_i'(x)\right)^T \quad \text{for } i=1,2,...,m.$$

For each system of indices $i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors $h_1, h_2, ..., h_{n-m-1} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x) h \\ \varphi(x) \end{bmatrix},$$

where

$$\varphi(x) : R^n \rightarrow R^r, \quad r=n-m-1,$$

$$\varphi(x) = PF'(x) h, \quad [h_1, h_2, ..., h_r]^T,$$

$$\varphi(x) = M \begin{bmatrix} f_{i_1}'(x) h_{i_1} \\ \vdots \\ f_{i_{n-m-1}}'(x) h_{i_{n-m-1}} \end{bmatrix}. \tag{11}$$

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - \left[\Phi'(x_k)\right]^+ \cdot \Phi(x_k), \quad k=0,1,2,... \tag{12}$$

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - \left[B_k\right]^+ \cdot \Phi(x_k). \tag{13}$$

The operator Φ' will by approximated by matrices $\{B_k\}$.

Let

$$s_k = x_{k+1} - x_k. \tag{14}$$

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for } k=0,1,2,... \tag{15}$$

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \] \hspace{1em} \text{for } k=0,1,2,... \quad (16)

where \[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] \hspace{1em} (17)

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such that

\[\|x_{k+1} - x^*\| \leq q^{k+1} \|x_k - x^*\| \] \hspace{1em} for \(k = 0,1,2,... \) \quad (18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \] \hspace{1em} (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:

\[\|B_{k+1} - \Phi'(x^*)\| \leq (1 + q_1 r_k) \|B_k - \Phi'(x^*)\| + q_2 r_k, \] \hspace{1em} (20)

then there are constants \(\varepsilon > 0 \) \(i \delta > 0 \) such, that if

\[\|x_0 - x^*\| \leq \varepsilon \] \hspace{1em} and \hspace{1em} \[\|B_0 - \Phi'(x^*)\| \leq \delta, \] \hspace{1em}

then the sequence

\[x_{k+1} = x_k - B_k^* \Phi(x_k) \]

converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method

\[x_{k+1} = x_k - \{B_k^* \Phi(x_k)\}, \]

\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]

locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[\| B_{k+1} - \Phi' \left(x^* \right) \| = \| B_k - \left\{ \frac{\Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) - B_k s_k}{s_k^T s_k} \right\} s_k^T - \Phi' \left(x^* \right) \| \leq \| B_k - \Phi' \left(x^* \right) \| + \\| \left\{ \frac{\Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) - B_k s_k}{s_k^T s_k} \right\} s_k^T \| \leq \| B_k - \Phi' \left(x^* \right) \| + \\| \left(\Phi \left(x_{k+1} \right) - \Phi' \left(x^* \right) (x_{k+1} - x^*) \right) s_k^T \| + \\| \left(\Phi(x_k) - \Phi' \left(x^* \right) (x_k - x^*) \right) s_k^T \| + \\| (\Phi \left(x^* \right) - B_k s_k s_k^T) s_k \| \leq \| \Phi' \left(x^* \right) - B_k \| (1 + q_1 r_k) + c_1 \frac{\| x_{k+1} - x^* \|}{s_k^T s_k} + c_2 \frac{\| x_k - x^* \|}{s_k^T s_k} \leq \| \Phi' \left(x^* \right) - B_k \| (1 + q_1 r_k) + q_2 r_k, \]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max \{ \| x_{k+1} - x^* \|, \| x_k - x^* \| \}. \]

\section*{Theorem 3 (Q-superlinear convergence)}

Let \(F \) satisfies the assumptions \(A1-A4 \) and the sequence
\[
x_{k+1} = x_k - \{ B_k \}^{-1} \cdot \Phi \left(x_k \right),
\]
\[
B_{k+1} = B_k - \left\{ \frac{\Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) - B_k s_k}{s_k^T s_k} \right\} s_k^T
\]
linearly converges to \(x^* \). Then the sequence \(\{ x_k \} \) Q-superlinearly converges to \(x^* \).

\begin{proof}

Matrices \(B_k \) satisfy secant equation (15), so
\[
B_{k+1} = P_{L_k} B_k
\]
where
\[
L_k = \left\{ X : X s_k = y_k, \text{ where } y_k = \Phi' \left(x_{k+1} \right) - \Phi' \left(x_k \right) \right\}
\]
Denote
\[
H_k = H \left(x_k, x_{k+1} \right) = \int_0^1 \Phi' \left(x_k + t \left(x_{k+1} - x_k \right) \right) dt.
\]
We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots . \]
By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain
\[\|B_{k+1} - B_k\| \rightarrow 0. \]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References