Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0.
\]

Definition 1

A linear operator \(\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(h \in \mathbb{R}^n \) is called 2-factoroperator, if

\[
\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h,
\]

where

\(P^\perp \) - denotes the orthogonal projection on \((\text{Im } F'(x))^\perp\) in \(\mathbb{R}^n \) [1].

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n \), \(h \neq 0 \), if the operator \(\Psi_2(h) \) has the property:

\[
\text{Im } \Psi_2(h) = \mathbb{R}^m.
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where

$$
K_2(x^*) = \text{Ker}F^-(x^*) \cap \text{Ker}^2P^+F^-(x^*),
$$

$$
\text{Ker}^2P^+F^-(x^*) = \left\{ h \in R^n : P^+F^-(x^*)[h]^2 = 0 \right\}.
$$

We need the following assumption on F:

A1) completely degenerated in x^*:

$$
\text{Im} F^-(x^*) = 0.
$$

A2) operator F is 2-regular in x^*:

$$
\text{Im} F^-(x^*)h = R^n \text{ for } h \in K_2(x^*), h \neq 0.
$$

A3)

$$
\text{Ker}F^-(x^*) \neq \{0\}.
$$

If F satisfies A1 in x^*, then

$$
K_2(x^*) = \text{Ker}^2F^-(x^*) = \left\{ h \in R^n : F^-(x^*)[h]^2 = 0 \right\}.
$$

In [1] it was proved, that if $n=m$, then the sequence

$$
x_{k+1} = x_k - \left\{ \hat{F}^-(x_k) + P^+_kF^-(x_k)h_k \right\}^{-1} \left\{ F(x_k) + P^+_kF^-(x_k)h_k \right\},
$$

where

P^+_k - denotes orthogonal projection on $\left(\text{Im} \hat{F}^-(x_k) \right)^\perp$ in R^n,

$$
h_k \in \text{Ker}\hat{F}^-(x_k), \quad \|h_k\| = 1
$$

converges Q-quadratically to x^*.

The matrices $\hat{F}^-(x_k)$ obtained from $F^-(x_k)$ by replacing all elements, whose absolute values do not increase $\nu > 0$, by zero, where $\nu = \nu_k = \|F(x_k)\|^{1-\alpha}/2$, $0 < \alpha < 1$.

In the case $n = m+1$ the operator

$$
\left\{ \hat{F}^-(x_k) + P^+_kF^-(x_k)h_k \right\}^{-1}
$$

in method (8) is replaced by the operator

$$
\left[\hat{F}^-(x_k) + P^+_kF^-(x_k)h_k \right]^t
$$

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n > m$) and degenerated in x^*.

2. Extending of the system of equation

Now we construct the operator $\Phi : R^{n} \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$H=\text{lin}\{h\}$ for $h \in \text{Ker} F'(x^*)$, $h \neq 0$.

$P = P_{H^\perp}$ denotes the orthogonal projection R^n on H^\perp.

$j_i^q(x) = P(f_i'(x))^T$ for $i=1,2,...,m$.

For each system of indices $i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors $h_1, h_2, ..., h_{n-m-1} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix},$$

where

$$\varphi(x) : R^n \rightarrow R^r, \quad r=n-m-1,$$

$$\varphi(x) = PF'(x)h, \quad h=[h_1, h_2, ..., h_t]^T,$$

$$\varphi(x) = M \begin{bmatrix} j_1^q(x)h_1 \\ \vdots \\ j_t^q(x)h_t \end{bmatrix}.$$ (11)

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - \left[\Phi'(x_k)\right]^{-1} \cdot \Phi(x_k), \quad k=0,1,2,...$$ (12)

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - \left\{B_k \right\}^+ \cdot \Phi(x_k).$$ (13)

The operator Φ' will by approximated by matrices $\{B_k\}$.

Let

$$s_k = x_{k+1} - x_k.$$ (14)

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \ k=0,1,2,...$$ (15)

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \]
for \(k=0,1,2,... \)
(16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \]
(17)

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such that
\[\| x_{k+1} - x^* \| \leq q \| x_k - x^* \| \]
for \(k = 0,1,2,... \)
(18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\| x_{k+1} - x^* \|}{\| x_k - x^* \|} = 0. \]
(19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{ B_k \} \) satisfy the inequality:
\[\| B_{k+1} - \Phi' (x^*) \| \leq (1 + q_1 r_k) \| B_k - \Phi' (x^*) \| + q_2 r_k, \]
(20)

then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such that if
\[\| x_0 - x^* \| \leq \varepsilon \]
and \(\| B_0 - \Phi' (x^*) \| \leq \delta, \)

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi (x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{ B_k \}^* \cdot \Phi (x_k), \]
\[B_{k+1} = B_k - \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[\|B_{k+1} - \Phi'(x^*)\| \leq \left| B_k - \left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T \right\| \leq \left| B_k - \Phi'(x^*) \right| + \left\| \left\{ \Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*) s_k + \Phi(x^*) s_k - B_k s_k \right\} s_k^T \right\| \]

\[\leq \left| B_k - \Phi'(x^*) \right| + \left\| \left(\Phi(x_{k+1}) - \Phi'(x^*)(x_{k+1} - x^*) \right) s_k^T \right\| + \left\| \left(\Phi(x_k) - \Phi'(x^*)(x_k - x^*) \right) s_k^T \right\| \]

\[+ \left\| \left(\Phi'(x^*) - B_k \right) s_k s_k^T \right\| \leq \left\| \Phi'(x^*) - B_k \right\| \left(1 + q_1 r_k \right) + c_1 \left\| x_{k+1} - x^* \right\| s_k \left\| s_k \right\| + c_2 \frac{\left\| x_k - x^* \right\|^2 s_k \left\| s_k \right\|}{\left\| s_k \right\|} \leq \left\| \Phi'(x^*) - B_k \right\| \left(1 + q_1 r_k \right) + q_2 r_k , \]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0 \), \(r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\} \).

\[\text{Theorem 3 (Q-superlinear convergence)} \]

Let \(F \) satisfies the assumptions A1-A4 and the sequence
\[x_{k+1} = x_k - \left(B_k \right)^{-1} \cdot \Phi(x_k) , \]
\[B_{k+1} = B_k - \left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T \]
linearly converges to \(x^* \). Then the sequence \(\{x_k\} \) Q-superlinearly converges to \(x^* \).

\[\text{Proof.} \]

Matrices \(B_k \) satisfy secant equation (15), so
\[B_{k+1} = P^+_k B_k \]

where
\[L_k = \{ X : X s_k = y_k \text{, where } y_k = \Phi' \left(x_{k+1} \right) - \Phi' \left(x_k \right) \} \]

Denote
\[H_k = H \left(x_k, x_{k+1} \right) = \int_0^1 \Phi' \left(x_k + t \left(x_{k+1} - x_k \right) \right) dt . \]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:

\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain

\[\|B_{k+1} - B_k\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square\)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{(n)}(x_k) \).

References