Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0.$$ \hfill (1)

Definition 1

A linear operator $\Psi_2(h): \mathbb{R}^n \to \mathbb{R}^m$, $h \in \mathbb{R}^n$, is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h,$$ \hfill (2)

where

P^\perp - denotes the orthogonal projection on $\left(\text{Im } F'(x)^\perp\right)$ in \mathbb{R}^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im } \Psi_2(h) = \mathbb{R}^m.$$

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where
\[
K_2(x^*) = \text{Ker}F^*(x^*) \cap \text{Ker}^2 P^+F^*(x^*),
\]
\[
\text{Ker}^2 P^+F^*(x^*) = \{ h \in \mathbb{R}^n : P^+F^*(x^*)[h]^2 = 0 \}.
\]
We need the following assumption on F:
A1) completely degenerated in x^*:
\[
\text{Im} F^*(x^*) = 0.
\]
A2) operator F is 2-regular in x^*:
\[
\text{Im} F^*(x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.
\]
A3) $\text{Ker} F^*(x^*) \neq \{0\}$.

If F satisfies A1 in x^*, then
\[
K_2(x^*) = \text{Ker}^2 P^+F^*(x^*) = \{ h \in \mathbb{R}^n : F^*(x^*)[h]^2 = 0 \}.
\]

In [1] it was proved, that if $n = m$, then the sequence
\[
x_{k+1} = x_k - \left\{ \hat{F}^* (x_k) + P_k^+ F^* (x_k) h_k \right\}^{-1} \cdot \left\{ F (x_k) + P_k^+ F^* (x_k) h_k \right\},
\]
where
\[
P_k^+ - \text{denotes orthogonal projection on } \left(\text{Im} \hat{F}^* (x_k) \right)^\perp \text{ in } \mathbb{R}^n,
\]
converges Q-quadratically to x^*. The matrices $\hat{F}^* (x_k)$ obtained from $F^* (x_k)$ by replacing all elements, whose absolute values do not increase $\nu > 0$, by zero, where $\nu = \nu_k = \| F(x_k) \|^{(1-\alpha)/2}$, $0 < \alpha < 1$.

In the case $n = m+1$ the operator
\[
\left\{ \hat{F}^* (x_k) + P_k^+ F^* (x_k) h_k \right\}^{-1}
\]
in method (8) is replaced by the operator
\[
\left[\hat{F}^* (x_k) + P_k^+ F^* (x_k) h_k \right]^+
\]
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n > m$) and degenerated in x^*.
2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2]. Assume

A4) Let $F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}F'(x^*), \; h \neq 0.$

$P = P_{H^\perp}$ denotes the orthogonal projection R^n on $H^\perp.$

For each system of indices $i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors $h_1, h_2, ..., h_{n-m-1} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x) h \\ \varphi(x) \end{bmatrix},$$

(10)

where

$$\varphi(x) : R^n \rightarrow R^r, \quad r=n-m-1,$$

$$\varphi(x) = P F'(x) \hat{\rho}, \quad \hat{\rho} \in [h_1, h_2, ..., h_r]^T,$$

(11)

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - \left[\Phi'(x_k) \right]^+ \cdot \Phi(x_k), \quad k=0,1,2,....$$

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - \left[B_k \right]^+ \cdot \Phi(x_k).$$

(13)

The operator Φ' will be approximated by matrices $\{B_k\}.$

Let

$$s_k = x_{k+1} - x_k.$$

(14)

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1} s_k = \Phi'(x_{k+1}) - \Phi'(x_k) \quad \text{for} \quad k=0,1,2,....$$

(15)

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k = 0, 1, 2, \ldots (16) \]

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_s s_k. \quad (17) \]

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such that
\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for } k = 0, 1, 2, \ldots (18) \]

and next Q-superlinear convergence to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \quad (19) \]

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi \left(x^* \right) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi \left(x^* \right) \right\| + q_2 r_k, \quad (20) \]

then there are constants \(\varepsilon > 0 \) i \(\delta > 0 \) such, that if
\[\| x_0 - x^* \| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi \left(x^* \right) \| \leq \delta, \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi \left(x_k \right) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^* \cdot \Phi \left(x_k \right), \]
\[B_{k+1} = B_k - \frac{\left\{ \Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) - B_k s_k \right\} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[
\|B_{k+1} - \Phi'(x^*)\| = \left\| B_k - \left\{ \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} \right\} s_k^T - \Phi'(x^*) \right\| \leq \\
\leq \|B_k - \Phi'(x^*)\| + \left\| \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} \right\| \leq \|B_k - \Phi'(x^*)\| + \\
+ \left\| \frac{\Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*) s_k + \Phi(x^*) s_k - B_k s_k}{s_k^T s_k} \right\| \leq \|B_k - \Phi'(x^*)\| + \\
+ \left\| \frac{\Phi(x^*) - B_k s_k}{s_k^T s_k} \right\| \leq \left\| \Phi'(x^*) - B_k \right\| \left(1 + q_1 r_k \right) + c_1 \frac{x_{k+1} - x^*}{s_k} \|s_k\| + \\
+ c_2 \frac{x_k - x^*}{s_k} \|s_k\| \leq \left\| \Phi'(x^*) - B_k \right\| \left(1 + q_1 r_k \right) + q_2 r_k ,
\]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{ \|x_{k+1} - x^*\|, \|x_k - x^*\| \} \).

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfies the assumptions A1-A4 and the sequence

\[
x_{k+1} = x_k - \left\{ B_k \right\}^{-1} \cdot \Phi(x_k),
\]

\[
B_{k+1} = B_k - \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k}
\]

linearly converges to \(x^* \). Then the sequence \(\{ x_k \} \) Q-superlinearly converges to \(x^* \).

Proof.

Matrices \(B_k \) satisfy secant equation (15), so

\[
B_{k+1} = P_{L_k} B_k
\]

where

\[
L_k = \left\{ X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k) \right\}
\]

Denote

\[
H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi' \left(x_k + t(x_{k+1} - x_k) \right) dt.
\]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:

\[\| B_{k+1} - B_k \|^2 + \| B_{k+1} - H_k \|^2 = \| B_k - H_k \|^2, \quad \text{for } i = 0, 1, 2, \ldots . \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \| B_{k+1} - B_k \|^2 < \infty \), thus we obtain

\[\| B_{k+1} - B_k \| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References

