Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear converegence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0. \tag{1}
\]

Definition 1

A linear operator \(\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(h \in \mathbb{R}^n \) is called 2-factoroperator, if

\[
\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h, \tag{2}
\]

where

\(P^\perp \) - denotes the orthogonal projection on \((\text{Im} F'(x))^\perp \) in \(\mathbb{R}^n [1] \).

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n, h \neq 0 \), if the operator \(\Psi_2(h) \) has the property:

\[
\text{Im} \Psi_2(h) = \mathbb{R}^m.
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in \(x^* \), if F is 2-regular on the set \(K_2(x^*)\setminus\{0\} \), where
\[
K_2(x^*) = \text{Ker} F'(x^*) \cap \text{Ker}^2 P^+ F'(x^*),
\]
(3)
\[
\text{Ker}^2 P^+ F'(x^*) = \{ h \in \mathbb{R}^n : P^+ F'(x^*)[h]^2 = 0 \}.
\]
We need the following assumption on F:
A1) completely degenerated in \(x^* \):
\[
\text{Im} F'(x^*) = 0.
\]
(4)
A2) operator F is 2-regular in \(x^* \):
\[
\text{Im} F'(x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.
\]
(5)
A3)
\[
\text{Ker} F'(x^*) \neq \{0\}.
\]
(6)
If F satisfies A1 in \(x^* \), then
\[
K_2(x^*) = \text{Ker}^2 P^+ F'(x^*) = \{ h \in \mathbb{R}^n : F'(x^*)[h]^2 = 0 \}.
\]
(7)
In [1] it was proved, that if \(n=m \), then the sequence
\[
x_{k+1} = x_k - \left\{ \hat{F}'(x_k) + P_k^+ F'(x_k)h_k \right\}^{-1} \cdot \left\{ F(x_k) + P_k^+ F'(x_k)h_k \right\},
\]
(8)
where
\[
P_k^+ - \text{denotes orthogonal projection on } \left(\text{Im} \hat{F}'(x_k) \right)^\perp \text{ in } \mathbb{R}^n,
\]
hold \(h_k \in \text{Ker} \hat{F}'(x_k), \|h_k\|=1 \)
converges Q-quadratically to \(x^* \).
The matrices \(\hat{F}'(x_k) \) obtained from \(F'(x_k) \) by replacing all elements, whose absolute values do not increase \(v>0 \), by zero, where \(v=v_k = \|F(x_k)\|^\frac{(1-\alpha)}{2}, 0<\alpha<1 \).
In the case \(n = m+1 \) the operator
\[
\left\{ \hat{F}'(x_k) + P_k^+ F'(x_k)h_k \right\}^{-1}
\]
in method (8) is replaced by the operator
\[
\left[\hat{F}'(x_k) + P_k^+ F'(x_k)h_k \right]^+-
\]
(9)
and then the method converges Q-linearly to the set of solutions [2].
Under the assumptions A1-A3, the system of equation (1) is undetermined (\(n>m \)) and degenerated in \(x^* \).
2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi (x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), ... , f_n(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$$H=\text{lin}\{h\} \quad \text{for} \quad h \in Ker^2 F'(x^*) , \quad h \neq 0.$$

$$P = P_{H^\perp}$$ denotes the orthogonal projection R^n on H^\perp.

$$\frac{\partial \phi_i}{\partial x}(x) = P \left(f'_i (x) \right)^T$$ for $i=1,2,...,m$.

For each system of indices i_1, i_2, ..., $i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors h_1, h_2, ..., $h_{n-m-1} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x) h \\ \phi(x) \end{bmatrix} ,$$

where

$$\phi(x) : R^n \rightarrow R^r , \quad r=n-m-1 ,$$

$$\phi(x) = PF'(x) \hat{h}, \quad \hat{h} \in [h_1, h_2, ..., h_r]^T ,$$

$$\phi(x) = \begin{bmatrix} \frac{\partial \phi_i}{\partial x}(x) h_i \\ \frac{\partial \phi_r}{\partial x}(x) h_r \end{bmatrix} .$$

(10)

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - \left[\Phi \left(x_k \right) \right]^+ \cdot \Phi \left(x_k \right) , \quad k=0,1,2,...$$

(12)

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - \{B_k\}^+ \cdot \Phi \left(x_k \right) .$$

(13)

The operator Φ' will by approximated by matrices $\{B_k\}$.

Let

$$s_k = x_{k+1} - x_k .$$

(14)

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1}s_k = \Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) \quad \text{for} \quad k=0,1,2,...$$

(15)

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - r_k s_k^T \frac{r_k}{s_k^T s_k} \quad \text{for } k=0,1,2,... \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \), i.e. there exists \(q \in (0,1) \) such that
\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for } k = 0,1,2,... \] (18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\|B_{k+1} - \Phi'(x^*)\| \leq (1 + q_1 r_k) \|B_k - \Phi'(x^*)\| + q_2 r_k, \] (20)

then there are constants \(\varepsilon > 0 \) i \(\delta > 0 \) such, that if
\[\|x_0 - x^*\| \leq \varepsilon \quad \text{and} \quad \|B_0 - \Phi'(x^*)\| \leq \delta, \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi(x_k) \]

converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{ B_k \}^* \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T}{s_k^T s_k} \]

locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\begin{equation}
\|B_{k+1} - \Phi'(x^*)\| = \left\|B_k \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T - \Phi'(x^*) \right\| \leq \left\|B_k - \Phi'(x^*)\right\| + \left\|\frac{\Phi(x_{k+1}) - \Phi(x_k)}{s_k} s_k^T\right\| \leq \left\|B_k - \Phi'(x^*)\right\| + \\
+ \left\|\frac{(\Phi(x_{k+1}) - \Phi'(x^*)(x_{k+1} - x^*)) s_k^T}{s_k} + \left\|\frac{\Phi(x_k) - \Phi'(x^*)(x_k - x^*) s_k^T}{s_k} \right\| \right. \\
+ \left\|\frac{(\Phi(x^*) - B_k) s_k^T}{s_k} \right\| \leq \left\|\Phi'(x^*) - B_k\right\| (1 + q_1 r_k) + c_1 \left\|x_{k+1} - x^*\right\| \left\|s_k\right\| + \\
+ c_2 \left\|x_k - x^*\right\| \left\|s_k\right\| \leq \left\|\Phi'(x^*) - B_k\right\| (1 + q_1 r_k) + q_2 r_k,
\end{equation}

where $c_1 > 0$, $c_2 > 0$, $q_1 > 0$, $q_2 > 0$, $r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}$.

Theorem 3 (Q-superlinear convergence)

Let F satisfies the assumptions A1-A4 and the sequence

\[x_{k+1} = x_k - \left\{B_k\right\}^{-1} \cdot \Phi(x_k), \]

\[B_{k+1} = B_k - \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T \]

linearly converges to x^*. Then the sequence $\{x_k\}$ Q-superlinearly converges to x^*.

Proof.

Matrices B_k satisfy secant equation (15), so

\[B_{k+1} = P_{L_k} B_k \] \hspace{1cm} (21)

where

\[L_k = \{X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k)\} \] \hspace{1cm} (22)

Denote

\[H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt. \]

We have $H_k \in L_k$ [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \] for \(i = 0, 1, 2, \ldots \).

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain
\[\|B_{k+1} - B_k\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References