Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let $F : D \subseteq R^n \rightarrow R^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0.$$ (1)

Definition 1

A linear operator $\Psi_2(h) : R^n \rightarrow R^m$, $h \in R^n$ is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h,$$ (2)

where P^\perp denotes the orthogonal projection on $(\text{Im} F'(x))^\perp$ in R^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in R^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im} \Psi_2(h) = R^m.$$
Definition 3

Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where

$$K_2(x^*) = \text{Ker}F^\ast(x^*) \cap \text{Ker}^2 P^\perp F^\ast(x^*),$$

(3)

$$\text{Ker}^2 P^\perp F^\ast(x^*) = \{h \in R^n : P^\perp F^\ast(x^*)[h]^2 = 0\}.$$

We need the following assumption on F:

A1) completely degenerated in x^*:

$$\text{Im} F^\ast(x^*) = 0.$$ (4)

A2) operator F is 2-regular in x^*:

$$\text{Im} F^\ast(x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.$$ (5)

A3)$$\text{Ker} F^\ast(x^*) \neq \{0\}.$$ (6)

If F satisfies A1 in x^*, then

$$K_2(x^*) = \text{Ker}^2 F^\ast(x^*) = \{h \in R^n : F^\ast(x^*)[h]^2 = 0\}.$$ (7)

In [1] it was proved, that if $n=m$, then the sequence

$$x_{k+1} = x_k - \left\{\hat{F}^\ast(x_k) + P_k^\perp F^\ast(x_k) h_k\right\}^{-1} \cdot \left\{F(x_k) + P_k^\perp F^\ast(x_k) h_k\right\},$$

(8)

where

$$P_k^\perp$$ denotes orthogonal projection on $\left(\text{Im} \hat{F}^\ast(x_k)\right)^\perp$ in R^n,

$$h_k \in \text{Ker} \hat{F}^\ast(x_k), \quad \|h_k\| = 1$$

converges Q-quadratically to x^*. The matrices $\hat{F}^\ast(x_k)$ obtained from $F^\ast(x_k)$ by replacing all elements, whose absolute values do not increase $\nu>0$, by zero, where $\nu = \nu_k = \|F(z_k)\|^{(1-\alpha)/2}$, $0<\alpha<1$. In the case $n=m+1$ the operator

$$\left\{\hat{F}^\ast(x_k) + P_k^\perp F^\ast(x_k) h_k\right\}^{-1}$$

in method (8) is replaced by the operator

$$\left[\hat{F}^\ast(x_k) + P_k^\perp F^\ast(x_k) h_k\right]^\dagger$$

(9)

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com
2. Extending of the system of equation

Now we construct the operator \(\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*) = 0 \) [2].

Assume

A4) Let \(F(x) = [f_1(x), f_2(x), ..., f_m(x)]^T \), \(n > m \) is two continuously differentiable in some neighbourhood \(U \subset \mathbb{R}^n \) of the point \(x^* \).

Denote:

\[H = \text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}^2 F'(x^*) \text{, } h \neq 0. \]

\[P = P_{H^\perp} \quad \text{denotes the orthogonal projection } \mathbb{R}^n \text{ on } H^\perp \]

\[f'_i(x) = P\left(f'_i(x)\right)^T \quad \text{for } i = 1, 2, ..., m. \]

For each system of indices \(i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\} \) and vectors \(h_1, h_2, ..., h_{n-m-1} \subset \mathbb{R}^n \) we define

\[\Phi(x) = \begin{bmatrix} F'(x) h \\ \varphi(x) \end{bmatrix}, \quad (10) \]

where

\[\varphi(x) : \mathbb{R}^n \rightarrow \mathbb{R}^r, \quad r = n-m-1, \]

\[\varphi(x) = P F'(x) \tilde{y}_r, \quad \tilde{y}_r \in [h_1, h_2, ..., h_r]^T, \]

\[\varphi(x) = M \begin{bmatrix} \tilde{y}_r^T h_i \\ \tilde{y}_r^T h_r \end{bmatrix}. \quad (11) \]

In [2] it was proved, that the sequence

\[x_{k+1} = x_k - \left[\Phi'(x_k) \right]^+ \cdot \Phi(x_k), \quad k = 0, 1, 2, ... \quad (12) \]

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:

\[x_{k+1} = x_k - \left\{ B_k \right\}^+ \cdot \Phi(x_k). \quad (13) \]

The operator \(\Phi' \) will by approximated by matrices \(\{B_k\} \).

Let

\[s_k = x_{k+1} - x_k. \quad (14) \]

We propose matrices \(B_k \) which satisfy the secant equation:

\[B_{k+1} s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for } k = 0, 1, 2, ... \quad (15) \]

For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,\ldots \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:
- **Q-linear convergence** to \(x^* \) i.e. there exists \(q \in (0,1) \) such that
 \[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for } k = 0,1,2,\ldots \] (18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)
Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi'(x^*) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi'(x^*) \right\| + q_2 r_k, \] (20)
then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such that if
\[\|x_0 - x^*\| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi'(x^*) \| \leq \delta, \]
then the sequence
\[x_{k+1} = x_k - B_k^* \Phi(x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)
Let \(F \) satisfies the assmuptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^* \cdot \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^* \).

Proof.
To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[\| B_{k+1} - \Phi \left(x^* \right) \| = \left\| B_k - \frac{\Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) - B_k s_k}{s_k^T s_k} s_k^T \right\| \leq B_k - \Phi \left(x^* \right) \| \]

\[\leq \left\| B_k - \Phi \left(x^* \right) \| + \left\| \frac{\Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) - B_k s_k}{s_k^T s_k} s_k^T \right\| \leq B_k - \Phi \left(x^* \right) \| + \]

\[+ \left\| \frac{\Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) - B_k s_k}{s_k^T s_k} s_k^T \right\| \leq \left\| \Phi \left(x^* \right) - B_k \right\| (1 + q_i r_{k}) + c_i \frac{\| x_{k+1} - x^* \|^2}{s_k^T s_k} + \]

\[+ c_2 \frac{\| x_k - x^* \|^2}{s_k^T s_k} \leq \left\| \Phi \left(x^* \right) - B_k \right\| (1 + q_i r_{k}) + q_2 r_{k}, \]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max \{ \| x_{k+1} - x^* \|, \| x_k - x^* \| \} \).

\[\square \]

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfies the assumptions A1-A4 and the sequence

\[x_{k+1} = x_k - \left\{ B_k \right\}^{-1} \cdot \Phi \left(x_k \right), \]

\[B_{k+1} = B_k - \frac{\Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) - B_k s_k}{s_k^T s_k} s_k^T \]

linearly converges to \(x^* \). Then the sequence \(\{ x_k \} \) Q-superlinearly converges to \(x^* \).

Proof.

Matrices \(B_k \) satisfy secant equation (15), so

\[B_{k+1} = P_{k} B_k \]

where

\[L_k = \left\{ X : X s_k = y_k, \text{ where } y_k = \Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) \right\} \]

Denote

\[H_k = H \left(x_k, x_{k+1} \right) = \int_0^1 \Phi \left(x_k + t \left(x_{k+1} - x_k \right) \right) dt. \]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:
\[
\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots
\]

By lemma 2 [5] we get
\[
\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty,
\]
thus we obtain
\[
\|B_{k+1} - B_k\| \to 0.
\]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square\)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k)\).

References