Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0.
\]

Definition 1

A linear operator \(\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(h \in \mathbb{R}^n \) is called 2-factor operator, if

\[
\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h,
\]

where

\(P^\perp \) - denotes the orthogonal projection on \((\text{Im } F' (x))^\perp \) in \(\mathbb{R}^n \) [1].

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n \), \(h \neq 0 \), if the operator \(\Psi_2(h) \) has the property:

\[
\text{Im } \Psi_2(h) = \mathbb{R}^m.
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in \(x^* \), if F is 2-regular on the set \(K_2(x^*) \{0 \} \), where
\[
K_2 \left(x^* \right) = \text{Ker}^* F \left(x^* \right) \cap \text{Ker}^2 P^+ F^* \left(x^* \right),
\]
(3)
\[
\text{Ker}^2 P^+ F^* \left(x^* \right) = \{ h \in R^n : P^+ F^* \left(x^* \right) [h]^2 = 0 \}.
\]
We need the following assumption on F:
A1) completely degenerated in \(x^* \):
\[
\text{Im} F^* \left(x^* \right) = 0.
\]
(4)
A2) operator F is 2-regular in \(x^* \):
\[
\text{Im} F^* \left(x^* \right) h = R^m \quad \text{for} \quad h \in K_2(x^*), \; h \neq 0.
\]
(5)
A3)
\[
\text{Ker} F^* \left(x^* \right) \neq \{0\}.
\]
(6)
If F satisfies A1 in \(x^* \), then
\[
K_2 \left(x^* \right) = \text{Ker}^2 F^* (x^*) = \{ h \in R^n : F^* (x^*) [h]^2 = 0 \}.
\]
(7)
In [1] it was proved, that if n=m, then the sequence
\[
x_{k+1} = x_k - \left(\hat{F}^* (x_k) + P^+_k F^* (x_k) h_k \right)^{-1} \cdot \left(F(x_k) + P^+_k F^* (x_k) h_k \right),
\]
(8)
where
\[
P^+_k \quad \text{denotes orthogonal projection on } \left(\text{Im} \hat{F}^* (x_k) \right)^\perp \quad \text{in} \quad R^n,
\]
\[
h_k \in \text{Ker} \hat{F}^* (x_k), \quad \| h_k \| = 1
\]
converges Q-quadratically to \(x^* \).
The matrices \(\hat{F}^* (x_k) \) obtained from \(F^* (x_k) \) by replacing all elements, whose absolute values do not increase \(\forall >0 \), by zero, where
\[
\forall = \forall_k = \| F(x_k) \|^{(1-\alpha)/2}, \quad 0 < \alpha < 1.
\]
In the case \(n = m+1 \) the operator
\[
\left\{ \hat{F}^* (x_k) + P^+_k F^* (x_k) h_k \right\}^{-1}
\]
in method (8) is replaced by the operator
\[
\left[\hat{F}^* (x_k) + P^+_k F^* (x_k) h_k \right]^+
\]
(9)
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined \(n > m \) and degenerated in \(x^* \).
2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$$H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker} F'(x^*), \quad h \neq 0.$$

$P = P_{H^\perp}$ denotes the orthogonal projection R^n on H^\perp.

$$f_i^g(x) = P\left(f_i'(x)\right)^T \quad \text{for} \quad i=1,2,...,m.$$

For each system of indices $i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors $h_1, h_2, ..., h_{n-m-1} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x)h \\ \Phi(x) \end{bmatrix},$$

where

$$\varphi(x) : R^n \rightarrow R^n, \quad r=n-m-1,$$

$$\varphi(x) = P F'(x) h, \quad \begin{bmatrix} f_i^g(x)h_1 \\ f_i^g(x)h_r \end{bmatrix}^T,$$

$$\varphi(x) = \begin{bmatrix} f_i^g(x)h_1 \\ f_i^g(x)h_r \end{bmatrix}.$$

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - \left[\Phi \left(x_k\right)\right]^T \cdot \Phi \left(x_k\right), \quad k=0,1,2,....$$

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - \left(B_k\right)^+ \cdot \Phi \left(x_k\right).$$

The operator Φ' will be approximated by matrices $\{B_k\}$.

Let

$$s_k = x_{k+1} - x_k.$$

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1} s_k = \Phi \left(x_{k+1}\right) - \Phi \left(x_k\right) \quad \text{for} \quad k=0,1,2,...$$

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such that
\[\left\| x_{k+1} - x^* \right\| \leq q \left\| x_k - x^* \right\| \quad \text{for } k = 0,1,2,... \] (18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\left\| x_{k+1} - x^* \right\|}{\left\| x_k - x^* \right\|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(\Phi' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi' (x^*) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi' (x^*) \right\| + q_2 r_k, \] (20)
then there are constants \(\varepsilon > 0 \) i \(\delta > 0 \) such, that if
\[\left\| x_0 - x^* \right\| \leq \varepsilon \quad \text{and} \quad \left\| B_0 - \Phi' (x^*) \right\| \leq \delta, \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi (x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \left\{ B_k \right\}^* \Phi (x_k), \]
\[B_{k+1} = B_k - \frac{\left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[
\|B_{k+1} - \Phi'(x^*)\| = \left\|B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} - \Phi'(x^*)\right\| \leq \\
\leq \|B_k - \Phi'(x^*)\| + \left\|\frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}\right\| \leq \|B_k - \Phi'(x^*)\| + \\
+ \left\|\frac{(\Phi(x_{k+1}) - \Phi'(x^*)(x_{k+1} - x^*)) s_k^T}{s_k^T s_k}\right\| + \left\|\frac{(\Phi(x_k) - \Phi'(x^*)(x_k - x^*)) s_k^T}{s_k^T s_k}\right\| + \\
+ \left\|\frac{(\Phi'(x^*) - B_k) s_k^T}{s_k^T s_k}\right\| \leq \left\|\Phi'(x^*) - B_k\right\| \left(1 + q_1 r_k\right) + c_1 \frac{\|x_{k+1} - x^*\|^2}{s_k^T s_k} + c_2 \frac{\|x_k - x^*\|^2}{s_k^T s_k} = \left\|\Phi'(x^*) - B_k\right\| \left(1 + q_1 r_k\right) + q_2 r_k,
\]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}\).

\[\text{Theorem 3 (Q-superlinear convergence)}\]

Let \(F\) satisfies the assumptions A1-A4 and the sequence
\[x_{k+1} = x_k - (B_k)^{-1} \cdot \Phi(x_k),\]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}\]
linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

\[\text{Proof.}\]

Matrices \(B_k\) satisfy secant equation (15), so
\[B_{k+1} = P_{L_k} B_k\]

where
\[L_k = \left\{X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k)\right\}\]

Denote
\[H_k = H(x_k, x_{k+1}) = \frac{1}{t} \Phi'(x_k + t(x_{k+1} - x_k)) dt.\]

We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots . \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain
\[\|B_{k+1} - B_k\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square \)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References