Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let $F : D \subset \mathbb{R}^n \to \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0.$$ (1)

Definition 1

A linear operator $\Psi_2(h) : \mathbb{R}^n \to \mathbb{R}^m$, $h \in \mathbb{R}^n$ is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h,$$ (2)

where

P^\perp - denotes the orthogonal projection on $\left(\text{Im} F'(x)\right)^\perp$ in \mathbb{R}^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im} \Psi_2(h) = \mathbb{R}^m.$$
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where

$$
K_2(x^*) = \text{Ker} F^- (x^*) \cap \text{Ker}^2 F^- (x^*),
$$

(3)

$$
\text{Ker}^2 P^\perp F^- (x^*) = \{ h \in R^n : P^\perp F^- (x^*)[h]^2 = 0 \}.
$$

We need the following assumption on F:

A1) completely degenerated in x^*:

$$
\text{Im} F^- (x^*) = 0.
$$

(4)

A2) operator F is 2-regular in x^*:

$$
\text{Im} F^- (x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.
$$

(5)

A3)

$$
\text{Ker} F^- (x^*) \neq \{0\}.
$$

(6)

If F satisfies A1 in x^*, then

$$
K_2 (x^*) = \text{Ker}^2 F^- (x^*) = \{ h \in R^n : F^- (x^*)[h]^2 = 0 \}.
$$

(7)

In [1] it was proved, that if $n=m$, then the sequence

$$
x_{k+1} = x_k - \left(\hat{F}^- (x_k) + P_k^\perp F^- (x_k) h_k \right)^{-1} \cdot \left(F^- (x_k) + P_k^\perp F^- (x_k) h_k \right),
$$

(8)

where P_k^\perp denotes orthogonal projection on $\left(\text{Im} \hat{F}^- (x_k) \right)^\perp$ in R^n,

$$
h_k \in \text{Ker} \hat{F}^- (x_k), \| h_k \| = 1
$$

converges Q-quadratically to x^*.

The matrices $\hat{F}^- (x_k)$ obtained from $F^- (x_k)$ by replacing all elements, whose absolute values do not increase $v>0$, by zero, where $v = v_k = \| F^- (x_k) \|^{(1-\alpha)/2}$, $0<\alpha<1$.

In the case $n = m+1$ the operator

$$
\left(\hat{F}^- (x_k) + P_k^\perp F^- (x_k) h_k \right)^{-1}
$$

in method (8) is replaced by the operator

$$
\left[\hat{F}^- (x_k) + P_k^\perp F^- (x_k) h_k \right]^\perp
$$

(9)

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com
2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \to R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$$H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}^2 F' \left(x^* \right), \ h \neq 0.$$

$$P = P_{H^\perp}$$ denotes the orthogonal projection R^n on H^\perp.

$$f_i'\Phi(x) = P\left(f_i'(x)\right)^T$$ for $i=1,2,...,m$.

For each system of indices $i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors $h_1, h_2, ..., h_{n-m-1} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix}, \quad (10)$$

where

$$\varphi(x) : R^n \to R^r, \quad r=n-m-1,$$

$$\varphi(x) = PF'\left(x\right)P_h, \quad P_h = [h_1, h_2, ..., h_r]^T,$$

$$\varphi(x) = \begin{bmatrix} \varphi' \left(x^* \right) h_1 \\ \varphi' \left(x^* \right) h_r \end{bmatrix}.$$

(11)

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - \left[\Phi' \left(x_k \right) \right]^\dagger \cdot \Phi(x_k) , \quad k=0,1,2,...$$

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - \left(B_k \right)^+ \cdot \Phi(x_k). \quad (13)$$

The operator Φ' will be approximated by matrices $\{B_k\}$.

Let

$$s_k = x_{k+1} - x_k.$$

(14)

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \quad k=0,1,2,...$$

(15)

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such that
\[\| x_{k+1} - x^* \| \leq q \| x_k - x^* \| \quad \text{for } k = 0,1,2,... \] (18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\| x_{k+1} - x^* \|}{\| x_k - x^* \|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)
Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi'(x^*) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi'(x^*) \right\| + q_2 r_k, \] (20)

then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such that if
\[\| x_0 - x^* \| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi'(x^*) \| \leq \delta, \]
then the sequence
\[x_{k+1} = x_k - B_k^* \Phi'(x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)
Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^* \cdot \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^* \).

Proof.
To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[
\begin{align*}
\|B_{k+1} - \Phi'(x^*)\| &= \|B_k - \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T - \Phi'(x^*)\| \\
&\leq \|B_k - \Phi'(x^*)\| + \frac{\|\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\|}{s_k^T s_k} s_k^T \\
&\leq \|B_k - \Phi'(x^*)\| + \frac{\|\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\|}{s_k^T s_k} s_k^T \\
&\leq \|B_k - \Phi'(x^*)\| + \frac{\|\Phi(x_{k+1}) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k\|}{s_k^T s_k} s_k^T \\
&\leq \|B_k - \Phi'(x^*)\| + \frac{\|\Phi(x_{k+1}) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k\|}{s_k^T s_k} s_k^T \\
&\leq \|B_k - \Phi'(x^*)\| + \frac{\|\Phi'(x^*) - B_k\|}{s_k^T s_k} s_k^T \\
&\leq \|\Phi'(x^*) - B_k\| (1 + q_1 r_k) + c_1 \frac{\|x_{k+1} - x^*\|}{s_k^T s_k} + c_2 \frac{\|x_k - x^*\|}{s_k} s_k^T \\
&\leq \|\Phi'(x^*) - B_k\| (1 + q_1 r_k) + q_2 r_k,
\end{align*}
\]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}. \)

\[\square\]

Theorem 3 (Q-superlinear convergence)

Let \(F\) satisfies the assumptions A1-A4 and the sequence

\[
x_{k+1} = x_k - \{B_k\}^{-1} \cdot \Phi(x_k),
\]

\[
B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\}}{s_k^T s_k} s_k^T
\]

linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.

Matrices \(B_k\) satisfy secant equation (15), so

\[
B_{k+1} = P_{L_k} B_k
\]

where

\[
L_k = \{X : Xs_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k)\}
\]

Denote

\[
H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt.
\]

We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:

\[\|B_{k+1} - B_k\|^2 + \|H_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain

\[\|B_{k+1} - B_k\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square \)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References