Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let $F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0.$$ (1)

Definition 1

A linear operator $\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $h \in \mathbb{R}^n$ is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h,$$ (2)

where P^\perp denotes the orthogonal projection on $(\text{Im} F'(x))^\perp$ in \mathbb{R}^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im} \Psi_2(h) = \mathbb{R}^m.$$

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3

Operator F is called 2-regular in x*, if F is 2-regular on the set $K_2(x*)\{0\}$, where

$$K_2(x*) = \text{Ker}F'(x*) \cap \text{Ker}^2 P^\perp F'(x*),$$

(3)

$$\text{Ker}^2 P^\perp F'(x*) = \left\{ h \in R^n : P^\perp F'(x*)[h]^2 = 0 \right\}.$$

We need the following assumption on F:

A1) completely degenerated in x*:

$$\text{Im} F'(x*) = 0.$$

(4)

A2) operator F is 2-regular in x*:

$$\text{Im} F'(x*) h = R^m \text{ for } h \in K_2(x*), h \neq 0.$$

(5)

A3)

$$\text{Ker} F'(x*) \neq \{0\}.$$

(6)

If F satisfies A1 in x*, then

$$K_2(x*) = \text{Ker}^2 F'(x*) = \left\{ h \in R^n : F'(x*)[h]^2 = 0 \right\}.$$

(7)

In [1] it was proved, that if n = m, then the sequence

$$x_{k+1} = x_k - \left\{ \hat{F}'(x_k) + P^\perp_k F'(x_k) h_k \right\}^{-1} \cdot \left\{ F'(x_k) + P^\perp_k F'(x_k) h_k \right\},$$

(8)

where

$$P^\perp_k$$ - denotes orthogonal projection on $\left(\text{Im} \hat{F}'(x_k) \right)^\perp \text{ in } R^n,$

$$h_k \in \text{Ker} \hat{F}'(x_k), \|h_k\| = 1$$

converges Q-quadratically to x*.

The matrices $\hat{F}'(x_k)$ obtained from $F'(x_k)$ by replacing all elements, whose absolute values do not increase $\nu > 0$, by zero, where $\nu = \nu_k = \|F(x_k)\|^{(1-\alpha)/2}$, $0 < \alpha < 1$.

In the case $n = m+1$ the operator

$$\left\{ \hat{F}'(x_k) + P^\perp_k F'(x_k) h_k \right\}^{-1}$$

in method (8) is replaced by the operator

$$\left[\hat{F}'(x_k) + P^\perp_k F'(x_k) h_k \right]^+$$

(9)

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n > m$) and degenerated in $x*$.
2. Extending of the system of equation

Now we construct the operator \(\Phi : R^n \rightarrow R^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*)=0 \) [2].

Assume

A4) Let \(F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T, \ n>m \) is two continuously differentiable in some neighbourhood \(U \subset R^n \) of the point \(x^* \).

Denote:

\[H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}^2 F' \left(x^* \right), \ h \neq 0. \]

\(P = P_{H^\perp} \) denotes the orthogonal projection \(R^n \) on \(H^\perp \)

\[f_i'(x) = P \left(f_i' \left(x \right) \right)^T \quad \text{for} \quad i=1,2,...,m. \]

For each system of indices \(i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\} \) and vectors \(h_1, h_2, ..., h_{n-m-1} \subset R^n \) we define

\[
\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix}, \quad (10)
\]

where

\[
\varphi(x) : R^n \rightarrow R^r, \quad r=n-m-1, \\
\varphi(x) = PF'(x)h_i, \quad h_i \in \left[h_1, h_2, ..., h_r \right]^T.
\]

\[
\varphi(x) = M, \quad \left[f_i'(x) h_i \right], \quad (11)
\]

In [2] it was proved, that the sequence

\[x_{k+1} = x_k - \left[\Phi' \left(x_k \right) \right]^T \cdot \Phi(x_k), \quad k=0,1,2,.... \quad (12) \]

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:

\[x_{k+1} = x_k - \left(B_k \right)^+ \cdot \Phi(x_k). \quad (13) \]

The operator \(\Phi' \) will be approximated by matrices \(\{B_k\} \).

Let

\[s_k = x_{k+1} - x_k. \quad (14) \]

We propose matrices \(B_k \) which satisfy the secant equation:

\[B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \quad k=0,1,2,... \quad (15) \]

For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \] (16)

where \[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \), i.e. there exists \(q \in (0,1) \) such that

\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for } k = 0,1,2,... \] (18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:

\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:

\[\left\| B_{k+1} - \Phi'(x^*) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi'(x^*) \right\| + q_2 r_k, \] (20)

then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such that if

\[\|x_0 - x^*\| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi'(x^*) \| \leq \delta, \]

then the sequence

\[x_{k+1} = x_k - B_k^* \Phi(x_k) \]

converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assmuptions A1-A4. Then the method

\[x_{k+1} = x_k - \{B_k\}^* \cdot \Phi(x_k), \]

\[B_{k+1} = B_k - \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} \]

locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[\|B_{k+1} - \Phi \left(x^* \right) \| \geq \| B_k - \frac{\{\Phi (x_{k+1}) - \Phi (x_k) - B_k s_k\} s_k^T}{s_k^T s_k} - \Phi \left(x^* \right) \| \leq \| B_k - \Phi \left(x^* \right) \| + \| \frac{\{\Phi (x_{k+1}) - \Phi (x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \| \leq \| B_k - \Phi \left(x^* \right) \| + \| \frac{\{\Phi (x_{k+1}) - \Phi (x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \| \]

\[+ \| \frac{(\Phi (x_{k+1}) - \Phi (x_k)) s_k^T}{s_k^T s_k} \| \leq \| \Phi \left(x^* \right) - B_k \| \left(1 + q_1 r_k \right) + c_1 \| x_{k+1} - x^* \| \| s_k \| + c_2 \| x_{k+1} - x^* \| \| s_k \| , \]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max \{\| x_{k+1} - x^* \|, \| x_k - x^* \| \} \).

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfies the assumptions A1-A4 and the sequence

\[x_{k+1} = x_k - \{ B_k \}^{-1} \cdot \Phi (x_k) , \]

\[B_{k+1} = B_k - \frac{\{\Phi (x_{k+1}) - \Phi (x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]

linearly converges to \(x^* \). Then the sequence \(\{ x_k \} \) Q-superlinearly converges to \(x^* \).

Proof.

Matrices \(B_k \) satisfy secant equation (15), so

\[B_{k+1} = P_{L_k}^2 B_k \] (21)

where

\[L_k = \left\{ X : X s_k = y_k, \quad \text{where} \quad y_k = \Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) \right\} \] (22)

Denote

\[H_k = H \left(x_k, x_{k+1} \right) = \int_0^1 \Phi ' \left(x_k + t \left(x_{k+1} - x_k \right) \right) dt . \]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]

By lemma 2 [5] we get \(\sum \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain
\[\|B_{k+1} - B_k\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square \)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{\prime\prime}(x_k) \).

References