Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0.
\]

Definition 1

A linear operator \(\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(h \in \mathbb{R}^n \) is called 2-factor operator, if

\[
\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h,
\]

where

\(P^\perp \) - denotes the orthogonal projection on \(\left(\text{Im} F'(x) \right)^\perp \) in \(\mathbb{R}^n \) [1].

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n \), \(h\neq 0 \), if the operator \(\Psi_2(h) \) has the property:

\[
\text{Im} \Psi_2(h) = \mathbb{R}^m.
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in \(x^* \), if F is 2-regular on the set \(K_2(x^*) \setminus \{0\} \), where
\[
K_2(x^*) = \text{Ker} F'(x^*) \cap \text{Ker}^2 P^\perp F'(x^*),
\]
\[
\text{Ker}^2 P^\perp F'(x^*) = \{ h \in \mathbb{R}^n : P^\perp F'(x^*)[h]^2 = 0 \}.
\]
We need the following assumption on F:
A1) completely degenerated in \(x^* \):
\[
\text{Im} F'(x^*) = 0.
\]
A2) operator F is 2-regular in \(x^* \):
\[
\text{Im} F'(x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.
\]
A3)
\[
\text{Ker} F'(x^*) \neq \{0\}.
\]
If F satisfies A1 in \(x^* \), then
\[
K_2(x^*) = \text{Ker}^2 F'(x^*) = \{ h \in \mathbb{R}^n : F'(x^*)[h]^2 = 0 \}.
\]
In [1] it was proved, that if \(n=m \), then the sequence
\[
x_{k+1} = x_k - \left(\hat{F}'(x_k) + P^\perp_k F'(x_k) h_k \right)^{-1} \cdot \left(F(x_k) + P^\perp_k F'(x_k) h_k \right),
\]
where
\[P^\perp_k \] denotes orthogonal projection on \((\text{Im} \hat{F}'(x_k))^\perp \) in \(\mathbb{R}^n \),
\[
h_k \in \text{Ker} \hat{F}'(x_k), \quad \|h_k\| = 1
\]
converges Q-quadratically to \(x^* \).
The matrices \(\hat{F}'(x_k) \) obtained from \(F'(x_k) \) by replacing all elements, whose absolute values do not increase \(\nu > 0 \), by zero, where \(\nu = \nu_k = \|F(x_k)\|^{(1-\alpha)/2}, \) \(0 < \alpha < 1 \).
In the case \(n = m+1 \) the operator
\[
\left(\hat{F}'(x_k) + P^\perp_k F'(x_k) h_k \right)^{-1}
\]
in method (8) is replaced by the operator
\[
\left[\hat{F}'(x_k) + P^\perp_k F'(x_k) h_k \right]^+
\]
and then the method converges Q-linearly to the set of solutions [2].
Under the assumptions A1-A3, the system of equation (1) is undetermined (\(n > m \)) and degenerated in \(x^* \).
2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \to R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$$H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}F'(x^*), \quad h \neq 0.$$

$$P = P_{H^\perp}$$ denotes the orthogonal projection R^n on H^\perp.

$$j_i^q(x) = P(f_i'(x))^T$$ for $i=1,2,...,m$.

For each system of indices $i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors $h_{i_1}, h_{i_2}, ..., h_{i_{n-m-1}} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix}, \quad (10)$$

where

$$\varphi(x) : R^n \to R^r, \quad r=n-m-1,$$

$$\varphi(x) = PF'(x)P_{H^\perp}, \quad P_{H^\perp} \left[h_{i_1}, h_{i_2}, ..., h_{i_r} \right]^T,$$

$$\varphi(x) = \begin{bmatrix} j_{i_1}^q(x)h_{i_1} \\ \vdots \\ j_{i_r}^q(x)h_{i_r} \end{bmatrix}.$$

(11)

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - \left[\Phi'(x_k) \right]^+ \cdot \Phi'(x_k), \quad k=0,1,2,...$$

(12)

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - \left(B_k \right)^+ \cdot \Phi'(x_k). \quad (13)$$

The operator Φ' will be approximated by matrices $\{B_k\}$.

Let

$$s_k = x_{k+1} - x_k.$$

(14)

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1} s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \quad k=0,1,2,...$$

(15)

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \] for k=0,1,2,... \hspace{1cm} (16)

where

\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] \hspace{1cm} (17)

We will prove for this method:

Q-linear convergence to \(x^* \), i.e. there exists \(q \in (0,1) \) such that

\[\| x_{k+1} - x^* \| \leq q \| x_k - x^* \| \] \hspace{1cm} (18)

and next Q-superlinear convergence to \(x^* \), i.e.:

\[\lim_{k \to \infty} \frac{\| x_{k+1} - x^* \|}{\| x_k - x^* \|} = 0. \] \hspace{1cm} (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:

\[\| B_{k+1} - \Phi' (x^*) \| \leq (1 + q_1 r_k) \| B_k - \Phi' (x^*) \| + q_2 r_k, \] \hspace{1cm} (20)

then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such, that if

\[\| x_0 - x^* \| \leq \varepsilon \] and \(\| B_0 - \Phi' (x^*) \| \leq \delta, \)

then the sequence

\[x_{k+1} = x_k - B_k^{-1} \Phi(x_k) \]

converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method

\[x_{k+1} = x_k - \{ B_k \}^T \cdot \Phi(x_k), \]

\[B_{k+1} = B_k - \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T}{s_k^T s_k} \]

locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[\left\| B_{k+1} - \Phi'(x^*) \right\| = \left\| B_k - \frac{\left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T}{s_k^T s_k} - \Phi'(x^*) \right\| \leq \]
\[\leq \left\| B_k - \Phi'(x^*) \right\| + \left\| \frac{\left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T}{s_k^T s_k} \right\| \leq \left\| B_k - \Phi'(x^*) \right\| + \]
\[+ \left\| \frac{\left\{ \Phi(x_{k+1}) - \Phi'(x^*) \left(x_{k+1} - x^* \right) \right\} s_k^T}{s_k^T s_k} \right\| + \left\| \frac{\left\{ \Phi(x_k) - \Phi'(x^*) \left(x_k - x^* \right) \right\} s_k^T}{s_k^T s_k} \right\| \]
\[+ \left\| \frac{\left(\Phi(x^*) - B_k s_k \right) s_k^T}{s_k^T s_k} \right\| \leq \left\| \Phi'(x^*) - B_k \right\| \left(1 + q_1 r_k \right) + c_1 \left\| x_{k+1} - x^* \right\| \left\| s_k \right\| \]
\[+ c_2 \left\| x_k - x^* \right\| \left\| s_k \right\| \leq \left\| \Phi'(x^*) - B_k \right\| \left(1 + q_1 r_k \right) + q_2 r_k, \]
where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\left\| x_{k+1} - x^* \right\|, \left\| x_k - x^* \right\|\} \).

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfies the assumptions A1-A4 and the sequence
\[x_{k+1} = x_k - \left\{ B_k \right\}^{-1} \cdot \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T}{s_k^T s_k} \]
linearly converges to \(x^* \). Then the sequence \(\{x_k\} \) Q-superlinearly converges to \(x^* \).

Proof.
Matrices \(B_k \) satisfy secant equation (15), so
\[B_{k+1} = P_{L_k}^+ B_k \]
where
\[L_k = \{ X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k) \} \]
Denote
\[H_k = H(x_k, x_{k+1}) = \frac{1}{0} \Phi'(x_k + t(x_{k+1} - x_k)) dt. \]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]
By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain
\[\|B_{k+1} - B_k\| \to 0. \]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square \)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References