Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0. \tag{1}
\]

Definition 1

A linear operator \(\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(h \in \mathbb{R}^n \) is called 2-factor operator, if

\[
\Psi_2(h) = F'(x^*) + P^\perp F'(x^*)h, \tag{2}
\]

where

\(P^\perp \) - denotes the orthogonal projection on \((\text{Im} F'(x))^\perp \) in \(\mathbb{R}^n \) \[1\].

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n, h \neq 0 \), if the operator \(\Psi_2(h) \) has the property:

\[
\text{Im} \, \Psi_2(h) = \mathbb{R}^m.
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where

$$
K_2(x^*) = \text{Ker} F^* (x^*) \cap \text{Ker}^2 P^+ F^* (x^*),
$$

(3)

$$
\text{Ker}^2 P^+ F^* (x^*) = \left\{ h \in \mathbb{R}^n : P^+ F^* (x^*) [h]^2 = 0 \right\}.
$$

We need the following assumption on F:

A1) completely degenerated in x^*:

$$
\text{Im} F^* (x^*) = 0.
$$

(4)

A2) operator F is 2-regular in x^*:

$$
\text{Im} F^* (x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.
$$

(5)

A3)

$$
\text{Ker} F^* (x^*) \neq \{0\}.
$$

(6)

If F satisfies A1 in x^*, then

$$
K_2(x^*) = \text{Ker}^2 P^+ F^* (x^*) = \left\{ h \in \mathbb{R}^n : F^* (x^*) [h]^2 = 0 \right\}.
$$

(7)

In [1] it was proved, that if $n=m$, then the sequence

$$
x_{k+1} = x_k - \left\{ \hat{F}^* (x_k) + P_k^+ \hat{F}^* (x_k) h_k \right\}^{-1} \cdot \left\{ F(x_k) + P_k^+ F^* (x_k) h_k \right\},
$$

(8)

where P_k^+ - denotes orthogonal projection on $\left(\text{Im} \hat{F}^* (x_k) \right)^\perp \text{ in } \mathbb{R}^n$,

$$
h_k \in \text{Ker} \hat{F}^* (x_k), \quad \| h_k \| = 1
$$

converges Q-quadratically to x^*.

The matrices $\hat{F}^* (x_k)$ obtained from $F^* (x_k)$ by replacing all elements, whose absolute values do not increase $\nu > 0$, by zero, where $\nu = \nu_k = \| F(x_k) \|^{(1-\alpha)/2}$, $0 < \alpha < 1$.

In the case $n = m+1$ the operator

$$
\left\{ \hat{F}^* (x_k) + P_k^+ \hat{F}^* (x_k) h_k \right\}^{-1}
$$

in method (8) is replaced by the operator

$$
\left[\hat{F}^* (x_k) + P_k^+ \hat{F}^* (x_k) h_k \right]^+
$$

(9)

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n > m$) and degenerated in x^*.
2. Extending of the system of equation

Now we construct the operator \(\Phi : \mathbb{R}^n \to \mathbb{R}^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*)=0 \) [2]. Assume

A4) Let \(F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T \), \(n>m \) is two continuously differentiable in some neighbourhood \(U \subset \mathbb{R}^n \) of the point \(x^* \).

Denote:

\[
H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}^2 F'(x^*), \quad h \neq 0.
\]

\[
P=P_{H^\perp} \quad \text{denotes the orthogonal projection} \quad \mathbb{R}^n \text{ on } H^\perp.
\]

\[
\frac{\partial^2 \ell(x)}{\partial x_i} = P \left(f'_i(x) \right)^T \quad \text{for } i=1,2,...,m.
\]

For each system of indices \(i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\} \) and vectors \(h_1, h_2, ..., h_{n-m-1} \subset \mathbb{R}^n \) we define

\[
\Phi(x) = \begin{bmatrix} F'(x) h \\ \varphi(x) \end{bmatrix},
\]

where

\[
\varphi(x) : \mathbb{R}^n \to \mathbb{R}^r, \quad r=n-m-1,
\]

\[
\varphi(x) = PF'(x) P^T \overline{\rho}, \quad \overline{\rho} \in \left[h_1, h_2, ..., h_r \right]^T,
\]

\[
\varphi(x) = M \begin{bmatrix} \frac{\partial \ell(x)}{\partial x_{i_1}} h_{i_1} \\ \frac{\partial \ell(x)}{\partial x_{i_2}} h_{i_2} \\ \vdots \\ \frac{\partial \ell(x)}{\partial x_{i_r}} h_{i_r} \end{bmatrix}.
\]

In [2] it was proved, that the sequence

\[
x_{k+1} = x_k - \left[\Phi'(x_k) \right]^+ \cdot \Phi(x_k), \quad k=0,1,2,....
\]

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:

\[
x_{k+1} = x_k - \left(B_k \right)^+ \cdot \Phi(x_k).
\]

The operator \(\Phi' \) will by approximated by matrices \(\{B_k\} \).

Let

\[
s_k = x_{k+1} - x_k.
\]

We propose matrices \(B_k \) which satisfy the secant equation:

\[
B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for } k=0,1,2,....
\]

For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method: Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such, that
\[\| x_{k+1} - x^* \| \leq q \| x_k - x^* \| \quad \text{for } k = 0,1,2,... \] (18)

and next Q-superlinear convergence to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\| x_{k+1} - x^* \|}{\| x_k - x^* \|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F' (x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{ B_k \} \) satisfy the inequality:
\[\| B_{k+1} - \Phi'(x^*) \| \leq (1 + q_1 r_k) \| B_k - \Phi'(x^*) \| + q_2 r_k, \] (20)

then there are constants \(\varepsilon > 0 \) i \(\delta > 0 \) such, that if
\[\| x_0 - x^* \| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi'(x^*) \| \leq \delta, \]
then the sequence
\[x_{k+1} = x_k - B_k^* \Phi'(x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{ B_k \}^* \Phi'(x_k), \]
\[B_{k+1} = B_k - \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[\left\| B_{k+1} - \Phi \left(x^* \right) \right\| = \left\| B_k - \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T - \Phi \left(x^* \right) \right\| \leq \left\| B_k - \Phi \left(x^* \right) \right\| \]

\[\leq \left\| B_k - \Phi \left(x^* \right) \right\| + \left\| \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T \right\| \leq \left\| B_k - \Phi \left(x^* \right) \right\| + \left\| \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T \right\| \]

\[+ \left\| \Phi(x_k) - \Phi(x^*) \right\| s_k^T \] \[+ \left\| \Phi(x_k) - \Phi(x^*) \right\| s_k^T \]

\[+ \left\| \Phi \left(x^* \right) - B_k s_k \right\| \leq \left\| \Phi \left(x^* \right) - B_k \right\| (1 + q_1 r_k) + c_1 \left\| x_{k+1} - x^* \right\|^2 \left\| s_k \right\| \]

\[+ c_2 \left\| x_k - x^* \right\|^2 \left\| s_k \right\| \leq \left\| \Phi \left(x^* \right) - B_k \right\| (1 + q_1 r_k) + q_2 r_k , \]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max \{\left\| x_{k+1} - x^* \right\|, \left\| x_k - x^* \right\|\} \).}

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfies the assmuptions A1-A4 and the sequence

\[x_{k+1} = x_k - \left\{ B_k \right\}^{-1} \cdot \Phi \left(x_k \right), \]

\[B_{k+1} = B_k - \frac{\Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) - B_k s_k}{s_k^T s_k} s_k^T \]

linearly converges to \(x^* \). Then the sequence \(\{ x_k \} \) Q-superlinearly converges to \(x^* \).

Proof.

Matrices \(B_k \) satisfy secant equation (15), so

\[B_{k+1} = P_{L_k} B_k \] \hspace{1cm} (21)

where

\[L_k = \left\{ X \, : \, X s_k = y_k , \text{ where } y_k = \Phi \left(x_{k+1} \right) - \Phi \left(x_k \right) \right\} \] \hspace{1cm} (22)

Denote

\[H_k = H \left(x_k, x_{k+1} \right) = \int_0^1 \Phi' \left(x_k + t \left(x_{k+1} - x_k \right) \right) dt . \]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]
By lemma 2 [5] we get
\[\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty, \]
thus we obtain
\[\|B_{k+1} - B_k\| \to 0. \]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{\prime\prime}(x_k) \).

References