Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let $F : D \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0. \quad (1)$$

Definition 1

A linear operator $\Psi_2(h): \mathbb{R}^n \rightarrow \mathbb{R}^m$, $h \in \mathbb{R}^n$ is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*)h + P^\perp F'(x^*)h, \quad (2)$$

where

P^\perp - denotes the orthogonal projection on $(\text{Im} F'(x))^\perp$ in \mathbb{R}^n [1].

Definition 2

Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im} \Psi_2(h) = \mathbb{R}^m.$$
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*) \{0\}$, where
\[K_2(x^*) = \text{Ker} F^* (x^*) \cap \text{Ker}^2 F^* (x^*), \tag{3} \]
\[\text{Ker}^2 P^\perp F^* (x^*) = \{ h \in R^n : P^\perp F^* (x^*)[h]^2 = 0 \}. \]

We need the following assumption on F:
A1) completely degenerated in x^*:
\[\text{Im} F^* (x^*) = 0. \tag{4} \]
A2) operator F is 2-regular in x^*:
\[\text{Im} F^* (x^*) h = R^n \text{ for } h \in K_2(x^*), h \neq 0. \tag{5} \]
A3)
\[\text{Ker} F^* (x^*) \neq \{0\}. \tag{6} \]

If F satisfies A1 in x^*, then
\[K_2(x^*) = \text{Ker}^2 F^* (x^*) = \{ h \in R^n : F^* (x^*)[h]^2 = 0 \}. \tag{7} \]

In [1] it was proved, that if $n=m$, then the sequence
\[x_{k+1} = x_k - \left\{ \hat{F}^* (x_k) + P_k^\perp F^* (x_k) h_k \right\}^{-1} \cdot \left\{ F (x_k) + P_k^\perp F^* (x_k) h_k \right\}, \tag{8} \]
where
\[P_k^\perp \] denotes orthogonal projection on $\left(\text{Im} \hat{F}^* (x_k) \right)^\perp$ in R^n,
\[h_k \in \text{Ker} \hat{F}^* (x_k), \| h_k \| = 1 \]
converges Q-quadratically to x^*.

The matrices $\hat{F}^* (x_k)$ obtained from $F^* (x_k)$ by replacing all elements, whose absolute values do not increase $\nu > 0$, by zero, where $\nu = \nu_k = \| F (x_k) \|^{(1-\alpha)/2}$, $0 < \alpha < 1$.

In the case $n = m+1$ the operator
\[\left\{ \hat{F}^* (x_k) + P_k^\perp F^* (x_k) h_k \right\}^{-1} \]
in method (8) is replaced by the operator
\[\left[\hat{F}^* (x_k) + P_k^\perp F^* (x_k) h_k \right]^+ \tag{9} \]
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n > m$) and degenerated in x^*.

2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \to R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), \ldots, f_m(x)]^T$, $n > m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$H=\text{lin}\{h\}$ for $h \in \text{Ker}^2 F'(x^*)$, $h \neq 0$.

$P = P_{H^\perp}$ denotes the orthogonal projection R^n on H^\perp.

$f_i'(x) = P\left(f_i'(x)\right)^T$ for $i=1,2,\ldots,m$.

For each system of indices $i_1, i_2, \ldots, i_{n-m-1} \subset \{1, 2, \ldots, m\}$ and vectors $h_1, h_2, \ldots, h_{n-m-1} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x)h \\ \phi(x) \end{bmatrix},$$

where

$$\phi(x) : R^n \to R^r, \quad r = n-m-1,$$

$$\phi(x) = PF'(x)h_i, \quad h_i = [h_1, h_2, \ldots, h_r]^T,$$

$$\phi(x) = M \begin{bmatrix} f_i'(x)h_1 \\ \vdots \\ f_i'(x)h_r \end{bmatrix}.$$ (10)

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - \left[\Phi\left(x_k\right)\right]^+ \cdot \Phi\left(x_k\right), \quad k=0,1,2,\ldots$$ (12)

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - \left\{B_k\right\}^+ \cdot \Phi\left(x_k\right).$$ (13)

The operator Φ' will be approximated by matrices $\{B_k\}$.

Let

$$s_k = x_{k+1} - x_k.\quad (14)$$

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1}s_k = \Phi\left(x_{k+1}\right) - \Phi\left(x_k\right) \quad \text{for} \quad k=0,1,2,\ldots$$ (15)

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \quad (16) \]

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \quad (17) \]

We will prove for this method:

- **Q-linear convergence** to \(x^* \), i.e. there exists \(q \in (0,1) \) such that
 \[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for } k = 0,1,2,... \quad (18) \]

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \quad (19) \]

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F^\prime(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\|B_{k+1} - \Phi^\prime(x^*)\| \leq (1 + q_1 r_k) \|B_k - \Phi^\prime(x^*)\| + q_2 r_k, \quad (20) \]

then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such that
\[\|x_0 - x^*\| \leq \varepsilon \quad \text{and} \quad \|B_0 - \Phi^\prime(x^*)\| \leq \delta, \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi(x_k) \]

converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^* \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]

locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[
\|B_{k+1} - \Phi\left(x^*\right)\| = \left\|B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} - \Phi\left(x^*\right)\right\| \leq \\
\left\|B_k - \Phi\left(x^*\right)\right\| + \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \leq \left\|B_k - \Phi\left(x^*\right)\right\| + \\
+ \left\|\frac{\{\Phi(x_{k+1}) - \Phi(x_k) - \Phi\left(x^*\right)s_k + \Phi\left(x^*\right)s_k - B_k s_k\} s_k^T}{s_k^T s_k}\right\| \leq \left\|B_k - \Phi\left(x^*\right)\right\| + \\
+ \left\|\frac{(\Phi(x_k) - \Phi\left(x^*\right)(x_k - x^*)) s_k^T}{s_k^T s_k}\right\| + \left\|\frac{(\Phi(x_k) - \Phi\left(x^*\right)(x_k - x^*)) s_k^T}{s_k^T s_k}\right\| + \\
+ \left\|\frac{(\Phi\left(x^*\right) - B_k) s_k^T}{s_k^T s_k}\right\| \leq \left\|\Phi\left(x^*\right) - B_k\right\|(1 + q_1 r_k) + c_i \frac{\|x_{k+1} - x^*\|^2}{s_k^T s_k} + c_2 \frac{\|x_k - x^*\|^2}{s_k^T s_k} \right\|
\]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}. \)

\(\square\)

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfies the assumptions A1-A4 and the sequence

\[
x_{k+1} = x_k - \{B_k\}^{-1} \cdot \Phi\left(x_k\right),
\]

\[
B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}
\]

linearly converges to \(x^* \). Then the sequence \(\{x_k\} \) Q-superlinearly converges to \(x^* \).

Proof.

Matrices \(B_k \) satisfy secant equation (15), so

\[
B_{k+1} = P_{L_k} B_k
\]

where

\[
L_k = \{X : X s_k = y_k, \text{ where } y_k = \Phi\left(x_{k+1}\right) - \Phi\left(x_k\right)\}
\]

Denote

\[
H_k = H\left(x_k, x_{k+1}\right) = \int_0^1 \Phi^\prime\left(x_k + t \left(x_{k+1} - x_k\right)\right) dt.
\]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:

\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain

\[\|B_{k+1} - B_k\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References