Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0.
\]

Definition 1

A linear operator \(\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(h \in \mathbb{R}^n \) is called 2-factor operator, if

\[
\Psi_2(h) = F'(x^*) + P\perp F'(x^*) h,
\]

where

\(P\perp \) - denotes the orthogonal projection on \((\text{Im } F'(x))^\perp \) in \(\mathbb{R}^n \) [1].

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n \), \(h \neq 0 \), if the operator \(\Psi_2(h) \) has the property:

\[
\text{Im } \Psi_2(h) = \mathbb{R}^m.
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where
\[K_2(x^*) = \text{Ker}F^*(x^*) \cap \text{Ker}^2 P \perp F^*(x^*), \]
\[\text{Ker}^2 P \perp F^*(x^*) = \{ h \in R^n : P \perp F^*(x^*)[h]^2 = 0 \}. \]

We need the following assumption on F:
A1) completely degenerated in x^*:
\[\text{Im} F^*(x^*) = 0. \]
A2) operator F is 2-regular in x^*:
\[\text{Im} F^*(x^*) h = R^m \quad \text{for} \quad h \in K_2(x^*), h \neq 0. \]
A3) \[\text{Ker} F^*(x^*) \neq \{0\}. \]

If F satisfies A1 in x^*, then
\[K_2(x^*) = \text{Ker}^2 P \perp F^*(x^*) = \{ h \in R^n : F^*(x^*)[h]^2 = 0 \}. \]

In [1] it was proved, that if $n=m$, then the sequence
\[x_{k+1} = x_k - \left\{ \hat{F}^*(x_k) + P_k \perp F^*(x_k) h_k \right\}^{-1} \cdot \left\{ F(x_k) + P_k \perp F^*(x_k) h_k \right\}, \]
where $P_k \perp$ - denotes orthogonal projection on $\left(\text{Im} \hat{F}^*(x_k) \right)^\perp$ in R^n, $h_k \in \text{Ker} \hat{F}^*(x_k)$, $\|h_k\| = 1$
converges Q-quadratically to x^*.

The matrices $\hat{F}^*(x_k)$ obtained from $F^*(x_k)$ by replacing all elements, whose absolute values do not increase $\nu>0$, by zero, where $\nu = \nu_k = \|F(x_k)\|^{-\alpha/2}$, $0<\alpha<1$.

In the case $n = m+1$ the operator
\[\left\{ \hat{F}^*(x_k) + P_k \perp F^*(x_k) h_k \right\}^{-1} \]
in method (8) is replaced by the operator
\[\left[\hat{F}^*(x_k) + P_k \perp F^*(x_k) h_k \right]^+ \]
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.

2. Extending of the system of equation

Now we construct the operator \(\Phi : R^n \rightarrow R^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*)=0 \) [2].

Assume

A4) Let \(F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T \), \(n>m \) is two continuously differentiable in some neighbourhood \(U \subset R^n \) of the point \(x^* \).

Denote:

\[
H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker} \ F^r \left(x^*\right), \ h \neq 0.
\]

\[P = P_{H^\perp}\] denotes the orthogonal projection \(R^n \) on \(H^\perp \). Let \(f_i'(x) = P \left(f_i'(x)\right)^T \) for \(i=1,2,\ldots,m \).

For each system of indices \(i_1, i_2, \ldots, i_{n-m-1} \subset \{1, 2, \ldots, m\} \) and vectors \(h_1, h_2, \ldots, h_{n-m-1} \subset R^n \) we define

\[
\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix},
\]

where

\[
\varphi(x) = \begin{bmatrix} \varphi_1(x) \\ \varphi_2(x) \\ \vdots \\ \varphi_{n-m}(x) \end{bmatrix} = \begin{bmatrix} \rho_1(x)h_1 \\ \rho_2(x)h_2 \\ \vdots \\ \rho_{n-m}(x)h_{n-m} \end{bmatrix},
\]

(11)

In [2] it was proved, that the sequence

\[
x_{k+1} = x_k - \left(\Phi'(x_k)\right)^{-1} \cdot \Phi(x_k), \quad k=0,1,2,\ldots
\]

(12)

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:

\[
x_{k+1} = x_k - \left\{B_k\right\}^+ \cdot \Phi(x_k).
\]

(13)

The operator \(\Phi' \) will by approximated by matrices \(\{B_k\} \).

Let

\[
s_k = x_{k+1} - x_k.
\]

(14)

We propose matrices \(B_k \) which satisfy the secant equation:

\[
B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \ k=0,1,2,\ldots
\]

(15)

For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \quad (16) \]

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \quad (17) \]

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such that
\[
\left\| x_{k+1} - x^* \right\| \leq q \left\| x_k - x^* \right\| \quad \text{for } k = 0,1,2,... \quad (18)
\]

and next *Q-superlinear convergence* to \(x^* \), i.e.:
\[
\lim_{k \to \infty} \frac{\left\| x_{k+1} - x^* \right\|}{\left\| x_k - x^* \right\|} = 0. \quad (19)
\]

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[
\left\| B_{k+1} - \Phi'(x^*) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi'(x^*) \right\| + q_2 r_k, \quad (20)
\]

then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such, that if
\[
\left\| x_0 - x^* \right\| \leq \varepsilon \quad \text{and} \quad \left\| B_0 - \Phi'(x^*) \right\| \leq \delta,
\]

then the sequence
\[x_{k+1} = x_k - B_k^{-1} \Phi(x_k) \]

converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[
x_{k+1} = x_k - \{B_k\}^+ \cdot \Phi(x_k),
\]
\[
B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}
\]

locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[\|B_{k+1} - \Phi'(x^*)\| = \left\|B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} - \Phi'(x^*)\right\| \leq \|B_k - \Phi'(x^*)\| + \left\|\frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}\right\| \leq \|B_k - \Phi'(x^*)\| + \left\|\frac{\{\Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k\} s_k^T}{s_k^T s_k}\right\| \leq \|B_k - \Phi'(x^*)\| + \left\|\frac{(\Phi(x_{k+1}) - \Phi'(x^*) s_k s_k^T) + (\Phi(x_k) - \Phi'(x^*) (x_k - x^*)) s_k^T}{s_k^T s_k}\right\| + \left\|\frac{(\Phi'(x^*) - B_k) s_k s_k^T}{s_k^T s_k}\right\| \leq \|\Phi'(x^*) - B_k\| + c_1 \left\|\frac{x_k - x^*}{s_k}\right\|^2 \leq \|\Phi'(x^*) - B_k\| + c_1 \left\|\frac{x_k - x^*}{s_k}\right\|^2 \leq \|\Phi'(x^*) - B_k\| + c_1 \leq \|\Phi'(x^*) - B_k\| + c_2 \leq \|\Phi'(x^*) - B_k\| + c_2 r_k,\]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}\). \(\square\)

Theorem 3 (Q-superlinear convergence)

Let \(F\) satisfies the assumptions A1-A4 and the sequence
\[
x_{k+1} = x_k - \{B_k\}^{-1} \cdot \Phi(x_k) ,
\]
\[
B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}
\]
linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.

Matrices \(B_k\) satisfy secant equation (15), so
\[
B_{k+1} = P_{L_k} B_k
\]
where
\[
L_k = \left\{X : X s_k = y_k , \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k)\right\}
\]
(22)

Denote
\[
H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt.
\]

We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:

\[\left\| B_{k+1} - B_k \right\|^2 + \left\| B_{k+1} - H_k \right\|^2 = \left\| B_k - H_k \right\|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \left\| B_{k+1} - B_k \right\|^2 < \infty \), thus we obtain

\[\left\| B_{k+1} - B_k \right\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square \)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References