Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski* , Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract
In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction
Let $F : D \subset \mathbb{R}^n \to \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0.$$ (1)

Definition 1
A linear operator $\Psi_2(h) : \mathbb{R}^n \to \mathbb{R}^m$, $h \in \mathbb{R}^n$ is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*) + P^\perp F^*(x^*) h,$$ (2)

where P^\perp denotes the orthogonal projection on $(\text{Im } F'(x))^\perp$ in \mathbb{R}^n [1].

Definition 2
Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im } \Psi_2(h) = \mathbb{R}^m.$$

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where
\[K_2\left(x^*\right) = \text{Ker}F^\bot\left(x^*\right) \cap \text{Ker}^2P^\bot F^\bot\left(x^*\right), \]
(3)
\[\text{Ker}^2P^\bot F^\bot\left(x^*\right) = \left\{ h \in R^n : P^\bot F^\bot\left(x^*\right)[h]^2 = 0 \right\}. \]

We need the following assumption on F:
A1) completely degenerated in x^*:
\[\text{Im}F^\bot\left(x^*\right) = 0. \]
(4)
A2) operator F is 2-regular in x^*:
\[\text{Im} F^\bot\left(x^*\right)h = R^n \text{ for } h \in K_2(x^*), h \neq 0. \]
(5)
A3) \[\text{Ker}F^\bot\left(x^*\right) \neq \{0\}. \]
(6)

If F satisfies A1 in x^*, then
\[K_2\left(x^*\right) = \text{Ker}^2P^\bot F^\bot\left(x^*\right) = \left\{ h \in R^n : F^\bot\left(x^*\right)[h]^2 = 0 \right\}. \]
(7)

In [1] it was proved, that if $n=m$, then the sequence
\[x_{k+1} = x_k - \left\{ \hat{F}^\bot\left(x_k\right) + P_k^\bot F^\bot\left(x_k\right)h_k \right\}^{-1} \cdot \left\{ F\left(x_k\right) + P_k^\bot F^\bot\left(x_k\right)h_k \right\}, \]
(8)
where
\[P_k^\bot \] denotes orthogonal projection on \((\text{Im} \hat{F}^\bot\left(x_k\right))^\bot \) in \(R^n \),
\[h_k \in \text{Ker}\hat{F}^\bot\left(x_k\right), \|h_k\|=1 \]
converges Q-quadratically to x^*.
The matrices \(\hat{F}^\bot\left(x_k\right) \) obtained from \(F^\bot\left(x_k\right) \) by replacing all elements, whose absolute values do not increase \(\nu > 0 \), by zero, where \(\nu = \nu_k = \|F\left(x_k\right)\|^{(1-\alpha)/2}, \) \(0 < \alpha < 1. \)

In the case $n=m+1$ the operator
\[\left\{ \hat{F}^\bot\left(x_k\right) + P_k^\bot F^\bot\left(x_k\right)h_k \right\}^{-1} \]
in method (8) is replaced by the operator
\[\left[\hat{F}^\bot\left(x_k\right) + P_k^\bot F^\bot\left(x_k\right)h_k \right]^\top \]
(9)
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined \((n>m) \) and degenerated in x^*.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com
2. Extending of the system of equation

Now we construct the operator \(\Phi : R^n \rightarrow R^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*)=0 \) [2].

Assume

A4) Let \(F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T \), \(n \geq m \) is two continuously differentiable in some neighbourhood \(U \subset R^n \) of the point \(x^* \).

Denote:

\[
H=\text{lin}\{h\} \quad \text{for} \quad h \in Ker F'(x^*), \ h \neq 0.
\]

\[
P = P_{H^\bot} \quad \text{denotes the orthogonal projection} \quad R^n \text{ on } H^\bot.
\]

\[
f_i'(x) = P\left(f'_i(x)\right)^T \quad \text{for } i=1,2,...,m.
\]

For each system of indices \(i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\} \) and vectors \(h_1, h_2, ..., h_{n-m-1} \subset R^n \) we define

\[
\Phi(x) = \begin{bmatrix}
F'(x)h \\
\varphi(x)
\end{bmatrix}, \quad (10)
\]

where

\[
\varphi(x) : R^n \rightarrow R^r, \quad r=n-m-1,
\]

\[
\varphi(x) = PF'(x)h^r, \quad h^r = [h_1, h_2, ..., h_r]^T,
\]

\[
\varphi(x) = M
\]

\[
\begin{bmatrix}
f_{i_1}'(x)h_1 \\
f_{i_2}'(x)h_r
\end{bmatrix}.
\]

(11)

In [2] it was proved, that the sequence

\[
x_{k+1} = x_k - \left[\Phi'(x_k)\right]^{-1} \cdot \Phi(x_k), \quad k=0,1,2,.... \quad (12)
\]

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:

\[
x_{k+1} = x_k - \{B_k\}^+ \cdot \Phi(x_k). \quad (13)
\]

The operator \(\Phi' \) will be approximated by matrices \(\{B_k\} \).

Let

\[
s_k = x_{k+1} - x_k. \quad (14)
\]

We propose matrices \(B_k \) which satisfy the secant equation:

\[
B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for } k=0,1,2,.... \quad (15)
\]

For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
$$B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,...$$ \hspace{1cm} (16)

where

$$r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k.$$ \hspace{1cm} (17)

We will prove for this method:

Q-linear convergence to x^* i.e. there exists $q \in (0,1)$ such that

$$\|x_{k+1} - x^*\| \leq q^{k+1} \|x_0 - x^*\| \quad \text{for } k = 0,1,2,...$$ \hspace{1cm} (18)

and next Q-superlinear convergence to x^*, i.e.:

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0.$$ \hspace{1cm} (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator $F'(x^*)$ is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let F satisfies the assumptions A1-A4. If exist constants $q_1 \geq 0$ and $q_2 \geq 0$ such that matrices $\{B_k\}$ satisfy the inequality:

$$\|B_k - \Phi'(x^*)\| \leq (1 + q_1 r_k)\|B_k - \Phi'(x^*)\| + q_2 r_k,$$ \hspace{1cm} (20)

then there are constants $\epsilon > 0$ and $\delta > 0$ such that if

$$\|x_0 - x^*\| \leq \epsilon \quad \text{and} \quad \|B_0 - \Phi'(x^*)\| \leq \delta,$$

then the sequence

$$x_{k+1} = x_k - B_k \Phi(x_k)$$

converges Q-linearly to x^*.

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let F satisfies the assumptions A1-A4. Then the method

$$x_{k+1} = x_k -\{B_k\}^* \cdot \Phi(x_k),$$

$$B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}$$

locally and Q-linearly converges to x^*.

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[
\|B_{k+1} - \Phi'(x^*)\| = \left\| B_k - \frac{\left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T}{s_k^T s_k} - \Phi'(x^*) \right\| \leq \\
\leq \left\| B_k - \Phi'(x^*) \right\| + \left\| \frac{\left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T}{s_k^T s_k} \right\| \leq \left\| B_k - \Phi'(x^*) \right\| + \\
+ \left\| \frac{\left\{ \Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*)(x_{k+1} - x^*) \right\} s_k^T}{s_k^T s_k} \right\| + \left\| \frac{\left\{ \Phi(x_k) - \Phi'(x^*)(x_k - x^*) \right\} s_k^T}{s_k^T s_k} \right\| \\
+ \left\| \frac{(\Phi(x^*) - B_k) s_k s_k^T}{s_k^T s_k} \right\| \leq \left\| \Phi'(x^*) - B_k \right\| (1 + q_1 r_k) + c_1 \frac{\|x_{k+1} - x^*\|^2}{s_k^T s_k} \\
+ c_2 \frac{\|x_k - x^*\|^2}{s_k^T s_k} \leq \left\| \Phi'(x^*) - B_k \right\| (1 + q_1 r_k) + q_2 r_k,
\]
where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\} \).

Theorem 3 (Q-superlinear convergence)

Let \(F\) satisfies the assumptions A1-A4 and the sequence

\[
x_{k+1} = x_k - \{B_k\}^{-1} \cdot \Phi(x_k),
\]

\[
B_{k+1} = B_k - \frac{\left\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right\} s_k^T}{s_k^T s_k}
\]

linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.

Matrices \(B_k\) satisfy secant equation (15), so

\[
B_{k+1} = P_{L_k}^{-1} B_k
\]

where

\[
L_k = \left\{ X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k) \right\} \quad (22)
\]

Denote

\[
H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt.
\]

We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:

\[
\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots.
\]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty\), thus we obtain

\[
\|B_{k+1} - B_k\| \to 0.
\]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k)\).

References