Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract
In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction
Let $F : D \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution $x^* \in D$ of the equation

$$F(x) = 0.$$

Definition 1
A linear operator $\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $h \in \mathbb{R}^n$ is called 2-factor operator, if

$$\Psi_2(h) = F'(x^*) + P^\perp F'(x^*) h,$$

where

P^\perp - denotes the orthogonal projection on $(\text{Im } F'(x))^\perp$ in \mathbb{R}^n [1].

Definition 2
Operator F is called 2-regular in x^* on the element $h \in \mathbb{R}^n$, $h \neq 0$, if the operator $\Psi_2(h)$ has the property:

$$\text{Im } \Psi_2(h) = \mathbb{R}^m.$$

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where

$$K_2(x^*) = \text{Ker} F^-(x^*) \cap \text{Ker}^2 P^+ F^-(x^*),$$

$$\text{Ker}^2 P^+ F^-(x^*) = \{ h \in \mathbb{R}^n : P^+ F^-(x^*)[h]^2 = 0 \}.$$

We need the following assumption on F:

A1) completely degenerated in x^*:
$$\text{Im} F^-(x^*) = 0.$$

A2) operator F is 2-regular in x^*:
$$\text{Im} F^-(x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.$$

A3)
$$\text{Ker} F^-(x^*) \neq \{0\}.$$

If F satisfies A1 in x^*, then
$$K_2(x^*) = \text{Ker}^2 F^-(x^*) = \{ h \in \mathbb{R}^n : F^-(x^*)[h]^2 = 0 \}.$$

In [1] it was proved, that if $n=m$, then the sequence
$$x_{k+1} = x_k - \left\{ \hat{F}^-(x_k) + P_k^+ F^-(x_k) h_k \right\}^{-1} \cdot \left\{ F(x_k) + P_k^+ F^-(x_k) h_k \right\},$$

where
$$P_k^+ - \text{denotes orthogonal projection on } \left(\text{Im} \hat{F}^-(x_k) \right)^\perp \text{ in } \mathbb{R}^n,$$
$$h_k \in \text{Ker} \hat{F}^-(x_k), \quad \|h_k\| = 1$$

cconverges Q-quadratically to x^*.
The matrices $\hat{F}^-(x_k)$ obtained from $F^-(x_k)$ by replacing all elements, whose absolute values do not increase $\nu>0$, by zero, where $\nu = \nu_k = \|F(x_k)\|^{(1-\alpha)/2}$, $0<\alpha<1$.

In the case $n = m+1$ the operator
$$\left\{ \hat{F}^-(x_k) + P_k^+ F^-(x_k) h_k \right\}^{-1}$$
in method (8) is replaced by the operator
$$\left[\hat{F}^-(x_k) + P_k^+ F^-(x_k) h_k \right]^+$$
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.

Definition 3

Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where

$$K_2(x^*) = \text{Ker} F^-(x^*) \cap \text{Ker}^2 P^+ F^-(x^*),$$

$$\text{Ker}^2 P^+ F^-(x^*) = \{ h \in \mathbb{R}^n : P^+ F^-(x^*)[h]^2 = 0 \}.$$

We need the following assumption on F:

A1) completely degenerated in x^*:
$$\text{Im} F^-(x^*) = 0.$$

A2) operator F is 2-regular in x^*:
$$\text{Im} F^-(x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.$$

A3)
$$\text{Ker} F^-(x^*) \neq \{0\}.$$

If F satisfies A1 in x^*, then
$$K_2(x^*) = \text{Ker}^2 F^-(x^*) = \{ h \in \mathbb{R}^n : F^-(x^*)[h]^2 = 0 \}.$$

In [1] it was proved, that if $n=m$, then the sequence
$$x_{k+1} = x_k - \left\{ \hat{F}^-(x_k) + P_k^+ F^-(x_k) h_k \right\}^{-1} \cdot \left\{ F(x_k) + P_k^+ F^-(x_k) h_k \right\},$$

where
$$P_k^+ - \text{denotes orthogonal projection on } \left(\text{Im} \hat{F}^-(x_k) \right)^\perp \text{ in } \mathbb{R}^n,$$
$$h_k \in \text{Ker} \hat{F}^-(x_k), \quad \|h_k\| = 1$$

cconverges Q-quadratically to x^*.
The matrices $\hat{F}^-(x_k)$ obtained from $F^-(x_k)$ by replacing all elements, whose absolute values do not increase $\nu>0$, by zero, where $\nu = \nu_k = \|F(x_k)\|^{(1-\alpha)/2}$, $0<\alpha<1$.

In the case $n = m+1$ the operator
$$\left\{ \hat{F}^-(x_k) + P_k^+ F^-(x_k) h_k \right\}^{-1}$$
in method (8) is replaced by the operator
$$\left[\hat{F}^-(x_k) + P_k^+ F^-(x_k) h_k \right]^+$$
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.

2. Extending of the system of equation

Now we construct the operator \(\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*)=0 \) [2].

Assume

A4) Let \(F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T \), \(n>m \) is two continuously differentiable in some neighbourhood \(U \subset \mathbb{R}^n \) of the point \(x^* \).

Denote:

\[H=\text{lin}\{h\} \quad \text{for} \ h \in \text{Ker}F'(x^*), \ h \neq 0. \]

\[P = P_{H^\perp} \] denotes the orthogonal projection \(\mathbb{R}^n \) on \(H^\perp \)

\[j_i^\Phi(x) = P\left(f_i'(x)\right)^T \] for \(i=1,2,...,m \).

For each system of indices \(i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\} \) and vectors \(h_1, h_2, ..., h_{n-m-1} \subset \mathbb{R}^n \) we define

\[\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix}, \quad (10) \]

defined by:

where

\[\varphi(x) : \mathbb{R}^r \rightarrow \mathbb{R}^r, \quad r=n-m-1, \]

\[\varphi(x) = PF'(x)h^\perp, \quad h^\perp = [h_1, h_2, ..., h_r]^T, \]

\[\varphi(x) = M \begin{bmatrix} j_{i_1}^\Phi(x)h_1 \\ \vdots \\ j_{i_r}^\Phi(x)h_r \end{bmatrix}. \quad (11) \]

In [2] it was proved, that the sequence

\[x_{k+1} = x_k - \left[\Phi'(x_k) \right]^+ \cdot \Phi(x_k), \quad k=0,1,2,.... \]

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:

\[x_{k+1} = x_k - \left[B_k \right]^+ \cdot \Phi(x_k). \quad (13) \]

The operator \(\Phi' \) will be approximated by matrices \(\{B_k\} \).

Let

\[s_k = x_{k+1} - x_k. \quad (14) \]

We propose matrices \(B_k \) which satisfy the secant equation:

\[B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \ k=0,1,2,.... \]

For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k}{s_k^T s_k} T \text{ for } k=0,1,2,... \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such, that
\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \text{ for } k = 0,1,2,... \] (18)

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\|B_{k+1} - \Phi'(x^*\rangle\| \leq (1 + q_1 r_k) \|B_k - \Phi'(x^*\rangle\| + q_2 r_k, \] (20)

then there are constants \(\varepsilon > 0 \) i \(\delta > 0 \) such, that if
\[\|x_0 - x^*\| \leq \varepsilon \text{ and } \|B_0 - \Phi'(x^*\rangle\| \leq \delta, \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi(x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - B_k^* \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1. Now we notice:
\[\|B_{k+1} - \Phi' (x^*)\| = \|B_k - \left(\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right) s_k^T \| \leq \|B_k - \Phi' (x^*)\| + \left\| \left(\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right) s_k^T \right\| \]

\[+ \left\| \left(\Phi(x_{k+1}) - \Phi'(x^*) (x_{k+1} - x^*) \right) s_k^T \right\| \]

\[+ \left\| \left(\Phi'(x^*) - B_k \right) s_k \right\| \leq \|\Phi'(x^*) - B_k\| (1 + q_1 r_k) + c_1 \|x_{k+1} - x^*\|^2 \|s_k\| \]

\[+ c_2 \frac{\|x_k - x^*\|^2}{\|s_k\|} \leq \|\Phi'(x^*) - B_k\| (1 + q_1 r_k) + c_2 r_k, \]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}. \)

\[\square \]

Theorem 3 (Q-superlinear convergence)

Let \(F\) satisfies the assumptions A1-A4 and the sequence

\[x_{k+1} = x_k - \left\{ B_k \right\}^{-1} \cdot \Phi(x_k), \]

\[B_{k+1} = B_k - \left(\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \right) s_k^T \]

linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.

Matrices \(B_k\) satisfy secant equation (15), so

\[B_{k+1} = P_{L_k} B_k \]

where

\[L_k = \{ X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k) \} \]

Denote

\[H_k = H (x_k, x_{k+1}) = \int_0^1 \Phi'(x_{k+1} + t (x_{k+1} - x_k)) dt. \]

We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]

By lemma 2 [5] we get \[\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty, \]
thus we obtain
\[\|B_{k+1} - B_k\| \to 0. \]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{\prime\prime}(x_k) \).

References