Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0.
\]

(1)

Definition 1

A linear operator \(\Psi_2(h) : R^n \rightarrow R^m \), \(h \in R^n \) is called 2-factor operator, if

\[
\Psi_2(h) = F'(x^*) + P^\perp F'(x^*)h,
\]

(2)

where

\(P^\perp \) - denotes the orthogonal projection on \((\text{Im} \ F'(x))^\perp \) in \(R^n [1] \).

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in R^n, h \neq 0 \), if the operator \(\Psi_2(h) \) has the property:

\[
\text{Im} \, \Psi_2(h) = R^m.
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*) \setminus \{0\}$, where
\[K_2(x^*) = \text{Ker}F^+(x^*) \cap \text{Ker}^2P^+F^+(x^*), \]
\[\text{Ker}^2P^+F^+(x^*) = \{ h \in R^n : P^+F^+(x^*)[h]^2 = 0 \} . \]

We need the following assumption on F:
A1) completely degenerated in x^*:
\[\text{Im} F^+(x^*) = 0. \]
A2) operator F is 2-regular in x^*:
\[\text{Im} F^+(x^*)h = R^n \text{ for } h \in K_2(x^*), h \neq 0. \]
A3)
\[\text{Ker}F^+(x^*) \neq \{0\} . \]

If F satisfies A1 in x^*, then
\[K_2(x^*) = \text{Ker}^2F^+(x^*) = \{ h \in R^n : F^+(x^*)[h]^2 = 0 \} . \]

In [1] it was proved, that if \(n = m \), then the sequence
\[x_{k+1} = x_k - \left\{ \hat{F}^+(x_k) + P_k^+F^+(x_k)h_k \right\}^{-1} \cdot \left\{ F(x_k) + P_k^+F^+(x_k)h_k \right\} , \]
where
\[P_k^+ \text{ denotes orthogonal projection on } \left(\text{Im} \hat{F}^+(x_k) \right)^\perp \text{ in } R^n , \]
converges Q-quadratically to x^*.
The matrices $\hat{F}^+(x_k)$ obtained from $F^+(x_k)$ by replacing all elements, whose absolute values do not increase $\nu > 0$, by zero, where $\nu = \nu_k = \| F(x_k) \|^{(1-\alpha)/2}$, $0 < \alpha < 1$.

In the case $n = m+1$ the operator
\[\left\{ \hat{F}^+(x_k) + P_k^+F^+(x_k)h_k \right\}^{-1} \]
in method (8) is replaced by the operator
\[\left[\hat{F}^+(x_k) + P_k^+F^+(x_k)h_k \right]^+ \]
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n > m$) and degenerated in x^*.

2. Extending of the system of equation

Now we construct the operator \(\Phi : R^n \rightarrow R^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*)=0 \) [2].

Assume

A4) Let \(F(x)=[f_1(x), f_2(x), \ldots, f_m(x)]^T \), \(n>m \) is two continuously differentiable in some neighbourhood \(U \subseteq R^n \) of the point \(x^* \).

Denote:

\[H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker} F'(x^*), \quad h \neq 0. \]

\[P = P_{H^\perp} \quad \text{denotes the orthogonal projection} \quad R^n \text{ on } H^\perp \]

\[f_i'(x) = P \left(f_i'(x) \right)^T \quad \text{for i}=1,2,\ldots,m. \]

For each system of indices \(i_1, i_2, \ldots, i_{n-m-1} \subseteq \{1, 2, \ldots, m\} \) and vectors \(h_1, h_2, \ldots, h_{n-m-1} \subseteq R^n \) we define

\[\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix}, \quad (10) \]

where

\[\varphi(x) : R^n \rightarrow R^r, \quad r=n-m-1, \]

\[\varphi(x) = PF'(x)h, \quad h= [h_1, h_2, \ldots, h_r]^T, \]

\[\varphi(x) = M. \quad (11) \]

In [2] it was proved, that the sequence

\[x_{k+1} = x_k - \left[\Phi'(x_k) \right]^T \cdot \Phi(x_k), \quad k=0,1,2,\ldots, \quad (12) \]

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:

\[x_{k+1} = x_k - \left(B_k \right)^+ \cdot \Phi(x_k). \quad (13) \]

The operator \(\Phi' \) will be approximated by matrices \(\{B_k\} \).

Let

\[s_k = x_{k+1} - x_k. \quad (14) \]

We propose matrices \(B_k \) which satisfy the secant equation:

\[B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for k}=0,1,2,\ldots. \quad (15) \]

For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \tag{16} \]

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \tag{17} \]

We will prove for this method:

Q-linear convergence to \(x^* \), i.e. there exists \(q \in (0,1) \) such that
\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for } k = 0,1,2,... \tag{18} \]

and next Q-superlinear convergence to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \tag{19} \]

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\|B_{k+1} - \Phi'(x^*)\| \leq (1 + q_1 r_k) \|B_k - \Phi'(x^*)\| + q_2 r_k, \tag{20} \]

then there are constants \(\epsilon > 0 \) i \(\delta > 0 \) such, that if
\[\|x_0 - x^*\| \leq \epsilon \quad \text{and} \quad \|B_0 - \Phi'(x^*)\| \leq \delta, \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi'(x_k) \]

converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^* \cdot \Phi'(x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]

locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.
Now we notice:
\[\|B_{k+1} - \Phi'(x^*)\| \leq \|B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T s_k}{s_k^T s_k} - \Phi'(x^*)\| \leq \|B_k - \Phi'(x^*)\| + \left\| \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \right\| \leq \|B_k - \Phi'(x^*)\| + \frac{\left\| (\Phi(x_{k+1}) - \Phi'(x^*)(x_{k+1} - x^*)) s_k^T \right\|}{s_k^T s_k} + \frac{\left\| (\Phi(x_k) - \Phi'(x^*)(x_k - x^*)) s_k^T \right\|}{s_k^T s_k} + \frac{\left\| (\Phi(x^*) - B_k s_k) s_k^T \right\|}{s_k^T s_k} \leq \|\Phi'(x^*) - B_k\| \left(1 + q_1 r_k\right) + c_1 \left\| x_{k+1} - x^* \right\|^2 \left\| s_k \right\| + c_2 \left\| x_k - x^* \right\|^2 \left\| s_k \right\| \leq \|\Phi'(x^*) - B_k\| \left(1 + q_1 r_k\right) + q_2 r_k, \]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}. \]

Theorem 3 (Q-superlinear convergence)

Let \(F \) satisfies the assumptions A1-A4 and the sequence
\[x_{k+1} = x_k - \{B_k\}^{-1} \cdot \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]
linearly converges to \(x^* \). Then the sequence \(\{x_k\} \) Q-superlinearly converges to \(x^* \).

Proof.

Matrices \(B_k \) satisfy secant equation (15), so
\[B_{k+1} = P_{L_k} B_k \]
where
\[L_k = \{X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k)\} \]

Denote
\[H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt. \]

We have \(H_k \in L_k \) [4].
From (21) and [3] it follows:
\[
\left\| B_{k+1} - B_k \right\|^2 + \left\| B_{k+1} - H_k \right\|^2 = \left\| B_k - H_k \right\|^2, \quad \text{for } i = 0, 1, 2, \ldots .
\]
By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \left\| B_{k+1} - B_k \right\|^2 < \infty \), thus we obtain
\[
\left\| B_{k+1} - B_k \right\| \to 0.
\]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\Box \)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{\prime\prime} (x_k) \).

References