Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski*, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subset \mathbb{R}^n \to \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0. \tag{1}
\]

Definition 1

A linear operator \(\Psi_{2}(h) : \mathbb{R}^n \to \mathbb{R}^m \), \(h \in \mathbb{R}^n \) is called 2-factor operator, if

\[
\Psi_{2}(h) = F'(x^*) + P^\perp F'(x^*) h, \tag{2}
\]

where

\(P^\perp \) - denotes the orthogonal projection on \(\left(\text{Im} F'(x) \right)^\perp \) in \(\mathbb{R}^n \) [1].

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n, h \neq 0 \), if the operator \(\Psi_{2}(h) \) has the property:

\[
\text{Im} \Psi_{2}(h) = \mathbb{R}^m.
\]

* Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in \(x^* \), if F is 2-regular on the set \(K_2(x^*) \setminus \{0\} \), where
\[
K_2(x^*) = \text{Ker} F(x^*) \cap \text{Ker}^2 \text{P}^\perp F^\perp(x^*),
\]
\[
\text{Ker}^2 \text{P}^\perp F^\perp(x^*) = \{ h \in R^n : \text{P}^\perp F^\perp(x^*)[h]^2 = 0 \}.
\]

We need the following assumption on F:
A1) completely degenerated in \(x^* \):
\[
\text{Im} F^\perp(x^*) = 0.
\]
A2) operator F is 2-regular in \(x^* \):
\[
\text{Im} F^\perp(x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.
\]
A3)
\[
\text{Ker} F^\perp(x^*) \neq \{0\}.
\]

If F satisfies A1 in \(x^* \), then
\[
K_2(x^*) = \text{Ker}^2 \text{P}^\perp F^\perp(x^*) = \{ h \in R^n : F^\perp(x^*)[h]^2 = 0 \}.
\]

In [1] it was proved, that if \(n=m \), then the sequence
\[
x_{k+1} = x_k - \left(\text{Im} \hat{F}^\perp(x_k) \right)^\perp + \text{P}_k^\perp \text{F}^\perp(x_k) h_k \right\}^{-1} \cdot \left\{ F(x_k) + P_k^\perp F^\perp(x_k) h_k \right\},
\]
where
\[
P_k^\perp \text{- denotes orthogonal projection on } \left(\text{Im} \hat{F}^\perp(x_k) \right)^\perp \text{ in } R^n,
\]
\[
h_k \in \text{Ker} \hat{F}^\perp(x_k), \quad \| h_k \| = 1
\]
converges Q-quadratically to \(x^* \).
The matrices \(\hat{F}^\perp(x_k) \) obtained from \(F^\perp(x_k) \) by replacing all elements, whose absolute values do not increase \(\nu > 0 \), by zero, where \(\nu = \nu_k = \| F(x_k) \|^{(1-\alpha)/2} \), \(0 < \alpha < 1 \).

In the case \(n = m+1 \) the operator
\[
\left\{ \hat{F}^\perp(x_k) + P_k^\perp F^\perp(x_k) h_k \right\}^{-1}
\]
in method (8) is replaced by the operator
\[
\left[\hat{F}^\perp(x_k) + P_k^\perp F^\perp(x_k) h_k \right]^+
\]
and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined (\(n > m \)) and degenerated in \(x^* \).
2. Extending of the system of equation

Now we construct the operator \(\Phi : R^n \to R^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*)=0 \) [2].

Assume

A4) Let \(F(x)=[f_1(x), f_2(x), \ldots, f_m(x)]^T \), \(n>m \) is two continuously differentiable in some neighbourhood \(U \subset R^n \) of the point \(x^* \).

Denote:

\[H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}^2 F'(x^*) , \quad h \neq 0. \]

\[P = P_{H^\perp} \] denotes the orthogonal projection \(R^n \) on \(H^\perp \)

\[f_i^\prime(x) = P(F_i'(x))^T \quad \text{for} \quad i=1,2,\ldots,m. \]

For each system of indices \(i_1, i_2, \ldots, i_{n-m-1} \subset \{1, 2, \ldots, m\} \) and vectors \(h_1, h_2, \ldots, h_{n-m-1} \subset R^n \) we define

\[\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix}, \tag{10} \]

where

\[\varphi(x) : R^n \to R^r, \quad r=n-m-1, \]

\[\varphi(x) = PF'(x)h, \quad h \in [h_1, h_2, \ldots, h_r]^T, \]

\[\varphi(x) = \begin{bmatrix} \varphi^1(x)h_1 \\ \vdots \\ \varphi^r(x)h_r \end{bmatrix}. \tag{11} \]

In [2] it was proved, that the sequence

\[x_{k+1} = x_k - \left[\Phi'(x_k) \right]^+ \cdot \Phi(x_k) , \quad k=0,1,2,\ldots \tag{12} \]

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:

\[x_{k+1} = x_k - \left(B_k \right)^+ \cdot \Phi(x_k) . \tag{13} \]

The operator \(\Phi' \) will be approximated by matrices \(\{B_k\} \).

Let

\[s_k = x_{k+1} - x_k . \tag{14} \]

We propose matrices \(B_k \) which satisfy the secant equation:

\[B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \quad k=0,1,2,\ldots \tag{15} \]

For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,\ldots \] (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] (17)

We will prove for this method:

Q-linear convergence to \(x^* \) i.e. there exists \(q \in (0,1) \) such that
\[\|x_{k+1} - x^*\| \leq q \|x_k - x^*\| \quad \text{for } k = 0,1,2,\ldots \] (18)

and next Q-superlinear convergence to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0. \] (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi'(x^*) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi'(x^*) \right\| + q_2 r_k, \] (20)

then there are constants \(\varepsilon > 0 \) and \(\delta > 0 \) such that if
\[\|x_0 - x^*\| \leq \varepsilon \quad \text{and} \quad \|B_0 - \Phi'(x^*)\| \leq \delta, \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi(x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^* \Phi(x_k), \]
\[B_{k+1} = B_k - \{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T \]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[
\|B_{k+1} - \Phi'(x^*)\| = \left\| B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} - \Phi'(x^*) \right\| \\
\leq \|B_k - \Phi'(x^*)\| + \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \leq \|B_k - \Phi'(x^*)\| + \\
+ \left\| \frac{\{\Phi(x_{k+1}) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k\} s_k^T}{s_k^T s_k} \right\| \leq \|B_k - \Phi'(x^*)\| + \\
+ \left\| \frac{\{\Phi(x_{k+1}) - \Phi'(x^*) (x_{k+1} - x^*)\} s_k^T}{s_k^T s_k} \right\| \leq \|\Phi'(x^*) - B_k\| \left\| (1 + q_1 r_k) + c_1 \frac{\|x_{k+1} - x^*\|^2}{s_k^T s_k} \right\| + \\
+ c_2 \frac{\|x_k - x^*\|^2}{s_k^T s_k} \leq \|\Phi'(x^*) - B_k\| (1 + q_1 r_k) + q_2 r_k,
\]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}\). \(\square\)

Theorem 3 (Q-superlinear convergence)

Let \(F\) satisfies the assumptions A1-A4 and the sequence
\[x_{k+1} = x_k - B_k^{-1} \cdot \Phi(x_k), \]
\[B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \]
linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.

Matrices \(B_k\) satisfy secant equation (15), so
\[B_{k+1} = P_{L_k} B_k \] (21)
where
\[L_k = \{X : X s_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k)\} \] (22)
Denote
\[H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt. \]
We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:

\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \quad \text{for } i = 0, 1, 2, \ldots. \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain

\[\|B_{k+1} - B_k\| \to 0. \]

This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\square \)

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{"}(x_k) \).

References