Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski∗, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract

In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction

Let \(F : D \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0. \tag{1}
\]

Definition 1

A linear operator \(\Phi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(h \in \mathbb{R}^n \) is called 2-factor operator, if

\[
\Phi_2(h) = F'(x^*) + P^\perp F'(x^*) h, \tag{2}
\]

where

\(P^\perp \) - denotes the orthogonal projection on \((\text{Im} F'(x))^\perp \) in \(\mathbb{R}^n \) [1].

Definition 2

Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n, h \neq 0 \), if the operator \(\Phi_2(h) \) has the property:

\[
\text{Im} \Phi_2(h) = R^m.
\]

∗ Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x^*)\{0\}$, where

$$K_2(x^*) = \text{Ker} F^* (x^*) \cap \text{Ker}^2 P^F (x^*),$$

(3)

$$\text{Ker}^2 P^F (x^*) = \left\{ h \in R^n : P^F (x^*) [h^2 = 0 \right\}.$$

We need the following assumption on F:
A1) completely degenerated in x^*:

$$\text{Im} F^* (x^*) = 0.$$

(4)

A2) operator F is 2-regular in x^*:

$$\text{Im} F^* (x^*) h = R^m \text{ for } h \in K_2(x^*), h \neq 0.$$

(5)

A3)

$$\text{Ker} F^* (x^*) \neq \{0\}.$$

(6)

If F satisfies A1 in x^*, then

$$K_2(x^*) = \text{Ker}^2 F^* (x^*) = \left\{ h \in R^n : F^* (x^*) [h^2 = 0 \right\}.$$

(7)

In [1] it was proved, that if n=m, then the sequence

$$x_{k+1} = x_k - \left\{ \hat{F}^* (x_k) + P_k^{-} F^* (x_k) h_k \right\}^{-1} \cdot \left\{ F (x_k) + P_k^{-} F^* (x_k) h_k \right\},$$

(8)

where

$$P_k^{-}$$ denotes orthogonal projection on $\left(\text{Im} \hat{F}^* (x_k) \right)^\perp$$ in R^n,

$$h_k \in \text{Ker} \hat{F}^* (x_k), \| h_k \|=1$$

converges Q-quadratically to x^*.

The matrices $\hat{F}^* (x_k)$ obtained from $F^* (x_k)$ by replacing all elements, whose absolute values do not increase $\nu > 0$, by zero, where $\nu = \nu_k = \| F (x_k) \|^{(1-\alpha)/2}$, $0 < \alpha < 1$.

In the case $n = m+1$ the operator

$$\left\{ \hat{F}^* (x_k) + P_k^{-} F^* (x_k) h_k \right\}^{-1}$$

in method (8) is replaced by the operator

$$\left[\hat{F}^* (x_k) + P_k^{-} F^* (x_k) h_k \right]^\dagger$$

(9)

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n>m$) and degenerated in x^*.

2. Extending of the system of equation

Now we construct the operator $\Phi : R^n \rightarrow R^{n-1}$ with the properties (4), (5) and such that $\Phi(x^*)=0$ [2].

Assume

A4) Let $F(x)=[f_1(x), f_2(x), ..., f_m(x)]^T$, $n>m$ is two continuously differentiable in some neighbourhood $U \subset R^n$ of the point x^*.

Denote:

$$H=\text{lin}\{h\} \quad \text{for} \quad h \in \text{Ker}F'(x^*), \ h \neq 0.$$

$$P = P_H^\perp \quad \text{denotes the orthogonal projection} \quad R^n \text{ on } H^\perp.$$

For each system of indices $i_1, i_2, ..., i_{n-m-1} \subset \{1, 2, ..., m\}$ and vectors $h_1, h_2, ..., h_{n-m-1} \subset R^n$ we define

$$\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix}, \quad (10)$$

where

$$\varphi(x) : R^n \rightarrow R^r, \quad r=n-m-1,$$

$$\varphi(x) = PF'(x)h', \quad h'=[h_1, h_2, ..., h_r]^T,$$

In [2] it was proved, that the sequence

$$x_{k+1} = x_k - [\Phi'(x_k)]^{-1} \cdot \Phi(x_k), \quad k=0,1,2,... \quad (12)$$

quadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence $\{x_k\}$ is defined by:

$$x_{k+1} = x_k - \{B_k\} \cdot \Phi(x_k). \quad (13)$$

Let

$$s_k = x_{k+1} - x_k. \quad (14)$$

We propose matrices B_k which satisfy the secant equation:

$$B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \quad k=0,1,2,... \quad (15)$$

For example, to obtain the sequence $\{B_k\}$ we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k=0,1,2,... \quad (16) \]

where
\[
 r_k = \Phi(x_{k+1}) - \Phi(x_k) - B s_k. \quad (17)
\]

We will prove for this method:

Q-linear convergence to \(x^* \), i.e. there exists \(q \in (0,1) \) such that
\[
\| x_{k+1} - x^* \| \leq q \| x_k - x^* \| \quad \text{for } k = 0,1,2,... \quad (18)
\]

and next **Q-superlinear convergence** to \(x^* \), i.e.:
\[
\lim_{k \to \infty} \frac{\| x_{k+1} - x^* \|}{\| x_k - x^* \|} = 0. \quad (19)
\]

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[
\| B_{k+1} - \Phi'(x^*) \| \leq (1 + q_1 r_k) \| B_k - \Phi'(x^*) \| + q_2 r_k, \quad (20)
\]

then there are constants \(\varepsilon >0 \) and \(\delta >0 \) such that if
\[
\| x_0 - x^* \| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi'(x^*) \| \leq \delta,
\]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi(x_k) \]
converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[
x_{k+1} = x_k - \{ B_k \}^* \Phi(x_k),
\]
\[
B_{k+1} = B_k - \frac{\Phi(x_{k+1}) - \Phi(x_k) - B s_k}{s_k^T s_k} \quad (s_k^T = 1)
\]
locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[
\|B_{k+1} - \Phi'(x^*)\| = \left\|B_k - \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T - \Phi'(x^*)\right\| \leq \\
\leq \|B_k - \Phi'(x^*)\| + \left\|\frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T\right\| \leq \|B_k - \Phi'(x^*)\| + \\
\left\|\frac{\Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*) s_k + \Phi'(x^*) s_k - B_k s_k}{s_k^T s_k} s_k^T\right\| \leq \|B_k - \Phi'(x^*)\| + \\
\left\|\frac{\Phi(x_{k+1}) - \Phi(x_k) - \Phi'(x^*)(x_{k+1} - x^*)}{s_k^T s_k} s_k^T\right\| + \left\|\frac{\Phi(x_k) - \Phi'(x^*)(x_k - x^*)}{s_k^T s_k} s_k^T\right\| + \\
\left\|\frac{\Phi'(x^*) - B_k}{s_k^T s_k} s_k^T\right\| \leq \|\Phi'(x^*) - B_k\| \left(1 + q_1 r_k\right) + c_1 \frac{\|x_{k+1} - x^*\|^2\|s_k\|}{s_k^T s_k} + \\
+ c_2 \frac{\|x_k - x^*\|^2\|s_k\|}{s_k^T s_k} \leq \|\Phi'(x^*) - B_k\| \left(1 + q_1 r_k\right) + q_2 r_k,
\]
where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\}\). \qed

Theorem 3 (Q-superlinear convergence)
Let \(F\) satisfies the assumptions A1-A4 and the sequence
\[
x_{k+1} = x_k - \left\{B_k\right\}^{-1} \cdot \Phi(x_k),
\]
\[
B_{k+1} = B_k - \frac{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k}{s_k^T s_k} s_k^T
\]
linearly converges to \(x^*\). Then the sequence \(\{x_k\}\) Q-superlinearly converges to \(x^*\).

Proof.
Matrices \(B_k\) satisfy secant equation (15), so
\[
B_{k+1} = P_{L_k} B_k
\]
where
\[
L_k = \left\{X : Xs_k = y_k, \text{ where } y_k = \Phi'(x_{k+1}) - \Phi'(x_k)\right\}
\]
Denote
\[
H_k = H(x_k, x_{k+1}) = \int_0^1 \Phi'(x_k + t(x_{k+1} - x_k)) dt.
\]
We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:
\[\|B_{k+1} - B_k\|^2 + \|B_{k+1} - H_k\|^2 = \|B_k - H_k\|^2, \text{ for } i = 0, 1, 2, \ldots. \]

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \|B_{k+1} - B_k\|^2 < \infty \), thus we obtain
\[\|B_{k+1} - B_k\| \to 0. \]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. □

4. Summary

The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F''(x_k) \).

References