Newton-like method for singular 2-regular system of nonlinear equations

Stanisław Grzegórski∗, Edyta Łukasik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract
In this article the problem of solving a system of singular nonlinear equations will be discussed. The theory of local and Q-superlinear convergence for the nonlinear operators is developed.

1. Introduction
Let \(F : D \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a nonlinear operator. The problem of solving a system of nonlinear equations consist in finding a solution \(x^* \in D \) of the equation

\[
F(x) = 0.
\]

Definition 1
A linear operator \(\Psi_2(h) : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(h \in \mathbb{R}^n \) is called 2-factor operator, if

\[
\Psi_2(h) = F'(x^*) + P^\perp F'(x^*)h,
\]

where

\(P^\perp \) - denotes the orthogonal projection on \((\text{Im } F'(x))^\perp\) in \(\mathbb{R}^n [1]\).

Definition 2
Operator \(F \) is called 2-regular in \(x^* \) on the element \(h \in \mathbb{R}^n, h \neq 0 \), if the operator \(\Psi_2(h) \) has the property:

\[
\text{Im } \Psi_2(h) = \mathbb{R}^m.
\]

∗ Corresponding author: e-mail address: grzeg@pluton.pol.lublin.pl
Definition 3
Operator F is called 2-regular in x^*, if F is 2-regular on the set $K_2(x*)\{0\}$, where

$$K_2(x^*) = \text{Ker} F^\top(x^*) \cap \text{Ker}^2 P^\perp F^\top(x^*),$$

and

$$\text{Ker}^2 P^\perp F^\top(x^*) = \{ h \in R^n : P^\perp F^\top(x^*)(h)^2 = 0 \}.$$

We need the following assumption on F:

A1) completely degenerated in x^*:

$$\text{Im} F^\top(x^*) = 0.$$

A2) operator F is 2-regular in x^*:

$$\text{Im} F^\top(x^*)h = R^n \text{ for } h \in K_2(x^*), h \neq 0.$$

A3) $\text{Ker} F^\top(x^*) \neq \{0\}.$

If F satisfies A1 in x^*, then

$$K_2(x^*) = \text{Ker}^2 F^\top(x^*) = \{ h \in R^n : F^\top(x^*)(h)^2 = 0 \}.$$

In [1] it was proved, that if $n=m$, then the sequence

$$x_{k+1} = x_k - \left\{ \hat{F}^\top(x_k) + P_k^\perp F^\top(x_k) h_k \right\}^{-1} \cdot \left\{ F(x_k) + P_k^\perp F^\top(x_k) h_k \right\},$$

where

$$P_k^\perp$$

- denotes orthogonal projection on $\left(\text{Im} \hat{F}^\top(x_k)\right)^\perp \text{ in } R^n,$

$$h_k \in \text{Ker} \hat{F}^\top(x_k), \quad \|h_k\| = 1$$

converges Q-quadratically to x^*.

The matrices $\hat{F}^\top(x_k)$ obtained from $F^\top(x_k)$ by replacing all elements, whose absolute values do not increase $\nu > 0$, by zero, where $\nu = v_k = \|F(x_k)\|^{(1-\alpha)/2}$, $0 < \alpha < 1$.

In the case $n = m+1$ the operator

$$\left\{ \hat{F}^\top(x_k) + P_k^\perp F^\top(x_k) h_k \right\}^{-1}$$

in method (8) is replaced by the operator

$$\left[\hat{F}^\top(x_k) + P_k^\perp F^\top(x_k) h_k \right]^\top$$

and then the method converges Q-linearly to the set of solutions [2].

Under the assumptions A1-A3, the system of equation (1) is undetermined ($n > m$) and degenerated in x^*.

2. Extending of the system of equation

Now we construct the operator \(\Phi : R^n \to R^{n-1} \) with the properties (4), (5) and such that \(\Phi(x^*)=0 [2] \).

Assume

A4) Let \(F(x)=[f_1(x), f_2(x), \ldots, f_m(x)]^T \), \(n > m \) is two continuously differentiable in some neighbourhood \(U \subset R^n \) of the point \(x^* \).

Denote:

\[
H=\text{lin}\{h\} \quad \text{for} \ h \in \text{Ker}^2 F'(x^*), h \neq 0.
\]

\[P = P_{H^\perp} \] denotes the orthogonal projection \(R^n \) on \(H^\perp \).

\[j'_i(q)(x) = P(f'_i(x))^T \] for \(i = 1, 2, \ldots, m \).

For each system of indices \(i_1, i_2, \ldots, i_{n-m-1} \subset \{1, 2, \ldots, m\} \) and vectors \(h_1, h_2, \ldots, h_{n-m-1} \subset R^n \) we define

\[
\Phi(x) = \begin{bmatrix} F'(x)h \\ \varphi(x) \end{bmatrix}, \quad \text{(10)}
\]

where

\[
\varphi(x) : R^n \to R^r, \quad r = n-m-1,
\]

\[
\varphi(x) = PF'(x)h, \quad h \in \text{Ker} j'_i(q)(x) = [h_1, h_2, \ldots, h_r]^T,
\]

\[
\varphi(x) = M, \quad \text{(11)}
\]

In [2] it was proved, that the sequence

\[
x_{k+1} = x_k - \left[\Phi'(x_k) \right]^T \cdot \Phi(x_k), \quad k = 0, 1, 2, \ldots \quad \text{(12)}
\]

equadratically converges to the solution of (1).

3. New method

We propose the Newton-like method, where the sequence \(\{x_k\} \) is defined by:

\[
x_{k+1} = x_k - \left\{ B_k \right\}^+ \cdot \Phi(x_k). \quad \text{(13)}
\]

The operator \(\Phi' \) will by approximated by matrices \(\{B_k\} \).

Let

\[
s_k = x_{k+1} - x_k. \quad \text{(14)}
\]

We propose matrices \(B_k \) which satisfy the secant equation:

\[
B_{k+1}s_k = \Phi(x_{k+1}) - \Phi(x_k) \quad \text{for} \, k = 0, 1, 2, \ldots \quad \text{(15)}
\]

For example, to obtain the sequence \(\{B_k\} \) we can apply the Broyden method:
\[B_{k+1} = B_k - \frac{r_k s_k^T}{s_k^T s_k} \quad \text{for } k = 0, 1, 2, \ldots \] \hspace{1cm} (16)

where
\[r_k = \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k. \] \hspace{1cm} (17)

We will prove for this method:

\textbf{Q-linear convergence} to \(x^* \), i.e. there exists \(q \in (0,1) \) such that
\[\| x_{k+1} - x^* \| \leq q \| x_k - x^* \| \quad \text{for } k = 0, 1, 2, \ldots \] \hspace{1cm} (18)

and next \textbf{Q-superlinear convergence} to \(x^* \), i.e.:
\[\lim_{k \to \infty} \frac{\| x_{k+1} - x^* \|}{\| x_k - x^* \|} = 0. \] \hspace{1cm} (19)

We present the theorem which is an analogue of the Bounded Deterioration Theorem (Broyden, Dennis and More - [3]) for the Newton-like methods, when the operator \(F'(x^*) \) is nonsingular.

Theorem 1 (The Bounded Deterioration Theorem)

Let \(F \) satisfies the assumptions A1-A4. If exist constants \(q_1 \geq 0 \) and \(q_2 \geq 0 \) such that matrices \(\{B_k\} \) satisfy the inequality:
\[\left\| B_{k+1} - \Phi'(x^*) \right\| \leq (1 + q_1 r_k) \left\| B_k - \Phi'(x^*) \right\| + q_2 r_k, \] \hspace{1cm} (20)

then there are constants \(\varepsilon > 0 \) i \(\delta > 0 \) such, that if
\[\| x_0 - x^* \| \leq \varepsilon \quad \text{and} \quad \| B_0 - \Phi'(x^*) \| \leq \delta, \]

then the sequence
\[x_{k+1} = x_k - B_k^* \Phi'(x_k) \]

converges Q-linearly to \(x^* \).

When the system of equation is rectangular, the proof of the theorem is analogous to that for the nonsingular and quadratic system and we neglect it.

Theorem 2 (Linear convergence)

Let \(F \) satisfies the assumptions A1-A4. Then the method
\[x_{k+1} = x_k - \{B_k\}^* \Phi'(x_k), \]
\[B_{k+1} = B_k - \frac{\{ \Phi(x_{k+1}) - \Phi(x_k) - B_k s_k \} s_k^T}{s_k^T s_k} \]

locally and Q-linearly converges to \(x^* \).

Proof.

To prove the Theorem we should prove the inequality (20) from Theorem 1.

Now we notice:
\[
\|B_{k+1} - \Phi'(x^*)\| = \left\| B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} - \Phi'(x^*) \right\| \\
\leq \|B_k - \Phi'(x^*)\| + \left\| \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k} \right\| \\
\leq \|B_k - \Phi'(x^*)\| + \left\| \frac{\{\Phi(x_{k+1}) - \Phi'(x^*)(x_k - x^*)\} s_k}{s_k^T s_k} \right\| \\
+ \left\| \frac{\{\Phi(x_k) - \Phi'(x^*)(x_k - x^*)\} s_k^T}{s_k^T s_k} \right\| \\
+ \left\| \frac{\{\Phi'(x^*) - B_k\} s_k}{s_k^T s_k} \right\| \\
\leq \|\Phi'(x^*) - B_k\|\left(1 + q_1 r_k \right) + c_i \frac{\|x_{k+1} - x^*\|^2}{\|s_k\|^2} + c_2 \frac{\|x_k - x^*\|^2}{\|s_k\|^2} \\
+ c_2 \frac{\|x_k - x^*\|^2}{\|s_k\|^2} \\
\leq \|\Phi'(x^*) - B_k\|\left(1 + q_1 r_k \right) + q_2 r_k ,
\]

where \(c_1 > 0, c_2 > 0, q_1 > 0, q_2 > 0, r_k = \max\{\|x_{k+1} - x^*\|, \|x_k - x^*\|\} \). \(\square\)

Theorem 3 (Q-superlinear convergence)

Let \(F\) satisfies the assumptions A1-A4 and the sequence

\[
x_{k+1} = x_k - \{B_k\}^{-1} \cdot \Phi(x_k),
\]

\[
B_{k+1} = B_k - \frac{\{\Phi(x_{k+1}) - \Phi(x_k) - B_k s_k\} s_k^T}{s_k^T s_k}
\]

linearly converges to \(x^*\). Then the sequence \(\{x_k\} \) Q-superlinearly converges to \(x^*\).

Proof.

Matrices \(B_k\) satisfy secant equation (15), so

\[
B_{k+1} = P_{L_k} B_k
\]

where

\[
L_k = \{ X : X s_k = y_k, \ \text{where} \ y_k = \Phi'(x_{k+1}) - \Phi'(x_k) \} \tag{22}
\]

Denote

\[
H_k = H(x_k, x_{k+1}) = \frac{1}{t} \Phi'(x_k + t(x_{k+1} - x_k)) dt .
\]

We have \(H_k \in L_k\) [4].
From (21) and [3] it follows:
\[\| B_{k+1} - B_k \|^2 + \| B_{k+1} - H_k \|^2 = \| B_k - H_k \|^2, \] for \(i = 0, 1, 2, \ldots \).

By lemma 2 [5] we get \(\sum_{k=1}^{\infty} \| B_{k+1} - B_k \|^2 < \infty \), thus we obtain
\[\| B_{k+1} - B_k \| \to 0. \]
This denotes that the method (13)-(17) is Q-superlinearly convergent [6], which ends the proof. \(\Box \)

4. Summary
The proposed method is Q-superlinearly convergent and easier to apply than the method (12), without calculation of \(F^{\prime \prime} (x_k) \).

References