Generating elements of orders dividing
\[p^6 \pm p^5 + p^4 \pm p^3 + p^2 \pm p + 1 \]

Maciej Grzeskowiak*

Adam Mickiewicz University, Faculty of Mathematics and Computer Science
Umultowska 87, 61-614 Poznań, Poland

Abstract
In this paper we propose an algorithm for computing large primes \(p \) and \(q \) such that \(q \) divides \(p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 \) or \(p^6 - p^5 + p^4 - p^3 + p^2 - p + 1 \). Such primes are the key parameters for the cryptosystem based on the 7th order characteristic sequences.

1. Introduction

Let \(\Phi_n \) be the \(n \)th cyclotomic polynomial; this is a unique monic polynomial whose roots are the primitive \(n \)th roots of unity. Algorithms for computing primes \(p \) and \(q \) such that \(q \) divides \(\Phi_n(p) \) play an important role in cryptography. They are utilized for computing key parameters in cryptosystems which work in an extension of finite field \(\mathbb{F}_p \). These systems reduce representations of finite field elements by representing them with the coefficients of their minimal polynomials. The examples of such systems are XTR [1], GH [2], [3], GG [4]. In [5] a general class of cryptographic schemes based on \(n \)th order characteristic sequences generated by an LFSR has been proposed. In order to generate key parameters for the cryptosystem based on \(n \)th order characteristic sequences

*E-mail address: maciejg@amu.edu.pl

The author was partially supported by the grant no. N N201 6059 40 from National Science Centre.
one should find a large prime \(p \) and an element \(\alpha \in \mathbb{F}_{pn} \) of order \(q \) dividing \(\Phi_n(p) \). One can determine whether or not the element \(\alpha \) has the desired order if one knows the primes \(q \) and \(p \) such that \(q \) divides \(\Phi_n(p) \). A method for finding the element \(\alpha \) has not been given in [5]. From the security point of view it is essential to find a prime \(p \) such that \(\Phi_n(p) \) has a large prime factor \(q \) having at least 160 bits to make DLP Problem in the subgroup of order \(q \) of \(\mathbb{F}_{pn} \) intractable. Moreover, one should find a prime \(p \) such that \(n \log p \approx 2048 \) to obtain security equivalent to factoring a positive integer having 2048 bits.

We propose a new method of finding primes \(p \) and \(q \) such that \(q \) divides \(\Phi_7(p) \) or \(\Phi_{14}(p) \). In particular, we present a new, deterministic algorithm for finding roots of polynomials \(\Phi_7(x) \) or \(\Phi_{14}(x) \) (mod \(q \)). Our method of finding the roots reduces to performing only exponentiations, multiplications and computing inversion modulo \(q \). Achieving the described goals is made possible by generating the prime \(q \), which is a norm of an algebraic integer of ring of some cubic algebraic number field.

The rest of this paper is organized as follows. In Section 2 we introduce the notation used throughout the paper. Section 3 presents our algorithm. In Section 4 we prove the correctness of the algorithm.

2. Notations

Throughout this paper, \(K = \mathbb{Q}(\eta_1) = \{x + y\eta_1 + z\eta_2 : x, y, z \in \mathbb{Q}\} \) denotes the cubic number field with the ring of integers \(\mathcal{O}_K = \{a + b\eta_1 + c\eta_2 : a, b, c \in \mathbb{Z}\} \). Let \(\xi_7 \) be a primitive 7th root of unity. The field \(K \) is obtained from \(\mathbb{Q} \) by adjoining \(\eta_1 = \xi_7 + \xi_7^{-1} \) the root of irreducible over the rationals polynomial \(f(x) = x^3 + x^2 - 2x - 1 \). We will denote by \(\eta_2 = \xi_7^2 + \xi_7^{-2} \) and \(\eta_2 = \xi_7^3 + \xi_7^{-3} \) the second and the third roots of \(f(x) \). The symbol \(N(\alpha) \) will denote the norm of any element \(\alpha \in K \) with respect to \(\mathbb{Q} \); that is the product of all algebraic conjugates of \(\alpha \).

3. The Algorithm

Let us fix \(n = 7 \) or \(n = 14 \). We describe an algorithm which generates primes \(p \) and \(q \) such that \(q \) divides \(\Phi_n(p) \). The algorithm consists of the three following procedures.

Procedure \texttt{FindPrimeQ}(k, l, m). Let us fix \(k, l, m \in \mathbb{Z}, (k, l, m) = 1, |N(k + ln_1 + mn_2)| \equiv 15 \pmod{28} \), where \(k + ln_1 + mn_2 \in \mathcal{O}_K \). This procedure finds \(a + b\eta_1 + c\eta_2 \in \mathcal{O}_K \), where \(a \equiv k \) (mod 28), \(b \equiv l \) (mod 28), \(c \equiv m \) (mod 28) such that \(|N(a + b\eta_1 + c\eta_2)| = q \) is a prime.
Generating elements of ... 115

(1) Choose \(a + b \eta_1 + c \eta_2\) at random in \(O_K\) such that \(a \equiv k \pmod{28}\), \(b \equiv l \pmod{28}\), \(c \equiv m \pmod{28}\).

(2) Compute \(q = |N(a + b \eta_1 + c \eta_2)|\). If \(q\) is a prime, then terminate the procedure. Otherwise go to step 1.

(3) Return \(a, b, c\) and \(q\).

Procedure \textsc{FindRootOfFModQ}(a, b, q). Let \(n = 7\) or \(n = 14\). Given a prime \(q\) and \(a, b, c\) such that \(q = |N(a + b \eta_1 + c \eta_2)| \equiv 15 \pmod{28}\), this procedure computes \(r\) a root of \(\Phi_n(x)\) modulo \(q\).

(1) Compute \(A \equiv (-b^2 + 2c^2 + a^2 + 2ab - 3ac - 4cb) \pmod{q}\). If \((A, q) = 1\), then \(B = b^2 + 2c^2 + 2ab - ac - 3cb\) and go to step 3. Otherwise go to step 2.

(2) Compute \(A \equiv (-a^2 + 2ac + cb) \pmod{q}\) and \(B = -a^2 + c^2 + ab + ac - bc\).

(3) Compute \(s \equiv (-B)A^{-1} \pmod{q}\).

(4) Compute \(t \equiv (s^2 - 4)^{(q+1)/4} \pmod{q}\).

(5) Compute \(w \equiv (s - t)^2 \pmod{q}\).

(6) If \(n = 7\), then \(r = w\). If \(n = 14\), then \(r \equiv -w \pmod{q}\).

(7) Return \(r\).

Procedure \textsc{FindPrimeP}(r, q). Given a prime \(q\) and \(r < q\), this procedure finds a prime \(p \equiv r \pmod{q}\).

(1) Choose randomly \(v \in N\).

(2) Compute \(p = qv + r\). If \(p\) is a prime, then terminate the procedure. Otherwise go to step 1.

(3) Return \(p\).

Algorithm 1. Generating primes \(p\) and \(q\), such that \(q|\Phi_n(p)\)

\textbf{Input}: \(k, l, m \in N : (k, l, m) = 1, |N(k + b \eta_1 + m \eta_2)| \equiv 15 \pmod{28}, n = 7\) or \(n = 14\).

\textbf{Output}: Primes \(p\) and \(q\) such that \(q|\Phi_n(p)\).

1. \textsc{FindPrimeQ}(k, l, x);
2. \textsc{FindRootModuloQ}(a, b, c, q, n);
3. \textsc{FindPrimeP}(r, q);
4. Return \(p, q\).
4. Correctness of the Algorithm

Theorem 1. Let us fix \(n = 7 \) or \(n = 14 \). Then Algorithm 1 generates primes \(p \) and \(q \) such that \(q \) divides \(\Phi_n(p) \).

Proof. We begin by proving auxiliary lemmas.

Lemma 1. Let \(\xi_7 \) be a primitive 7th root of unity and let \(f(x) = x^3 + x^2 - 2x - 1 \in \mathbb{Z}[x] \). Then \(f(x) \) is the minimal polynomial of \(\eta_i = \xi_7^i + \xi_7^{-i} \).

Proof. A short computation shows that

\[
f(x) = (x - \eta_1)(x - \eta_2)(x - \eta_3) = x^3 - (\eta_1 + \eta_2 + \eta_3)x^2 + (\eta_1\eta_2 + \eta_1\eta_3 + \eta_2\eta_3)x - \eta_1\eta_2\eta_3.
\]

We shall compute the coefficients of \(f(x) \). We have

\[
\Phi_7(\xi_7) = \xi_7^6 + \xi_7^5 + \xi_7^4 + \xi_7^3 + \xi_7^2 + \xi_7 + 1 = 0,
\]

dividing by \(\xi_7^3 \) we obtain

\[
\xi_7^3 + \xi_7^2 + \xi_7 + 1 + \xi_7^{-1} + \xi_7^{-2} + \xi_7^{-3} = 0.
\]

Thus

\[
\eta_1 + \eta_2 + \eta_3 = -1. \tag{1}
\]

A small computation yields

\[
\eta_1\eta_2 = (\xi_7 + \xi_7^{-1})(\xi_7^2 + \xi_7^{-2}) = \xi_7^3 + \xi_7^{-1} + \xi_7 + \xi_7^{-3} = \eta_3 + \eta_1,
\]

so

\[
\eta_1\eta_2\eta_3 = \eta_3^2 + \eta_1\eta_3 = \eta_1 + 2 + \eta_1\eta_3 = 2 + \eta_1 + \eta_2 + \eta_3 = 1. \tag{2}
\]

Likewise,

\[
\eta_1\eta_2 + \eta_1\eta_3 + \eta_2\eta_3 = 2(\eta_1 + \eta_2 + \eta_3) = -2. \tag{3}
\]

Note that \(\eta_j = e^{2j\pi i/7} + e^{-2j\pi i/7} \in R \), so \(f(x) \) is the minimal polynomial of \(\eta_i \). This finishes the proof. \(\square \)

Lemma 2. Let \(\alpha = a + b\eta_1 + c\eta_2 \in \mathcal{O}_K \), where \(\eta_i = \xi_7^i + \xi_7^{-i}, \ i = 1, 2 \). Then

\[
N(\alpha) = a^3 + b^3 + c^3 - a^2 b - a^2 c - 2b^2 a + 3b^2 c - 2c^2 a - 4c^2 b + 3abc.
\]
Generating elements of ...}

Proof. We have
\[
N(\alpha) = (a + b_1 + c_2)(a + b_2 + c_3)(a + b_3 + c_1)
\]
\[
= a^3 + (b_3 + c_3)(123) + \ldots \text{of } \mathcal{O}_K.
\]
Since \(|N(\alpha)|\) is a prime, hence \(\alpha\) is a prime element of \(\mathcal{O}_K\) and hence \(|\mathcal{O}_K|\) or \(|\mathcal{O}_K^2|\) or \(|\mathcal{O}_K^3|\), so we have three cases.

By the above and (1), (2), (3), the assertion follows. This finishes the proof.

For any integers \(a, b, c\) we define the numbers
\[
A_1 = -b^2 + 2c^2 + a^2 + 2ab - 3ac - 4cb,
A_2 = -a^2 + 2ac + cb,
A_3 = a^2 - b^2 + c^2 + ab - 2ac - 2bc,
C_1 = a^2 - 3b^2 - c^2 - ab + 2ac + 4bc,
C_2 = -a^2 + 2b^2 - bc,
C_3 = a^2 - 2b^2 - c^2 - ab + ac + 3bc,
E_1 = a^2 - 4b^2 + c^2 + ab + ac + bc,
E_2 = -a^2 - b^2 - bc + ab,
E_3 = a^2 - 2b^2 - 2c^2 - 2ab + 2ac + 5bc
\]

With the notation as above

Lemma 3. Let \(\alpha a + b_1 + c_2 \in \mathcal{O}_K\), where \(|N(\alpha)|\) is a prime. Assume that, there exists \(\beta \in \mathcal{O}_K\), \(\beta = r + (-r - 1)\eta_1 + r\eta_2\), where \(r \in \mathbb{Z}\) such that \(N(\alpha)\) divides \(N(\beta)\). Then \(rA_i + B_i \equiv 0 \text{ (mod } |N(\alpha)|\) or \(rC_i + D_i \equiv 0 \text{ (mod } |N(\alpha)|\) or \(rE_i + F_i \equiv 0 \text{ (mod } |N(\alpha)|\), where \(i = 1, 2, 3\). Moreover, there exists \(j, k \in \{1, 2, 3\}, j \neq k\) such that the numbers \(A_j, A_k, C_j, C_k, E_j, E_k\) are prime to \(|N(\alpha)|\).

Proof. Let \(N(\beta) = \beta_1\beta_2\beta_3\), where \(\beta = \beta_1\) and \(\beta_i\) are all algebraic conjugates of \(\beta\). Since \(|N(\alpha)|\) is a prime, hence \(\alpha\) is a prime element of \(\mathcal{O}_K\) and hence \(\alpha|\beta_1\) or \(\alpha|\beta_2\) or \(\alpha|\beta_3\), so we have three cases.
Case I: $\alpha | \beta$. Hence, there exists $\gamma \in O_K$, $\gamma = x + y \eta_1 + z \eta_2$, $x, y, z \in \mathbb{Z}$ such that

$$(a + b \eta_1 + c \eta_2)(x + y \eta_1 + z \eta_2) = r + (-r - 1) \eta_1 + r \eta_2.$$

Hence we can consider the linear system of equations

$$\begin{aligned}
ax + (2b - c)y + (c - b)z &= r, \\
bx + ay - cz &= -r - 1, \\
cx + (b - c)y + (a - b - c)z &= r,
\end{aligned}$$

which in the matrix form is

$$MX = R,$$

where

$$M = \begin{bmatrix}
a & 2b - c & c - b \\
b & a & -c \\
c & b - c & a - b - c
\end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad R = \begin{bmatrix} r \\ -r - 1 \end{bmatrix}.$$

We shall show that the matrix M is invertible. Let’s compute $\det M$. We have

$$\det M = a \det M_{11} + (c - 2b) \det M_{12} + (c - b) \det M_{13}.$$

A short computation shows that

$$\begin{aligned}
\det M_{11} &= a^2 - ab - ac + bc - c^2, \\
\det M_{12} &= -b^2 + c^2 + ab - bc, \\
\det M_{13} &= b^2 - ac - bc,
\end{aligned}$$

and so

$$\det M = a^3 + b^3 + c^3 - a^2b - a^2c - 2b^2a + 3b^2c - 2c^2a - 4c^2b + 3abc.$$

By (2) we obtain $\det M = N(\alpha) \neq 0$. This proves the last claim. Hence x, y and z can be found with the Cramer’s rule as

$$x = \frac{\det M_1}{\det M}, \quad y = \frac{\det M_2}{\det M}, \quad z = \frac{\det M_3}{\det M},$$

where M_i is the matrix formed by replacing the ith column of M by the column vector R. It is an elementary check that

$$\begin{aligned}
x &= \frac{1}{N(\alpha)}(rA_1 + B_1), \\
y &= \frac{1}{N(\alpha)}(rA_1 + B_2), \\
z &= \frac{1}{N(\alpha)}(rA_3 + B_3),
\end{aligned}$$
where A_i and B_i are defined by (4). Since $x, y, z \in \mathbb{Z}$, so by (6)
\begin{align*}
rA_1 + B_1 &\equiv 0 \pmod{|N(\alpha)|}, \\
rA_2 + B_2 &\equiv 0 \pmod{|N(\alpha)|}, \\
rA_3 + B_3 &\equiv 0 \pmod{|N(\alpha)|}.
\end{align*}
This proves the first assertion of the lemma for this case. We shall prove the
second assertion of the lemma for this case. Firstly, we shall show that at least
one of the numbers A_i is not divided by $N(\alpha)$. A short calculation shows that
\begin{align*}
N(\alpha)^2 &= N(a + b\eta_1 + c\eta_2) = \\
&= (a^3 + b^3 + c^3 - a^2b - a^2c - 2b^2a + 3b^2c - 2c^2a - 4c^2b + 3abc)^2 \\
&= N(A_1 + A_2\eta_1 + A_3\eta_2).
\end{align*}
Now, assume that $N(\alpha)$ divides the numbers A_i simultaneously. Then
\begin{align*}
N(A_1 + A_2\eta_1 + A_3\eta_2) &= kN(\alpha)^3, \quad k \in \mathbb{Z},
\end{align*}
but this contradicts the fact that $N(A_1 + A_2\eta_1 + A_3\eta_2) = N(\alpha)^2$. This proves
the last claim. Secondly, we shall show that at least two of the numbers A_i are
not divided by $N(\alpha)$. Without loss of generality we can assume that $N(\alpha)$ does
not divide A_1. Then we have
\begin{align*}
N(\alpha)^2 &= N(A_1 + A_2\eta_1 + A_3\eta_2) = A_1^3 + kN(\alpha), \quad k \in \mathbb{Z},
\end{align*}
and hence $N(\alpha)|A_1$, which is a contradiction. This proves the last claim and
the second assertion holds.

Case II: $\alpha|\beta_2$. A short computation shows that
$\alpha = a - b + (c - b)\eta_2 - b\eta_3$. If $\alpha|\beta_2$, then there exists $\gamma \in \mathcal{O}_K$, $\gamma = x + y\eta_2 + z\eta_3, x, y, z \in \mathbb{Z}$ such that
\begin{align*}
(a - b + (c - b)\eta_2 - b\eta_3)(x + y\eta_1 + z\eta_2) &= r + (-r - 1)\eta_2 + r\eta_3.
\end{align*}
Hence we can consider the linear system of equations
\begin{align}
\begin{cases}
(a - b)x + (2c - b)y - cz = r, \\
(c - b)x + (a - b)y + bz = -r - 1, \\
-bx + cy + (a + b - c)z = r,
\end{cases}
\end{align}
which in the matrix form is
\begin{align*}
M = \begin{bmatrix}
a - b & 2c - b & -c \\
c - b & a - b & b \\
-b & c & a + b - c
\end{bmatrix}, \quad X = \begin{bmatrix}
x \\
y \\
z
\end{bmatrix}, \quad R = \begin{bmatrix}
r \\
-r - 1 \\
r
\end{bmatrix}.
\end{align*}
Hence
\begin{align*}
MX = R.
\end{align*}
We shall show that the $\det M = N(\alpha) \neq 0$. We have

$$\det M = (a - b) \det M_{11} + (b - 2c) \det M_{12} - c \det M_{13}.$$

A short computation shows that

$$\det M_{11} = a^2 - ac - b^2,$$
$$\det M_{12} = -c^2 + a(c - b) + 2bc,$$
$$\det M_{13} = c^2 + b(a - c) - b^2,$$

and so

$$\det M = a^3 + b^3 + c^3 - a^2b - a^2c - 2b^2a + 3b^2c - 2c^2a - 4c^2b + 3abc.$$

By (2) we obtain $\det M = N(\alpha) \neq 0$. This proves the last claim. Hence x, y, z can be found with the Cramer’s rule as

$$x = \frac{\det M_1}{\det M}, \quad y = \frac{\det M_2}{\det M}, \quad z = \frac{\det M_3}{\det M},$$

where M_i is the matrix formed by replacing the ith column of M by the column vector R. It is an elementary check that

$$x = \frac{1}{N(\alpha)}(rC_1 + D_1),$$
$$y = \frac{1}{N(\alpha)}(rC_2 + D_2),$$
$$z = \frac{1}{N(\alpha)}(rC_3 + D_3),$$

where C_i and D_i are defined by (4). Since $x, y, x \in Z$, so by (9)

$$rC_1 + D_1 \equiv 0 \pmod{|N(\alpha)|},$$
$$rC_2 + D_2 \equiv 0 \pmod{|N(\alpha)|},$$
$$rC_3 + D_3 \equiv 0 \pmod{|N(\alpha)|}.$$

This proves the first assertion of the lemma for this case. We shall prove the second assertion of the lemma for this case. Firstly, we shall show that at least one of the numbers C_i is not divided by $N(\alpha)$. Similarly to the case I, a short calculation shows that

$$N(\alpha)^2 = N(C_1 + C_2\eta_1 + C_3\eta_2).$$

Now, assume that $N(\alpha)$ divides the numbers C_i simultaneously. Then

$$N(C_1 + C_2\eta_1 + C_3\eta_2) = kN(\alpha)^3, \quad k \in Z,$$

but this contradicts the fact that $N(C_1 + C_2\eta_1 + C_3\eta_2) = N(\alpha)^2$. This proves the last claim. Secondly, we shall show that at least two of the numbers C_i are
not divided by \(N(\alpha) \). Without loss of generality we can assume that \(N(\alpha) \) does not divide \(C_1 \). Then we have
\[
N(\alpha)^2 = N(C_1 + C_2 \eta_1 + C_3 \eta_2) = C_1^2 + kN(\alpha), \quad k \in \mathbb{Z},
\]
and hence \(N(\alpha)|C_1 \), which is a contradiction. This proves the last claim and the second assertion holds.

Case III: \(\alpha|\beta_3 \). A short computation shows that \(\alpha = a - c + (b - c)\eta_1 - c\eta_3 \). If \(\alpha|\beta_2 \), then there exists \(\gamma \in \mathcal{O}_K, \gamma = x + y\eta_2 + z\eta_3, \ x, y, z \in \mathbb{Z} \) such that
\[
(a - c + (b - c)\eta_1 - c\eta_3)(x + y\eta_1 + z\eta_3) = r + (-r - 1)\eta_1 + r\eta_3.
\]
Hence we can consider the linear system of equations
\[
\begin{cases}
(a - c)x + by - (c + b)z = r, \\
(b - c)x + (a - b + c)y - bz = -r - 1, \\
-cx + (c - b)y + (a - c)z = r,
\end{cases}
\tag{11}
\]
which in the matrix form is
\[
M = \begin{bmatrix}
a - c & b & -c - b \\
b - c & a - b + c & -b \\
-c & c - b & a - c
\end{bmatrix}, \quad X = \begin{bmatrix}
x \\
y \\
z
\end{bmatrix}, \quad R = \begin{bmatrix}
r \\
-r - 1 \\
r
\end{bmatrix}.
\]
Hence
\[
MX = R.
\]
We shall show that the \(\text{det} M = N(\alpha) \neq 0 \). We have
\[
\text{det} M = (a - c) \text{det} M_{11} - b \text{det} M_{12} - (c + b) \text{det} M_{13}.
\]
A short computation shows that
\[
\begin{align*}
\text{det} M_{11} &= a^2 - b^2 - c^2 - ab + 2bc, \\
\text{det} M_{12} &= -c^2 + a(b - c) - 2bc, \\
\text{det} M_{13} &= b^2 + ac + bc,
\end{align*}
\]
and so
\[
\text{det} M = a^3 + b^3 + c^3 - a^2b - a^2c - 2b^2a + 3b^2c - 2c^2a - 4c^2b + 3abc.
\]
By (2) we obtain \(\text{det} M = N(\alpha) \neq 0 \). Hence \(x, y \) and \(z \) can be found with the Cramer’s rule as
\[
\begin{align*}
x &= \frac{\text{det} M_1}{\text{det} M}, \quad y = \frac{\text{det} M_2}{\text{det} M}, \quad z = \frac{\text{det} M_3}{\text{det} M},
\end{align*}
\]
where M_i is the matrix formed by replacing the ith column of M by the column vector R. It is an elementary check that

$$
x = \frac{1}{N(\alpha)}(rE_1 + F_1),
$$

$$
y = \frac{1}{N(\alpha)}(rE_2 + F_2),
$$

$$
z = \frac{1}{N(\alpha)}(rE_3 + F_3),
$$

where E_i and F_i are defined by (4). Since $x, y, z \in Z$, so by (12)

$$
rE_1 + F_1 \equiv 0 \pmod{|N(\alpha)|},
$$

$$
rE_2 + F_2 \equiv 0 \pmod{|N(\alpha)|},
$$

$$
rE_3 + F_3 \equiv 0 \pmod{|N(\alpha)|}.
$$

This proves the first assertion of the lemma for this case. We shall prove the second assertion of the lemma for this case. Firstly, we shall show that at least one of the numbers E_i is not divided by $N(\alpha)$. Similarly to cases I, II, a short calculation shows that

$$
N(\alpha)^2 = N(E_1 + E_2\eta_1 + E_3\eta_2).
$$

Now, assume that $N(\alpha)$ divides the numbers E_i simultaneously. Then

$$
N(E_1 + E_2\eta_1 + E_3\eta_2) = kN(\alpha)^3, \quad k \in Z,
$$

but this contradicts the fact that $N(E_1 + E_2\eta_1 + E_3\eta_2) = N(\alpha)^2$. This proves the last claim. Secondly, we shall show that at least two of the numbers E_i are not divided by $N(\alpha)$. Without loss of generality we can assume that $N(\alpha)$ does not divide A. Then we have

$$
N(\alpha)^2 = N(E_1 + E_2\eta_1 + E_3\eta_2) = E_1^3 + kN(\alpha), \quad k \in Z,
$$

and hence $N(\alpha)|E_1$, which is a contradiction. This proves the last claim and the second assertion holds. This finishes the proof. \hfill \Box

Lemma 4. Let $q \equiv \pm 1 \pmod{7}$ be a prime. Then the congruence

$$
f(r) = r^3 + r^2 - 2r - 1 \equiv 0 \pmod{q}
$$

is solvable.

Proof. By Lemma 1 $f(x)$ is the minimal polynomial of $\eta_i = \xi_7^i + \xi_7^{-i}$, $i = 1, 2, 3$. Let $K = Q(m_1)$ be the algebraic number field with the ring of integer O_K, so $Q \subset K$ is the Galois extension. Let p be a prime not dividing $\Delta(f)$ discriminant of f, that is $p \neq 7$. The congruence $f(x) \equiv 0 \pmod{p}$ has
Generating elements of \ldots

a solution in \(Z\) if and only if the ideal \(pO_K\) splits completely in \(K\) (see [6], Proposition 5.11, page 102). Let \(p\) be a prime ideal of \(K\) containing \(pO_K\) then \(pO_K\) splits completely in \(K\) if and only if the symbol Artin \(\left(\frac{K/Q}{p}\right)\) \(= 1\) (see [6], Corollary 5.21, page 107). We shall compute

\[
\left(\frac{K/Q}{p}\right)(\alpha), \quad \alpha = \alpha^p \equiv a + b\eta_1 + c\eta_2 \in O_K.
\]

We have

\[
\left(\frac{K/Q}{p}\right)(\alpha) \equiv \alpha^p \equiv a + b\eta_1^p + c\eta_2^p \pmod{p}.
\]

On the other hand

\[
\eta_i^p = \xi_i^p \pmod{7},
\]

where \(i = 1, 2, 3\). Hence

\[
\left(\frac{K/Q}{p}\right)(\alpha) \equiv \alpha \pmod{p}, \quad \text{for} \quad p \equiv \pm 1 \pmod{7},
\]

and consequently the solution of (14) exists. This finishes the proof.

\[\square\]

Lemma 5. Let \(\alpha = a + b\eta_1 + c\eta_2 \in O_K\), where \(|N(\alpha)| \equiv \pm 1 \pmod{7}\) and assume that \(|N(\alpha)|\) is a prime. Then the congruence

\[
f(r) = r^3 + r^2 - 2r - 1 \equiv 0 \pmod{q}
\]

(15)
is solvable and the solutions \(r_i, \ i = 1, 2, 3\) satisfy

\[
\begin{align*}
& r_1 A_1 \equiv -B_1 \pmod{|N(\alpha)|} \quad \text{or} \quad r_1 A_2 \equiv -B_2 \pmod{|N(\alpha)|}, \\
& r_2 C_1 \equiv -D_1 \pmod{|N(\alpha)|} \quad \text{or} \quad r_2 C_2 \equiv -D_2 \pmod{|N(\alpha)|}, \\
& r_3 E_1 \equiv -F_1 \pmod{|N(\alpha)|} \quad \text{or} \quad r_3 E_2 \equiv -F_2 \pmod{|N(\alpha)|},
\end{align*}
\]

where \(A_j, B_j, C_j, D_j, E_j, F_j\) are defined by (4). Moreover, at least one of the numbers \(A_j\), and at least one of \(C_j\), and at least one of \(E_j\) is prime to \(|N(\alpha)|\).

Proof. Let \(\eta_i = \xi_i^p \pmod{7}\). By Lemma 4 solution of (15) exists and so by (1) \(\eta_i \pmod{|N(\alpha)|}\) exists. We have

\[
\begin{align*}
0 & \equiv r_i^3 + r_i^2 - 2r_i - 1 \pmod{|N(\alpha)|} \\
& \equiv (r - (r + 1)\eta_1 + r\eta_2)(r - (r + 1)\eta_2 + r\eta_3)(r - (r + 1)\eta_3 + r\eta_1) \pmod{|N(\alpha)|} \\
& \equiv N(\beta) \pmod{|N(\alpha)|},
\end{align*}
\]

where \(\beta = (r - (r + 1)\eta_1 + r\eta_2) \pmod{|N(\alpha)|}\). Hence \(N(\alpha)|N(\beta)\). Since \(\beta\) can be considered as an element of \(O_K\), then Lemma 3 shows that the assertion of the Lemma follows. This finishes the proof. \[\square\]
Proof of Theorem 1. Let us assume that \(a, b, c\) and \(q\) are the output of procedure FindPrimeQ. Then \(q \equiv 15 (\text{mod } 28)\) is a prime such that \(q = |N(a + bn_1 + cn_2)|\) and \(a \equiv k (\text{mod } 28), b \equiv l (\text{mod } 28), c \equiv m (\text{mod } 28)\). We shall show that the procedure FindRootModuloQ, with the input \(a, b, c, q\) and \(n = 7\) or \(14\), computes \(r\) such that \(\Phi_n(r) \equiv 0 (\text{mod } q)\). Firstly, suppose that \(n = 7\). It is an elementary check that \(\Phi_7(7)\) is a prime. In this paper we have introduced a deterministic algorithm for computing primitive 7th and 14th roots of unity in \(\mathbb{F}_q\) using \(O((\log q)^3)\) bit operations. Let \(a, b, c\) be the integers such that \(\Phi_n(r) \equiv 0 (\text{mod } q)\). Such primes are key parameters for the cryptosystem based on 7th or 14th order characteristic sequences.

5. Conclusions

Let \(a, b, c\) be the integers such that \(q = |N(a + bn_1 + cn_2)| \equiv 15 (\text{mod } 28)\) is a prime. In this paper we have introduced a deterministic algorithm for computing primitive 7th and 14th roots of unity in \(\mathbb{F}_q\) using \(O((\log q)^3)\) bit operations. Given such a root of unity and \(q\) we can easily find a prime \(p\) such that \(q\) divides \(\Phi_7(p)\) or \(\Phi_{14}(p)\). Such primes are key parameters for the cryptosystem based on 7th or 14th order characteristic sequences.
Generating elements of ...

References