Energy-aware Key Management in Mobile Wireless Sensor Networks

Xiaobing He1, Pawel Szalachowski2, Zbigniew Kotulski2, Nikos Fotiou3, Giannis F. Marias3, George C. Polyzos3, Hermann de Meer1

1Faculty of Computer Science and Mathematics, University of Passau, Passau, Germany.

2Institute of Telecommunications, the Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland.

3Department of Informatics, Athens University of Economics and Business, Athens, Greece.

Abstract – Wireless sensor networks have received wide attention recently across the indoor and outdoor applications. On the other hand, more and more application scenarios require sensor nodes to be mobile, which imposes new technological challenges for security. Key management is the core for secure data communications among the resource-constrained sensor nodes. In this paper, based on the Group Diffie-Hellman key agreement protocols and the energy level of each node in the network, we propose Energy Aware Group Diffie-Hellman key management protocol for mobile wireless sensor networks. The simulation results show that the proposed key management protocol provide significant improvement in maximizing the lifetime of networks.
1 Introduction

A Wireless Sensor Network (WSN) consists of a large number of battery powered sensor nodes, equipped with sensing, data processing and short-range radio communication components [1]. WSNs have a wide range of applications, including agricultural, industrial, military and health monitoring systems. WSNs present unique security challenges compared to wire and ad hoc networks, such as the usage of the wireless medium, limited processing capabilities of sensor nodes and the absence of physical protection. This situation becomes more complicated when mobility is added to the nodes. The node mobility makes WSN applications smarter and creates new applications [2]. However, the unique characteristics of Mobile Wireless Sensor Networks (MWSNs) present a new set of nontrivial challenges in terms of open network architecture, resource constraints and highly dynamic change of network topology [3].

In MWSNs, a particularly important challenge is the creation of an end-to-end secure channel between remote nodes. Thus, key management is of paramount importance for MWSNs. A number of key management schemes have been proposed in the literature [4, 5]. However, some of them are considered suitable only for static WSNs and tend to be application-specific, while others introduce significant storage cost and computational overhead. There is a common belief that public-key protocols are unsuitable for sensor nodes due to the fact that the public key algorithms such as RSA are computationally intensive and usually execute thousands or even millions of multiplication instructions to perform a single-security operation [6]. However, the recent studies have shown that the public key cryptography such as Elliptic Curve Cryptography (ECC) [7] and the Rabin’s scheme [8] might be feasible in the sensor networks. One of the most common public key protocols is the Diffie-Hellman key agreement protocol [9].

This paper revises and modifies Group Diffie-Hellman (GDH) protocol, in order to attain energy efficient group key management in MWSNs. To achieve this goal, we propose Energy Aware Group Diffie-Hellman (EAGDH), a key management protocol that takes into consideration the energy level of nodes and distributes the computational burden of key generation accordingly.

The remaining of the paper is organized as follows. Section 2 provides related work in this area as well as motivation for our work. Section 3 reviews the Group Diffie-Hellman based key distribution. Section 4 presents our key management solution, while in Section 5 the simulation results are analyzed. Finally, we conclude this paper with future work in Section 6.

2 Related work, motivation and notations

2.1 Related work

Although there are numerous key management approaches (such as [10, 11, 12]) for WSNs, they cannot be applied in MWSNs, as they assume that the deployed nodes
are stationary. Therefore, new key management approaches for MWSNs are required. Chuang et al.\cite{13} proposed a two-layered dynamic key management (TDKM) scheme for mobile and long-lived cluster based wireless sensor networks. In TDKM, both the pair-wise key and the group key are distributed in three rounds without any encryption/decryption and exponential operation. Khan et al.\cite{14} presented a runtime key management scheme for the mobile heterogeneous sensor networks that consist of mobile sensor nodes and a few fixed sensor ones. Blundo et al.\cite{15} proposed the polynomial-based key pre-distribution scheme for the mobile sensor networks. Kifayat et al.\cite{16} proposed a group-based key management scheme which uses distinct keys on different levels in the network, while Aileni et al.\cite{17} examined efficient ways of key distribution among the sensor nodes and the inter/intra-communications.

2.2 Motivation

MWSNs have the advantage over the traditional static sensor networks in that they can deal better with changing operational conditions (e.g., node failure, battery depletion of some nodes), provide better network coverage and supply more accurate intrusion detection. Because of the mobility of nodes in the network, WMSNs can be better applied in building fire emergency response, target tracking and dairy cattle health monitoring. In the future ubiquitous environments each wireless sensor node may be mobile in nature \cite{18}. However, mobility introduces vulnerabilities to adversaries \cite{16, 19}. As nodes move from one place to another, node authentication, communication confidentiality and data integrity must be ensured.

On the other hand, sensor nodes are constrained in energy supply and bandwidth. Moreover, mobile entities require the additional power for mobility. Thus, new security protocols specifically designed for MWSNs should take energy awareness as an essential consideration. Key management can be considered as a fundamental requirement for securing sensor networks upon which other security primitives are built. A large portion of node energy is spent on generating and distributing cryptographic keys to the mobile nodes, especially when its join/leave rate is very high. As key management schemes have not been designed with energy awareness in mind, they can not always be directly applied in the energy-constrained MWSNs without firstly been reconsidered and modified. This paper is a step towards this trend.

2.3 Notations

Table 1 shows the notations which occur in the remaining part of this paper.

3 Group Diffie-Hellman key distribution

The Diffie-Hellman (DH) key exchange protocol \cite{20} is a widespread solution used by the most popular cryptographic schemes. The classic DH solves the key exchange problem between two parties communicating over an insecure communication channel.
However, it has two major disadvantages: firstly, it is relatively slow because it is accomplished by modular exponentiations and the key in this case is relatively long; secondly, the key exchange process is dedicated only to two parties. An extension of DH to group setting was first studied in [21], where three variants of the Group Diffie-Hellman (GDH) protocols were presented. The basic scheme is described in the other part of this section.

We consider the Elliptic Curve (EC) Cryptography, as the keys in ECC are relatively shorter for providing the same level of security [7]. All ECC parameters, other than \(N_i \), are assumed to be secure and known to all participants. The basic Group Diffie-Hellman is defined as shown in Protocol 1.

Protocol 1. Elliptic-Curve-based Group Diffie-Hellman

1. \(M_i \rightarrow M_{i+1} : \{ \prod_{k=1}^{i} (N_k)G \mid j \in [1, i] \} \)
2. \(M_{n-i} \leftarrow M_{n-i+1} : \{ \prod_{k \in [i,j]} (N_k)G \mid j \in [1, i] \} \)

GDH consists of two stages: upflow (traffic flows from the group member with low index to that with high index, as shown in the first stage of the protocol) and downflow (the opposite of upflow, as shown in the second stage of the protocol). The protocol needs \(2(n-1) \) messages, \(i+1 \) multiplications for \(M_i \) (\(1 \leq i \leq n-1 \)) and \(n \) multiplications
for M_n. In the first stage, the size of messages increases on each link, whereas it decreases in the second stage. Furthermore, GDH does not need synchronization or broadcasting ability.

It should be noticed that in GDH there is no a priori sequencing and numbering of group members, which means the index of one group member (whether $n-2$ or n) is assigned arbitrarily in real time, as the protocol executes.

Security of GDH protocols is related to the security of DH protocol. GDH is secure as long as DH is secure. The protocols details (execution, security proof, performance and other capabilities) can be found in [21].

4 Energy-aware Group Diffie-Hellman key management

4.1 Assumptions

It is assumed that the network is split into clusters based on nodes physical location and it is composed of three types of nodes. The base station (BS) is a data requester and serves as the gateway to the Internet. In general, BS is supplied with unlimited energy, high computation power and sufficient storage capacity. CHs are the special nodes which compared to the regular ones have more energy, higher computational and processing capabilities as well as more storage capacity. Regular nodes can move from one cluster to another, and they are responsible for sending the data sensed from the surrounding area to the BS through CHs. There are two roles in our key management scheme, Group Leaders (GLs) and Group Members (GMs). In one cluster, a CH serves as a GL and all member mobile nodes serve as GMs. The proposed solution consists in the following assumptions:

1. The maximum distance between any two GMs in the cluster is the communication range of the sensor.
2. A sensor node could not be recharged if its energy is exhausted.
3. Each sensor node has an unique identifier.
4. The communication channels are bidirectional; if a node M_i can receive a message from node M_j, then M_i can send a message to M_j.
5. The cost for sending and receiving one single message is the same.
6. CHs can communicate directly with the BS.

4.2 System overview

In the GDH protocol, it can be observed that the last node (the node with the highest index) M_n in one group plays a special role: M_n performs the largest number of multiplications. In our network setup, we assume that CH plays the role of the highest-indexed node M_n and there are $n - 1$ regular nodes in one cluster.

Our goal is to make the GDH energy aware that the maximum number of protocol execution is guaranteed. Our purpose is to reduce energy consumption on the exhausted
nodes (or nodes with lower energy level) by reducing the amount of computation overhead required to compute a cryptographic key. As nodes ordering affects the protocol execution effort on a given node, we take advantage of no a priori ordering attribute of the GDH protocols. In our EAGDH, CH is the node with the highest-index. CH receives the energy level of each GM and decides the index for each GM. This phase of EAGDH is called the numbering strategy. By making use of energy factors: C_m, C_s^i and C_r^i, energy consumption of EAGDH for a regular node can be expressed as:

$$C_i = n_m^i C_m + n_s^i C_s^i + n_r^i C_r^i.$$ \hspace{1cm} (1)

The selection of the GDH protocol and the numbering strategy mainly depend on the size of the cluster as well as those energy factors. The value of each factor is strictly connected with hardware platforms. Some platforms can perform communication procedures (sending and receiving) in a very efficient way, while others have high computational processing power. Table 2 presents the number of operations performed on a regular node M_i in one cluster. The table does not include the operations of the CH (M_n) as CH is assumed to be more resource-powerful node.

![Diagram showing energy signing, numbering strategy, and protocol operations]

Fig. 1. Example of EAGDH execution

<table>
<thead>
<tr>
<th>GDH</th>
</tr>
</thead>
<tbody>
<tr>
<td>messages sent</td>
</tr>
<tr>
<td>messages received</td>
</tr>
<tr>
<td>multiplications</td>
</tr>
<tr>
<td>2, 1 for M_1</td>
</tr>
<tr>
<td>2, 1 for M_1</td>
</tr>
<tr>
<td>$i + 1$</td>
</tr>
</tbody>
</table>

From Table 2 it can be observed that the least computation and communication overheads are on the first node M_1 and the computation overhead increases with the increase of the index of each node. So, for both GDH, the best strategy is to order nodes by increasing energy level.

An energy efficient variant of GDH is presented in Protocol 2. An execution example of the protocol, named EAGDH, is shown in Fig. 1. The objective of EAGDH is to let the more exhausted nodes perform fewer operations.
Protocol 2. Energy Aware Group Diffie-Hellman

1: Each node \(x \) within a cluster sends its energy level \(e_x \) with its identifier to GL.
2: GL orders nodes in the increasing order of the energy level using a given sorting algorithm.
3: GL assigns indices to each member corresponding to the order obtained in step 2.
4: GMs execute GDH.

5 Simulation and evaluation

In this section we evaluate the proposed scheme using two platforms: MICA2 and Tmote Sky, on which most ECC-based security schemes are based. A typical MICA2 node is equipped with an 8-bit ATmega128L microcontroller, 4Kb of RAM, 128Kb of Flash memory and CC1000 chip as a radio module. A Tmote Sky node is equipped with a 16-bit MSP430 microcontroller, 10Kb of RAM, 48Kb of Flash memory, and CC2420 chip is employed as the radio module. Here, the ECC implementation presented in [22] is employed in our simulations.

The performance results of point multiplication (multiple additions of a point) are essential. In our simulation, we choose the most efficient case, where an EC is defined over the prime-order field \(\mathbb{F}_q \). An EC point is described by 160 bits, so in our protocol the message sizes are multiples of this value. Based on [22] and the platform datasheets, the required costs for different operations are presented in Table 3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MICA2</th>
<th>Tmote Sky</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{RX})</td>
<td>10.0mA</td>
<td>21.8mA</td>
</tr>
<tr>
<td>(C_{TX})</td>
<td>25.0mA</td>
<td>19.5mA</td>
</tr>
<tr>
<td>tbr</td>
<td>3.84e + 04 bps</td>
<td>2.5e + 05 bps</td>
</tr>
<tr>
<td>(C_m)</td>
<td>1.27s \times 7.88mA</td>
<td>0.72s \times 3.68mA</td>
</tr>
</tbody>
</table>

For both platforms, we assume that the maximum battery capacity (\(b_i^{\max} \)) of all nodes is 3000 mAh. Our goal is to maximize the number of protocol executions in a group of \(n \) nodes. We examine three cases: the worst case, during which the ordering of nodes never changes, the mean in which the set of nodes is permuted randomly after each execution and the optimal case in which after each execution the nodes are renumbered in the way presented in Protocol 2. To determine the number of protocol executions, we simulated each case (for 1000 times in mean case) under various node densities (\(n \)) and simulation stopped when each node ran out of its battery. To explain explicitly, we simulated the above mentioned three cases in one cluster, while others have the same attributes as this one. The simulation outcome for the MICA2 platform is presented in Fig. 2, while for the Tmote Sky platform in Fig. 3.
For MICA2, with a small number of n, the gap (measured as the number of the protocol executions) is about 80000 executions. With the increase of n, the gap narrows but the relative advantage of using EAGDH is still growing.

In the case of Tmote Sky, the gap between the optimal case and the worst case is about 300000 executions. The mean case for both platforms starts with the values near that of the optimal one, but it approaches the worst case and for $n \gtrsim 25$ it converges again to the optimal case. The simulation results of the mean case will be discussed in detail and interpreted later.

Fig. 8 presents the advantages by using EAGDH on both platforms. For a given platform, the profit is computed by dividing the number of protocol executions in the optimal case or in the mean case by that in the worst case. The simulation results
show that both platforms (MICA2 and Tmote Sky) have almost the same rate in the optimal case (the red line in Figs 4 and 5). In both figures, for the optimal case, the advantages of using EAGDH increases rapidly with the increase of sensor nodes and
converges to 2, which means that twice as many protocol executions can be achieved by using EAGDH compared to the worst case.

We now focus on the mean case. Before analyzing the simulation results, first we define and explain the coefficients needed in the probability density function. The variation ratio v is defined as a measure of dispersion which can be calculated as follows: $v = \frac{\sigma}{m}$. Moreover, the skewness coefficient is set as $\gamma_1 = \frac{\mu_3}{\sigma^3}$, where μ_3 is the central moment of the third order. For a symmetric random variable, $\gamma_1 = 0$. For $\gamma_1 \neq 0$, the probability density function has a long tail on the right-hand side of the mean value (if $\gamma_1 > 0$) or a long tail on the left-hand side of the mean value (if $\gamma_1 < 0$). Finally, we set $\gamma_2 = \frac{\mu_4}{\sigma^4} - 3$, where μ_4 is the central moment of the fourth order. For the normal distribution, the kurtosis coefficient $\gamma_2 = 0$. If $\gamma_2 > 0$ then, the given probability density function is higher and its shape is slimmer around the modal value.

Table 5. Parameters of the mean case (Tmote Sky)

<table>
<thead>
<tr>
<th>$m \times 10^{-3}$</th>
<th>3</th>
<th>8</th>
<th>15</th>
<th>25</th>
<th>40</th>
<th>50</th>
<th>65</th>
<th>80</th>
<th>100</th>
<th>140</th>
<th>150</th>
<th>180</th>
<th>200</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>1.31</td>
<td>0.78</td>
<td>0.49</td>
<td>0.37</td>
<td>0.27</td>
<td>0.24</td>
<td>0.21</td>
<td>0.19</td>
<td>0.17</td>
<td>0.14</td>
<td>0.14</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>$v \times 10^3$</td>
<td>0.14</td>
<td>0.26</td>
<td>0.34</td>
<td>0.47</td>
<td>0.64</td>
<td>0.73</td>
<td>0.76</td>
<td>0.83</td>
<td>1.01</td>
<td>1.11</td>
<td>1.11</td>
<td>1.32</td>
<td>1.13</td>
<td>1.36</td>
</tr>
<tr>
<td>$-\gamma_1$</td>
<td>0.99</td>
<td>0.87</td>
<td>0.75</td>
<td>0.68</td>
<td>0.74</td>
<td>0.58</td>
<td>0.82</td>
<td>0.59</td>
<td>0.65</td>
<td>0.84</td>
<td>0.61</td>
<td>0.72</td>
<td>0.80</td>
<td>0.77</td>
</tr>
<tr>
<td>γ_2</td>
<td>1.34</td>
<td>2.31</td>
<td>0.17</td>
<td>0.62</td>
<td>1.16</td>
<td>0.86</td>
<td>0.73</td>
<td>1.30</td>
<td>0.34</td>
<td>0.85</td>
<td>0.94</td>
<td>0.91</td>
<td>0.91</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Fig. 6. Histograms of simulations for MICA2
Fig. 7. Histograms of simulations for Tmote Sky

Fig. 8. Profits of the optimal and mean cases.
than the density of the normal distribution. While in the case of $\gamma_2 < 0$ the opposite is observed. Further description and interpretation of these parameters for them can be found in [23].

The results for the MICA2 platform are presented in Table 4 and Fig. 6, while the values for Tmote Sky are in Table 5 and Fig. 7. From these tables and figures, it is observed that the advantage of applying EAGDH over GDH on the average is remarkable but not very high. However, higher moments of their distribution show that using EAGDH gives essential advantages. The distribution has a long tail for short network lifetimes, namely, the probability of short lifetimes is very high (due to skewness negative values which have relatively high absolute values). High probability of the values in the left-hand tail is confirmed by the positive value of kurtosis (Figs 6 and 7). It can be seen that, in order to avoid network collapses, EAGDH should be used instead of GDH when nodes have consumed more than half of their batteries.

6 Conclusions and future work

In this paper, we proposed the Energy Aware Group Diffie-Hellman key management protocol for mobile wireless sensor networks. By reducing computational burden on the low energy level sensor nodes, the EAGDH protocols help extend the lifetime of a network. The simulation results show that in the realistic communication environment our protocol is very energy efficient.

Future work includes the security analysis of the proposed key management protocols, particularly under with adversarial models, such as node capture attacks, node replication attacks as well as reply and modification attacks. Moreover, protocol extension that handles node addition and deletion should be considered. Finally, the establishment of a secure channel between the cluster head and the base station will also be addressed in our next work.

Acknowledgment

The research leading to the results presented in this paper has been supported by the EuroNF SJRP. 54 E-Key-Nets project. P. Szałachowski’s work has been financed by the National Science Center (NCN), with the Grant number DEC-2011/01/N/ST7/02995.

References

