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Additive inequalities for weighted harmonic
and arithmetic operator means

Abstract. In this paper we establish some new upper and lower bounds for
the difference between the weighted arithmetic and harmonic operator means
under various assumptions for the positive invertible operators A, B. Some
applications when A, B are bounded above and below by positive constants
are given as well.

1. Introduction. Throughout this paper A, B are positive invertible op-
erators on a complex Hilbert space (H, 〈·, ·〉). We use the following notations
for operators

A∇νB := (1− ν)A+ νB,

the weighted operator arithmetic mean,

A]νB := A1/2
(
A−1/2BA−1/2

)ν
A1/2,

the weighted operator geometric mean and

A!νB :=
(
(1− ν)A−1 + νB−1

)−1
,

the weighted operator harmonic mean, where ν ∈ [0, 1].
When ν = 1

2 , we write A∇B, A]B and A!B for brevity, respectively.
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The following fundamental inequalities between the weighted arithmetic,
geometric and harmonic operator means hold

(1.1) A!νB ≤ A]νB ≤ A∇νB

for any ν ∈ [0, 1].
For various recent inequalities between these means we recommend the

recent papers [3–6], [8–12] and the references therein.
In the recent work [7] we obtained, between others, the following result:

Theorem 1. Let A, B be positive invertible operators and M > m > 0 such
that

(1.2) MA ≥ B ≥ mA.

Then for any ν ∈ [0, 1] we have

(1.3) rk(m,M)A ≤ A∇νB −A!νB ≤ RK(m,M)A,

where r = min {ν, 1− ν}, R = max {ν, 1− ν} and the quantities K(m,M)
and k(m,M) are given by

(1.4) K(m,M) :=



(m− 1)2

m+ 1
if M < 1,

max

{
(m− 1)2

m+ 1
,
(M − 1)2

M + 1

}
if m ≤ 1 ≤M,

(M − 1)2

M + 1
if 1 < m

and

(1.5) k(m,M) :=



(M − 1)2

M + 1
if M < 1,

0 if m ≤ 1 ≤M,

(m− 1)2

m+ 1
if 1 < m.

In particular,

(1.6)
1

2
k(m,M)A ≤ A∇B −A!B ≤ 1

2
K(m,M)A.

Let A, B be positive invertible operators and positive real numbers m,
m′, M , M ′ such that the condition 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤ MI
holds. Put h := M

m and h′ := M ′

m′ , then for any ν ∈ [0, 1] we have [7],

(1.7) r(h′ − 1)2(h′ + 1)−1A ≤ A∇νB −A!νB ≤ R(h− 1)2(h+ 1)−1A,

where r = min {ν, 1− ν}, R = max {ν, 1− ν} and, in particular,

(1.8)
1

2
(h′ − 1)2(h′ + 1)−1A ≤ A∇B −A!B ≤ 1

2
(h− 1)2(h+ 1)−1A.
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Let A, B be positive invertible operators and positive real numbers m,
m′, M , M ′ such that the condition 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤ MI
holds. Then for any ν ∈ [0, 1] we also have [7],

(1.9)
r(h′ − 1)2(h′ + 1)−1(h′)−1A ≤ A∇νB −A!νB

≤ R(h− 1)2(h+ 1)−1h−1A

and, in particular,

(1.10)

1

2
(h′ − 1)2(h′ + 1)−1(h′)−1A ≤ A∇B −A!B

≤ 1

2
(h− 1)2(h+ 1)−1h−1A.

Motivated by the above facts, in this paper we establish some new upper
and lower bounds for the difference A∇νB−A!νB for ν ∈ [0, 1] under various
assumptions for the positive invertible operators A, B. Some applications
when A, B are bounded above and below by positive constants are given as
well.

2. Main results. We have:

Theorem 2. Let A, B be positive invertible operators and M > m > 0 such
that the condition (1.2) is valid. Then for any ν ∈ [0, 1] we have

(2.1)
ν(1− ν) min

{
1,m3

}
(AB−1 − I)2A ≤ A∇νB −A!νB

≤ ν(1− ν) max
{

1,M3
}

(AB−1 − I)2A.

In particular, we have

(2.2)

1

4
min

{
1,m3

}
(AB−1 − I)2A ≤ A∇B −A!B

≤ 1

4
max

{
1,M3

}
(AB−1 − I)2A.

Proof. Let f : I ⊂ R→ R be a twice differentiable function on the interval
I̊, the interior of I. If there exist constants d, D such that

(2.3) d ≤ f ′′ (t) ≤ D for any t ∈ I̊ ,
then [3],

(2.4)

1

2
ν(1− ν)d(b− a)2 ≤ (1− ν)f(a) + νf(b)− f((1− ν)a+ νb)

≤ 1

2
ν(1− ν)D(b− a)2

for any a, b ∈ I̊ and ν ∈ [0, 1].
Let f : (0,∞) → (0,∞) with f(t) = 1

t . Then f ′′(t) = 2
t3

and if t ∈
[min {a, b} ,max {a, b}], where a, b > 0, then we have

2

max3 {a, b}
≤ f ′′ (t) ≤ 2

min3 {a, b}
.
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Using the inequality (2.4), we obtain

(2.5)
ν (1− ν)

(b− a)2

max3 {a, b}
≤ (1− ν)

1

a
+ ν

1

b
− ((1− ν) a+ νb)−1

≤ ν (1− ν)
(b− a)2

min3 {a, b}
for any a, b > 0 and ν ∈ [0, 1].

If we take a = 1
x and b = 1

y in (2.5) with x, y > 0, then we get

(2.6)

ν (1− ν) (min {x, y})3 (x− y)2

x2y2

≤ (1− ν)x+ νy −
(
(1− ν)x−1 + νy−1

)−1
≤ ν (1− ν) (max {x, y})3 (x− y)2

x2y2
.

Observe that

(max {x, y})3 (x− y)2

x2y2
= (max {x, y})3 (x− y)2

(max {x, y}min {x, y})2

= max {x, y} (x− y)2

(min {x, y})2

= max {x, y}
(

max {x, y}
min {x, y}

− 1

)2

and, similarly

(min {x, y})3 (x− y)2

x2y2
= min {x, y}

(
1− min {x, y}

max {x, y}

)2

for any x, y > 0.
Thus (2.6) is equivalent to

(2.7)

ν (1− ν) min {x, y}
(

1− min {x, y}
max {x, y}

)2

≤ (1− ν)x+ νy −
(
(1− ν)x−1 + νy−1

)−1
≤ ν (1− ν) max {x, y}

(
max {x, y}
min {x, y}

− 1

)2

for any x, y > 0 and ν ∈ [0, 1].
Now, if we take x = 1 in (2.6), then we get

(2.8)

ν (1− ν) (min {1, y})3
(
y−1 − 1

)2
≤ 1− ν + νy −

(
1− ν + νy−1

)−1
≤ ν (1− ν) (max {1, y})3

(
y−1 − 1

)2
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for any y > 0 and ν ∈ [0, 1].
If y ∈ [m,M ], then min {1, y} ≥ min {1,m} and max {1, y} ≤ max {1,M}

and by (2.8) we get

(2.9)

ν (1− ν) min
{

1,m3
} (
y−1 − 1

)2
≤ 1− ν + νy −

(
1− ν + νy−1

)−1
≤ ν (1− ν) max

{
1,M3

} (
y−1 − 1

)2
for any y ∈ [m,M ] and ν ∈ [0, 1].

If we use the continuous functional calculus for the positive invertible
operator X with mI ≤ X ≤MI, then we have

(2.10)

ν (1− ν) min
{

1,m3
} (
X−1 − I

)2
≤ (1− ν) I + νX −

(
(1− ν) I + νX−1

)−1
≤ ν (1− ν) max

{
1,M3

} (
X−1 − I

)2
for any ν ∈ [0, 1].

If we multiply (1.2) both sides by A−1/2, we get MI ≥ A−1/2BA−1/2 ≥
mI.

By writing the inequality (2.10) for X = A−1/2BA−1/2, we obtain

(2.11)

ν (1− ν) min
{

1,m3
}(

A1/2B−1A1/2 − I
)2

≤ (1− ν) I + νA−1/2BA−1/2 −
(

(1− ν) I + νA1/2B−1A1/2
)−1

≤ ν (1− ν) max
{

1,M3
}(

A1/2B−1A1/2 − I
)2

for any ν ∈ [0, 1].
If we multiply both sides of the inequality (2.11) by A1/2, then we get

(2.12)

ν (1− ν) min
{

1,m3
}
A1/2

(
A1/2B−1A1/2 − I

)2
A1/2

≤ (1− ν)A+ νB −A1/2
(
νA1/2B−1A1/2 + (1− ν) I

)−1
A1/2

≤ ν (1− ν) max
{

1,M3
}
A1/2

(
A1/2B−1A1/2 − I

)2
A1/2

for any ν ∈ [0, 1].
Observe that

A1/2

(
ν
(
A−1/2BA−1/2

)−1
+ (1− ν) I

)−1
A1/2

= A1/2
(
A1/2

(
νB−1 + (1− ν)A−1

)
A1/2

)−1
A1/2

= A1/2A−1/2
(
νB−1 + (1− ν)A−1

)−1
A−1/2A1/2 = A!νB
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and

A1/2
(
A1/2B−1A1/2 − I

)2
A1/2

= A1/2A1/2
(
B−1 −A−1

)
A1/2A1/2

(
B−1 −A−1

)
A1/2A1/2

= A
(
B−1 −A−1

)
A
(
B−1 −A−1

)
A

=
(
AB−1 − I

)2
A.

From (2.12) we then get the desired result (2.1). �

We define the weighted arithmetic and geometric means

Aν(a, b) := (1− ν) a+ νb and Gν(a, b) := a1−νbν ,

where ν ∈ [0, 1] and a, b > 0. If ν = 1
2 , then we write for brevity A(a, b)

and G(a, b), respectively.

Lemma 1. Let M, m ∈ R with M > m and Φ : I ⊆ (0,∞)→ R be a twice
differentiable function on I̊ such that

(2.13) m ≤ t2Φ′′(t) ≤M,

for any t ∈ I̊. Then for any a, b ∈ I̊ and ν ∈ [0, 1] we have

(2.14)
m ln

(
Aν(a, b)

Gν(a, b)

)
≤ (1− ν) Φ(a) + νΦ(b)− Φ((1− ν) a+ νb)

≤M ln

(
Aν(a, b)

Gν(a, b)

)
.

In particular,

(2.15) m ln

(
A(a, b)

G(a, b)

)
≤ Φ(a) + Φ(b)

2
− Φ

(
a+ b

2

)
≤M ln

(
A(a, b)

G(a, b)

)
.

Proof. The function Φm := Φ + m ln is convex on I. Indeed, since m ≤
t2Φ′′(t) for any t ∈ I̊, we have

Φ′′m(t) = Φ′′(t)− m

t2
=

Φ′′(t)t2 −m
t2

≥ 0, t ∈ I̊ .
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By the definition of convexity, we have

Φ((1− ν)a+ νb) +m lnAν(a, b)

≤ (1− ν) [Φ(a) +m ln a] + ν [Φ(b) +m ln b]

= (1− ν) Φ(a) + νΦ(b) + (1− ν)m ln a+ νm ln b

= (1− ν) Φ(a) + νΦ(b) +m lnGν(a, b)

for any a, b ∈ I̊ and ν ∈ [0, 1], that is equivalent to

m ln
Aν(a, b)

Gν(a, b)
≤ (1− ν) Φ(a) + νΦ(b)− Φ((1− ν) a+ νb)

for any a, b ∈ I̊ and ν ∈ [0, 1] and the first inequality in (2.1) is proved.
Similarly, by the convexity of ΦM := −M ln−Φ we get the second part

of (2.1). �

We recall that Specht’s ratio is defined by

(2.16) S (h) :=


h

1
h−1

e ln
(
h

1
h−1

) if h ∈ (0, 1) ∪ (1,∞) ,

1 if h = 1.

It is well known that limh→1 S (h) = 1, S (h) = S
(
1
h

)
> 1 for h > 0, h 6= 1.

The function is decreasing on (0, 1) and increasing on (1,∞).
The following inequality provides a refinement and a multiplicative re-

verse for Young’s inequality

(2.17) S
((a

b

)r)
≤ Aν (a, b)

Gν (a, b)
≤ S

(a
b

)
,

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν}.
The second inequality in (2.17) is due to Tominaga [11] while the first

one is due to Furuichi [8].

Corollary 1. With the assumptions of Lemma 1 we have

(2.18)
m lnS

((a
b

)r)
≤ (1− ν) Φ(a) + νΦ(b)− Φ((1− ν) a+ νb)

≤M lnS
(a
b

)
for any a, b ∈ I̊ and ν ∈ [0, 1], where r = min {1− ν, ν}.

In particular,

(2.19) m lnS

(√
a

b

)
≤ Φ (a) + Φ (b)

2
− Φ

(
a+ b

2

)
≤M lnS

(a
b

)
.

We consider Kantorovich’s ratio defined by

(2.20) K (h) :=
(h+ 1)2

4h
, h > 0.
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The function K is decreasing on (0, 1) and increasing on [1,∞), K(h) ≥ 1
for any h > 0 and K(h) = K

(
1
h

)
for any h > 0.

The following multiplicative refinement and reverse of Young’s inequality
in terms of Kantorovich’s ratio hold

(2.21) Kr
(a
b

)
≤ Aν(a, b)

Gν(a, b)
≤ KR

(a
b

)
,

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν}.
The first inequality in (2.21) was obtained by Zou et al. in [12] while the

second by Liao et al. [10].

Corollary 2. With the assumptions of Lemma 1 we have

(2.22)
mr lnK

(a
b

)
≤ (1− ν) Φ(a) + νΦ(b)− Φ((1− ν) a+ νb)

≤MR lnK
(a
b

)
for any a, b ∈ I̊ and ν ∈ [0, 1], where r = min {1− ν, ν} and R = max {1− ν, ν}.

In particular,

(2.23)
1

2
m lnK

(a
b

)
≤ Φ(a) + Φ(b)

2
− Φ

(
a+ b

2

)
≤ 1

2
M lnK

(a
b

)
.

In the recent paper [2] we obtained the following multiplicative reverse of
Young’s inequality

(2.24) (1 ≤)
(1− ν) a+ νb

a1−νbν
≤ exp

[
4ν (1− ν)

(
K
(a
b

)
− 1
)]
,

where a, b > 0, ν ∈ [0, 1].
Using this inequality, we can state:

Corollary 3. With the assumptions of Lemma 1 we have

(2.25)
(0 ≤) (1− ν) Φ(a) + νΦ(b)− Φ((1− ν) a+ νb)

≤ 4Mν (1− ν)
(
K
(a
b

)
− 1
)

for any a, b ∈ I̊ and ν ∈ [0, 1], where K is Kantorovich’s ratio.
In particular,

(2.26)
Φ(a) + Φ(b)

2
− Φ

(
a+ b

2

)
≤M

(
K
(a
b

)
− 1
)
.

In the recent paper [3] we established the following refinement and reverse
of multiplicative Young’s inequality:

(2.27)

exp

[
1

2
ν (1− ν)

(
1− min {a, b}

max {a, b}

)2
]
≤ (1− ν) a+ νb

a1−νbν

≤ exp

[
1

2
ν (1− ν)

(
max {a, b}
min {a, b}

− 1

)2
]
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for any a, b > 0 and ν ∈ [0, 1].

Corollary 4. With the assumptions of Lemma 1 we have

(2.28)

1

2
ν (1− ν)m

(
1− min {a, b}

max {a, b}

)2

≤ (1− ν) Φ(a) + νΦ(b)− Φ((1− ν) a+ νb)

≤ 1

2
ν (1− ν)M

(
max {a, b}
min {a, b}

− 1

)2

for any a, b ∈ I̊ and ν ∈ [0, 1], where K is Kantorovich’s ratio.
In particular,

(2.29)

1

8
m

(
1− min {a, b}

max {a, b}

)2

≤ Φ(a) + Φ(b)

2
− Φ

(
a+ b

2

)
≤ 1

8
M

(
max {a, b}
min {a, b}

− 1

)2

.

We can state now the following result concerning upper and lower bounds
for the difference between the weighted arithmetic and harmonic means:

Lemma 2. Let a, b > 0, then we have

(2.30)
2 min {a, b} ln

(
Gν(a, b)

Hν(a, b)

)
≤ Aν(a, b)−Hν(a, b)

≤ 2 max {a, b} ln

(
Gν(a, b)

Hν(a, b)

)
for any ν ∈ [0, 1], where Hν(a, b) :=

(
(1− ν) a−1 + νb−1

)−1 is the weighted
harmonic mean.

In particular,

(2.31)
2 min {a, b} ln

(
G(a, b)

H(a, b)

)
≤ A(a, b)−H(a, b)

≤ 2 max {a, b} ln

(
G(a, b)

H(a, b)

)
,

where H(a, b) = 2ab
a+b is the harmonic mean.

Proof. Let x, y > 0 with x 6= y and t ∈ [min {x, y} ,max {x, y}]. Consider

Φ : [min {x, y} ,max {x, y}]→ (0,∞) , Φ(t) =
1

t
.

Then Φ′′(t) = 2
t3

and

2

max {x, y}
≤ t2Φ′′(t) ≤ 2

min {x, y}
for any t ∈ [min {x, y} ,max {x, y}].
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Writing inequality (2.14) for the function Φ(t) = 1
t , we have

(2.32)

2

max {x, y}
ln

(
Aν(x, y)

Gν(x, y)

)
≤ (1− ν)

1

x
+ ν

1

y
− ((1− ν)x+ νy)−1

≤ 2

min {x, y}
ln

(
Aν(x, y)

Gν(x, y)

)
for any x, y > 0 and ν ∈ [0, 1].

Let x = 1
a , y = 1

b with a, b > 0. Then by (2.32) we get

(2.33)

2

max
{
1
a ,

1
b

} ln

(
Aν
(
1
a ,

1
b

)
Gν
(
1
a ,

1
b

))

≤ (1− ν) a+ νb−
(

(1− ν)
1

a
+ ν

1

b

)−1
≤ 2

min
{
1
a ,

1
b

} ln

(
Aν
(
1
a ,

1
b

)
Gν
(
1
a ,

1
b

))
for any ν ∈ [0, 1], which is equivalent to the desired result, since

(2.34)
Aν
(
1
a ,

1
b

)
Gν
(
1
a ,

1
b

) =
Gν(a, b)

Hν(a, b)
.

�

By using (2.30), (2.17), (2.21), (2.24) and (2.27), we get

(2.35)
2 min {a, b} lnS

((
b

a

)r)
≤ Aν(a, b)−Hν(a, b)

≤ 2 max {a, b} ln

(
S

(
b

a

))
,

(2.36)
2rmin {a, b} lnK

(
b

a

)
≤ Aν(a, b)−Hν(a, b)

≤ 2Rmax {a, b} lnK

(
b

a

)
,

(2.37) Aν(a, b)−Hν(a, b) ≤ 8 max {a, b} ν (1− ν)

(
K

(
b

a

)
− 1

)
,

and

(2.38)
ν (1− ν) min {a, b}

(
1− min {a, b}

max {a, b}

)2

≤ Aν(a, b)−Hν(a, b)

≤ ν (1− ν) max {a, b}
(

max {a, b}
min {a, b}

− 1

)2

for any a, b > 0 and ν ∈ [0, 1], where r = min {1− ν, ν} andR = max {1− ν, ν}.
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We have the following upper and lower bounds in terms of Specht’s ratio.

Theorem 3. Let A, B be positive invertible operators and M > m > 0 be
such that the condition (1.2) is valid. Then for any ν ∈ [0, 1] we have

(2.39) 2uν(m,M)A ≤ A∇νB −A!νB ≤ 2U(m,M)A,

where

uν(m,M) :=


m lnS(M r) if M < 1,

0 if m ≤ 1 ≤M,

lnS(mr) if 1 < m

and

U(m,M) :=


lnS(m) if M < 1,

M max {lnS(m), lnS(M)} if m ≤ 1 ≤M,

M lnS(M) if 1 < m.

Proof. By taking a = 1 and b = x > 0 in (2.35) we get

(2.40)
2 min {1, x} lnS(xr) ≤ 1− ν + νx−

(
1− ν + νx−1

)−1
≤ 2 max {1, x} ln (S(x)) ,

for any ν ∈ [0, 1].
If x ∈ [m,M ] ⊂ (0,∞), then min {1, x} ≥ min {1,m} and max {1, x} ≤

max {1,M}. By using the inequality (2.40), we get

(2.41)
2 min {1,m} min

x∈[m,M ]
lnS(xr) ≤ 1− ν + νx−

(
1− ν + νx−1

)−1
≤ 2 max {1,M} max

x∈[m,M ]
ln (S(x))

for any ν ∈ [0, 1].
If we use the continuous functional calculus for the positive invertible

operator X with mI ≤ X ≤MI, then by (2.41) we have

(2.42)

2 min {1,m} min
x∈[m,M ]

lnS(xr)I

≤ (1− ν) I + νX −
(
(1− ν) I + νX−1

)−1
≤ 2 max {1,M} max

x∈[m,M ]
ln (S(x)) I

for any ν ∈ [0, 1].
Now, by a similar argument to the one from Theorem 2, we conclude that

2 min {1,m} min
x∈[m,M ]

lnS(xr)A ≤ A∇νB −A!νB

≤ 2 max {1,M} max
x∈[m,M ]

ln (S(x))A

for any ν ∈ [0, 1].
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Now it is enough to observe that, by the properties of the Specht’s ratio,
we have

min {1,m} min
x∈[m,M ]

lnS(xr) =


m lnS(M r) if M < 1,

0 if m ≤ 1 ≤M,

lnS(mr) if 1 < m

and

max{1,M} max
x∈[m,M ]

ln(S(x)) =


lnS(m) if M < 1,

M max{lnS(m), lnS(M)} if m ≤ 1 ≤M,

M lnS(M) if 1 < m.

�

In particular, we have

(2.43) 2u(m,M)A ≤ A∇B −A!B ≤ 2U(m,M)A

where

u(m,M) :=


m lnS

(√
M
)

if M < 1,

0 if m ≤ 1 ≤M,

lnS (
√
m) if 1 < m.

We have the following upper and lower bounds in terms of Kantorovich’s
ratio.

Theorem 4. Let A, B be positive invertible operators and M > m > 0 be
such that the condition (1.2) is valid. Then for any ν ∈ [0, 1] we have

(2.44) 2rv(m,M)A ≤ A∇νB −A!νB ≤ 2RV (m,M)A,

where

(2.45) v(m,M) :=


m lnK(M) if M < 1,

0 if m ≤ 1 ≤M,

lnK(m) if 1 < m

and

(2.46) V (m,M) :=


lnK(m) if M < 1,

M max {lnK(m), lnK(M)} if m ≤ 1 ≤M,

M lnK(M) if 1 < m.



Additive inequalities for weighted harmonic and arithmetic operator means 13

We also have

(2.47) A∇νB −A!νB ≤ 8ν (1− ν)T (m,M)A,

where

(2.48) T (m,M) :=


K(m)− 1 if M < 1,

M max {K(m)− 1,K(M)− 1} if m ≤ 1 ≤M,

M (K(M)− 1) if 1 < m.

In particular, we have

(2.49) v(m,M)A ≤ A∇B −A!B ≤ V (m,M)A

and

(2.50) A∇B −A!B ≤ 2T (m,M)A.

The inequality (2.44) follows from (2.37) and the following formulas:

min {1,m} min
x∈[m,M ]

lnK(x) =


m lnK(M) if M < 1,

0 if m ≤ 1 ≤M,

lnK(m) if 1 < m

and

max {1,M} max
x∈[m,M ]

lnK(x)

=


lnK(m) if M < 1,

M max {lnK(m), lnK(M)} if m ≤ 1 ≤M,

M lnK(M) if 1 < m,

which can be derived from the properties of Kantorovich’s ratio.
The inequality (2.47) follows by (2.36) and the formulas:

max {1,M} max
x∈[m,M ]

(K(x)− 1)

=


K(m)− 1 if M < 1,

M max {K(m)− 1,K(M)− 1} if m ≤ 1 ≤M,

M (K(M)− 1) if 1 < m.

Now, if we take in (2.38) a = 1 and b = x, then we have

(2.51)

ν (1− ν) min {1, x}
(

1− min {1, x}
max {1, x}

)2

≤ 1− ν + νx−
(
1− ν + νx−1

)−1
≤ ν (1− ν) max {1, x}

(
max {1, x}
min {1, x}

− 1

)2

.
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If x ∈ [m,M ] ⊂ (0,∞), then min {1, x} ≥ min {1,m} and max {1, x} ≤
max {1,M}. From (2.51) we then have

(2.52)

ν (1− ν) min {1,m}
(

1− min {1,m}
max {1,M}

)2

≤ 1− ν + νx−
(
1− ν + νx−1

)−1
≤ ν (1− ν) max {1,M}

(
max {1,M}
min {1,m}

− 1

)2

for any x ∈ [m,M ].
Using (2.52), we obtain the following operator inequality:

Theorem 5. Let A, B be positive invertible operators and M > m > 0 be
such that the condition (1.2) is valid. Then for any ν ∈ [0, 1] we have

(2.53) ν (1− ν) z (m,M)A ≤ A∇νB −A!νB ≤ ν (1− ν)Z(m,M)A,

where

z(m,M) :=


m (1−m)2 if M < 1,

m
(
1− m

M

)2 if m ≤ 1 ≤M,(
1− 1

M

)2 if 1 < m

and

Z(m,M) :=


(
1
m − 1

)2 if M < 1,

M
(
M
m − 1

)2
if m ≤ 1 ≤M,

M (M − 1)2 if 1 < m.

In particular,

(2.54)
1

4
z(m,M)A ≤ A∇B −A!B ≤ 1

4
Z(m,M)A.

3. Applications. We apply some of the above results for operators that
are bounded below and above by positive constants.

Proposition 1. Let A, B be two positive operators and m, m′, M , M ′ be
positive real numbers. Put h := M

m and h′ := M ′

m′ .
(i) If 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤MI, then

(3.1)
ν (1− ν)

(
AB−1 − I

)2
A ≤ A∇νB −A!νB

≤ ν (1− ν)h3
(
AB−1 − I

)2
A.

(ii) If 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤MI, then

(3.2)
ν (1− ν)

1

h3
(
AB−1 − I

)2
A ≤ A∇νB −A!νB

≤ ν (1− ν)
(
AB−1 − I

)2
A.
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Proof. We observe that h, h′ > 1 and if either of the condition (i) or (ii)
holds, then h ≥ h′.

If (i) is valid, then we have

(3.3) A < h′A =
M ′

m′
A ≤ B ≤ M

m
A = hA,

while, if (ii) is valid, then we have

(3.4)
1

h
A ≤ B ≤ 1

h′
A < A.

If we use the inequality (2.1) and the assumption (i), then we get (3.1).
If we use the inequality (2.1) and the assumption (ii), then we get (3.2).

�

The following result provides bounds in terms of Specht’s ratio.

Proposition 2. Let A, B be two positive operators and m, m′, M , M ′ be
positive real numbers. Put h := M

m and h′ := M ′

m′ .
(i) If 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤MI, then

(3.5) 2 lnS
((
h′
)r)

A ≤ A∇νB −A!νB ≤ 2h lnS(h)A.

(ii) If 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤MI, then

(3.6) 2
1

h
lnS

((
h′
)r)

A ≤ A∇νB −A!νB ≤ 2 lnS(h)A.

Proof. If we use the inequality (2.39) and the assumption (i), then we have

(3.7) 2 lnS
((
h′
)r)

A ≤ A∇νB −A!νB ≤ 2h lnS(h)A

and the inequality (3.5) is proved.
If we use the assumption (ii) and the inequality (2.39), then we get

(3.8) 2
1

h
lnS

((
1

h′

)r)
A ≤ A∇νB −A!νB ≤ 2 lnS

(
1

h

)
A.

Since S
((

1
h′

)r)
= S ((h′)r) and S

(
1
h

)
= S (h) then by (3.8) we get (3.6). �

We also have upper and lower bounds in terms of Kantorovich’s ratio:

Proposition 3. With the assumptions of Proposition 2 we have:
(i) If 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤MI, then

(3.9) 2r lnK(h′)A ≤ A∇νB −A!νB ≤ 2Rh lnK(h)A.

(ii) If 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤MI, then

(3.10) 2r
1

h
lnK(h′)A ≤ A∇νB −A!νB ≤ 2R lnK(h)A.



16 S. S. Dragomir

Proof. Using the inequality (2.44) and the assumption (i), we have

2r lnK(h′)A ≤ A∇νB −A!νB ≤ 2Rh lnK(h)A,

and the inequality (3.9) is proved.
By the assumptions (ii) and the inequality (2.44) we also have

2r
1

h
lnK

(
1

h′

)
A ≤ A∇νB −A!νB ≤ 2R lnK

(
1

h

)
A,

and since K
(
1
h′

)
= K(h′) and K

(
1
h

)
= K(h), we deduce the desired result

(3.10). �

We finally have:

Proposition 4. With the assumptions of Proposition 2 we have:
(i) If 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤MI, then

(3.11) ν (1− ν)

(
1− 1

h

)2

A ≤ A∇νB −A!νB ≤ ν (1− ν)h (h− 1)2A.

(ii) If 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤MI, then

(3.12) ν (1− ν)
1

h

(
1− 1

h

)2

A ≤ A∇νB −A!νB ≤ ν (1− ν) (h− 1)2A.

The proof follows by (2.53) and we omit the details.
Now, if we consider the following two variable functions obtained by

taking the upper bounds for the difference Aν(a, b)−Hν(a, b) given by the
inequalities (2.35)–(2.38) for a = 1, b = x ∈ (0,∞) and y ∈ (0, 1), namely

U1(x, y) := 2 max {x, 1} lnS(x),

U2(x, y) := 2 max {y, 1− y}max {x, 1} lnK(x),

U3(x, y) := 8y (1− y) max {x, 1} (K(x)− 1) ,

U4(x, y) := y (1− y) max {x, 1}
(

max {x, 1}
min {x, 1}

− 1

)2

,

then the differences U1 −U2, U1 −U3, U1 −U4, U2 −U3, U2 −U4 take both
negative and positive values on the box (0, 10)× (0, 1), showing that neither
of these bounds are best in general. However, the plot of the difference
U3 − U4 takes only negative values on the box (0, 10) × (0, 1), suggesting
that the upper bound in (2.38) may be better than that in (2.37). It is an
open question for the author if this is true in general.
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