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Growth of a polynomial
not vanishing in a disk

ABSTRACT. This paper deals with the problem of finding some upper bound
estimates for the maximum modulus of the derivative and higher order deriva-
tives of a complex polynomial on a disk under the assumption that the poly-
nomial has no zeros in another disk. The estimates obtained strengthen the
well-known inequality of Ankeny and Rivlin about polynomials.

1. Introduction and statement of results. For an arbitrary entire func-
tion f(z), let M(f,r) = max, . |f(2)|. For a polynomial P(z) of degree n,
it is known that

(1.1) M(P,R) < R"M(P,1), R > 1.

Inequality (1.1) is a simple consequence of Maximum Modulus Principle
(see [5]). It was shown by Ankeny and Rivlin [1] that if P(z) # 0 in |z] < 1,
then (1.1) can be replaced by

R"+1

2

Over the last 40 years many different authors produced a large number
of generalizations and refinements of inequality (1.2) by introducing coeffi-
cients of the polynomial, using higher order derivatives, by involving polar
derivative of polynomials etc.

(1.2) M(P,R) <

M(P,1), R > 1.
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Recently, Jain [4] obtained a generalization of (1.2) by considering poly-
nomials with no zeros in |z| < k, £ > 1 and has simultaneously taken into
consideration the sth derivative (0 < s < n) of the polynomial, instead of
the polynomial itself. More precisely, Jain proved

Theorem A. If P(z) is a polynomial of degree n with no zeros in |z| < k,
k> 1, then for 0 < s <n,

S 1 ds n n 2 n
(13) M(P® R) < 5{dRS(R +k )}(m) M(P,1), for R > k.

Equality holds in (1.3) (with s =0 and k =1) for P(z) = 2" + 1.
In this paper, we prove the following sharpening of Theorem A. Our

theorem includes as special cases several refinements and generalizations of
(1.2) as well.

Theorem 1. Let P(z) = >, _,a,2” is a polynomial of degree n having

no zeros in |z| < k, k > 1. If](]:%withogtglandm:

min;— [P(2)|, then for 0 <s <n and R >k,
d° 2+2c| \*®
— | M(P1
dR° (1+2|C|k:+k2 (P1)

2+ 2/¢| |
SR [ L 1 [ S
1+ 2|Clk + k2 kn
FEquality holds in (1.4) (with s =0 and k =1) for P(z) = 2" + 1.
Taking ¢ = 0 in Theorem 1, we get the following result.

M(P®,R) < %{ (R"+ k") }

Corollary 1. Let P(z) = _,_,a,z" be a polynomial of degree n having no
zeros in |z| <k, k> 1 and let |\ = ‘%| Then for 0 < s <n and R >k,

1 d° 2+ 2|A| :
(S) < — n n - - -

FEquality holds in (1.5) (with s =0 and k =1) for P(z) = 2" + 1.
Remark 1. Since if P(z) = >, _ja,2” # 01in |z| < k, k > 1, then from
@’ < 1. We show that in general

nag | —

% n
2+ 2|\ S( 2 ) ’
14 2|Alk + k2 1+k

which is equivalent to showing

2
2+ 2|\l S( 2 )7
1+ 2|Alk + k2 1+k

Lemma 3, we have |\| =
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that is,
(14 A1+ k)* < 2(1+ 2[A[k + &2),
which is equivalent to
(A =Dk -1)* <0,
which clearly holds as |A| < 1. This shows that (1.5) is a refinement of (1.3).

2. Lemmas. For the proof of Theorem 1, we need the following lemmas.
The first lemma is due to Govil, Qazi and Rahman [3].

Lemma 1. Let P(z) = >, _a,z" # 0 for |z| < k, where k > 1 and let
A= kU Then for 1 < R < k2,

nag

R% + 2|\| Rk + K?
1+ 2Nk + k2

M(P,R) < ( >2M(P, 1).

The following lemma is due to Aziz and Aliya [2].

Lemma 2. Let P(z) = a0+Z?ZM ajz?, 1 < p < n be a polynomial of degree
n such that P(z) # 0 in |z| < k, k > 1. Then for R > 1,0 <t <1 and

m = ming_y [P(2)],
wo_ o
R —1Y |aulk 1
R* —1) |ag| —tm —

From Lemma 2, we easily get the following for p = 1.
Lemma 3. Let P(z) = Y 2" # 0in |z < k, k > 1 and m =
min|,_ [P(2)|. Then for 0 <t <1,
klaa|
n(|lag| — tm)
Lemma 4. Let P(z) = >, _qa,2” # 0 in |z| < k, k > 1 and let |(| =
klai| where 0 <t <1 and m = min|,_y, |P(2)|. Then for 1 < R < k2,

n(lag|—tm)’
we have

<1.

R? + 2|C|RE + k?
1+ 2|C|k + k2

R2 4+ 2|C|Rk+ K%\ 2
— —1tm.
14+ 2[Clk + k2
Proof of Lemma 4. Since P(z) = > _ a,z" has all its zeros in |2| > k >
1 and m = miny, |, |P(2)|, therefore, m < [P(z)| for [z| = k. We first show

that for every complex a with |a| < 1, the polynomial F(z) = P(z) — am
does not vanish in |z| < k, k > 1. This result is clear if P(z) has a zero on

M(P,R) < ( >2M(P, 1)

(2.1)
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|z| = k for then m = 0 and hence F(z) = P(z). In case P(z) has no zeros
on |z| = k, that is, all the zeros of P(z) lie in |z| > k,k > 1, then clearly
m > 0 so that % is analytic in |z| < k and

(2.2) ‘ <1, for || = k.

‘ m
P(z)
Since % is not a constant, by the Maximum Modulus Principle, it follows
that

(2.3) m < |P(z)|, for |z] < k.

Now, if F(z) = P(z) — am has a zero in |z| < k, k > 1, say at z = z; with
|z1| < k, then

F(z1) = P(z1) —am = 0.
This gives,
[P(z1)| = lafm <m,

where |z1| < k, which contradicts (2.3).
Hence, we conclude that the polynomial F'(z) does not vanish in |z| < k,
k > 1. Applying Lemma 1 to the polynomial

F(z) = P(z) —am = (ag — am) + Zajzj,
j=1

we get for every complex o with |o| <1 and 1 < R < k?,

<R2 +2|n| Rk + k;2> 2

(2.4) max |P(z) — am| < max |P(z) — am|,

|zI=R 1+ 2|nlk + k2 |z|=1
where 1 = m.
Since for every o with |a| < 1, we have

lag — am| > |ao| — |a|m,
and by (2.3)

alm < m < [P(0)] = |aol,
we get

kal k:|a1|
In| = < = |¢]-
n(ap — am) n(lao| — |am)

Also, by Lemma 3, we have m < 1 and since (%) is an

increasing function of x in [0, 1], it follows from (2.4) that for every « with



Growth of a polynomial not vanishing in a disk 45

o] <land 1 <R <k?

R? 4 2|C| Rk + k? :
2.5 P(2) — am| < P(2) — am).
(25)  max|P(z) amL( 14 2/Clk + k2 max | P(z) — am|

Let zp on |z| = 1, be such that
(2.6) |m|ax |P(z) — am| = ’P(zo) —am
z|=1

)

and let z; on |2| = R, be such that |P(21)| = max|,—g|P(z)|. Then the
inequalities (2.5) and (2.6) together imply

(2.7) |H‘IE_DI% |P(z) — am| <

<R2 + 2|¢| Rk + k2

%
1+ 2[nlk + &2 ) [P(z0) = am|,

for every a with |a] < 1 and 1 < R < k2. Inequality (2.7) in particular
gives

R? 4 2|C|RK + k? :
(2.8) |P(21) — am| < < T2k 12 |P(20) — am|,

for every o with |a| <1 and 1 < R < k?. If we choose the argument of a,
so that

[P(20) — am| = [P(z0)] — |afm,
we get from (2.8) that for 1 < R < k?,

2 2 %
2:9) |P<z1>|—\a\ms<R “'C'R“k) (1P(0)l ~ lalm).

1+ 2|Clk + k2

The fact that the quantity (|P(z0)| — |a|m) in the right hand side of (2.9)
is positive follows from (2.2) and (2.3). This gives

R? 4 2|C|Rk + k2 5’P( )
1+2[Clk + k2 0

| ( R* +2[¢|Rk + & 5_1 alm
1+2[Clk + k2 ’

which is equivalent to (2.1) and this completes the proof of Lemma 4. [

M(P,R) < (

The following two lemmas are due to Jain [4].

Lemma 5. Let P(z) be a polynomial of degree n having all its zeros in
|z| < 1. If T(2) is a polynomial of degree at most n such that

T(2)] < [P(2)], for || =1,
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then for 0 < s <n,

7¢)(2)] < [PY)(2)

, for|z| > 1.
Lemma 6. If P(z) is a polynomial of degree at most n, then for 0 < s < n,

[P ()] +1QW(2)| < {‘dfs(l)) * ‘dfs (")

}M(P, 1), for[z] > 1,

where Q(z) = 2"P(2).
3. Proof of Theorem.

Proof of Theorem 1. Since P(z) # 0 in |z| < k, k > 1, the polynomial

T(z) = P(kz) has no zeros in |z| < 1. Let H(z) = 2"T(%), then
T(2)| < [H(2)], for |2 = 1,

and H(z) has all its zeros in |z| < 1. Therefore, applying Lemma 5 to the
polynomials T'(z) and H(z), we get for 0 < s <n and r > 1,

(3.1) T (re)| < [H®) (re)], 0 < 6 < 2.

Also, by Lemma 6, we have for r > 1 and 0 < s < n,

\T(S)(rew)\ + }H(S)(mi@)‘ < {jrs (r™ + 1)}M(T, 1), 0 <6 < 2m,

which on combining with (3.1) gives

{ & 1)}M(T, 1),

‘T(S) (reie)‘ <

| =

drs

which further implies

(3.2) }P(s)(krew)‘ < 2]1& { CZ: (r™ + 1)}M(P, k).

The above inequality (3.2) in conjunction with Lemma 4 gives

, 1| a k% +2|C|k? + K2 :
P (krei?)| < naq M(P,1
| ( Te )‘ = ka{drs(T + )} ( 1+2|C|k+k2 ( ) )

I S R P
1+ 2[¢|k + k2 '

(3.3)
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Now taking r = % > 11in (3.3), we get

.. 2 + 2| ?
{1} <1+2Km+4#> M(P1)

[ 2rE N1,
1+ 2[Clk + K2 e (7T

which is equivalent to (1.4). O

Remark 2. From Lemma 3, we have
klai]|

- - <1
n(|lag| — tm)

- )

. . ror ( B2H2Rka+k?
and since, as mentioned earlier ( T oke k2

in [0, 1], it follows from (2.7) that for every a with |a| <1and 1 < R < k2%,

) is an increasing function of x

R+k\
(3.4) |IZ1r|1%:Ju}(2 |P(z) — am| < <1+k> \Iﬁi}l( |P(z) — am]|.

Now proceeding similarly as in the proof of Lemma 4, it follows from

(3.4) that

R+E\ R+E\
(3.5)  M(P,R) < <1+k> M(P,l)—{(WC) —1}tm,

where 0 <t < 1 and 1 < R < k2. If we use inequality (3.5) (for t =
1) instead of Lemma 4 in the proof of Theorem 1, we get the following
refinement of Theorem A.

Corollary 2. If P(z) = >0 _qa,z¥ # 0 in |z2| < k, k > 1 and m =
min,_ [P(2)|, then for 0 < s <n,

M(P®) R) < 1{ - (R" + k") }

2 UdRs )nM(P’ 1

(r57

2 \» 1
“\57) | formzk
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