doi: 10.17951/a.2019.73.1.41-48

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXXIII, NO. 1, 2019	SECTIO A	41 - 48
--------------------------	----------	---------

ABDULLAH MIR

Growth of a polynomial not vanishing in a disk

ABSTRACT. This paper deals with the problem of finding some upper bound estimates for the maximum modulus of the derivative and higher order derivatives of a complex polynomial on a disk under the assumption that the polynomial has no zeros in another disk. The estimates obtained strengthen the well-known inequality of Ankeny and Rivlin about polynomials.

1. Introduction and statement of results. For an arbitrary entire function f(z), let $M(f,r) = \max_{|z|=r} |f(z)|$. For a polynomial P(z) of degree n, it is known that

(1.1)
$$M(P,R) \le R^n M(P,1), \ R \ge 1.$$

Inequality (1.1) is a simple consequence of Maximum Modulus Principle (see [5]). It was shown by Ankeny and Rivlin [1] that if $P(z) \neq 0$ in |z| < 1, then (1.1) can be replaced by

(1.2)
$$M(P,R) \le \frac{R^n + 1}{2}M(P,1), \ R \ge 1.$$

Over the last 40 years many different authors produced a large number of generalizations and refinements of inequality (1.2) by introducing coefficients of the polynomial, using higher order derivatives, by involving polar derivative of polynomials etc.

²⁰¹⁰ Mathematics Subject Classification. 30A10, 30C10, 30C155.

Key words and phrases. Polynomial, maximum modulus principle, zeros.

Recently, Jain [4] obtained a generalization of (1.2) by considering polynomials with no zeros in |z| < k, $k \ge 1$ and has simultaneously taken into consideration the *s*th derivative $(0 \le s < n)$ of the polynomial, instead of the polynomial itself. More precisely, Jain proved

Theorem A. If P(z) is a polynomial of degree n with no zeros in |z| < k, $k \ge 1$, then for $0 \le s < n$,

(1.3)
$$M(P^{(s)}, R) \leq \frac{1}{2} \left\{ \frac{d^s}{dR^s} (R^n + k^n) \right\} \left(\frac{2}{1+k} \right)^n M(P, 1), \text{ for } R \geq k.$$

Equality holds in (1.3) (with s = 0 and k = 1) for $P(z) = z^n + 1$.

In this paper, we prove the following sharpening of Theorem A. Our theorem includes as special cases several refinements and generalizations of (1.2) as well.

Theorem 1. Let $P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree *n* having no zeros in |z| < k, $k \ge 1$. If $|\zeta| = \frac{k|a_1|}{n(|a_0| - tm)}$ with $0 \le t \le 1$ and $m = \min_{|z|=k} |P(z)|$, then for $0 \le s < n$ and $R \ge k$,

(1.4)

$$M(P^{(s)}, R) \leq \frac{1}{2} \left\{ \frac{d^s}{dR^s} (R^n + k^n) \right\} \left[\left(\frac{2+2|\zeta|}{1+2|\zeta|k+k^2} \right)^{\frac{n}{2}} M(P, 1) - \left\{ \left(\frac{2+2|\zeta|}{1+2|\zeta|k+k^2} \right)^{\frac{n}{2}} - \frac{1}{k^n} \right\} tm \right].$$
Free shifts holds in (1.4) (with $s = 0$ and $k = 1$) for $P(s) = s^n + 1$.

Equality holds in (1.4) (with s = 0 and k = 1) for $P(z) = z^n + 1$.

Taking t = 0 in Theorem 1, we get the following result.

Corollary 1. Let $P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ be a polynomial of degree *n* having no zeros in |z| < k, $k \ge 1$ and let $|\lambda| = \left|\frac{ka_1}{na_0}\right|$. Then for $0 \le s < n$ and $R \ge k$,

(1.5)
$$M(P^{(s)}, R) \leq \frac{1}{2} \left\{ \frac{d^s}{dR^s} (R^n + k^n) \right\} \left(\frac{2+2|\lambda|}{1+2|\lambda|k+k^2} \right)^{\frac{n}{2}} M(P, 1).$$

Equality holds in (1.5) (with s = 0 and k = 1) for $P(z) = z^n + 1$.

Remark 1. Since if $P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu} \neq 0$ in $|z| < k, k \ge 1$, then from Lemma 3, we have $|\lambda| = \left|\frac{ka_1}{na_0}\right| \le 1$. We show that in general

$$\left(\frac{2+2|\lambda|}{1+2|\lambda|k+k^2}\right)^{\frac{n}{2}} \le \left(\frac{2}{1+k}\right)^n,$$

which is equivalent to showing

$$\left(\frac{2+2|\lambda|}{1+2|\lambda|k+k^2}\right) \le \left(\frac{2}{1+k}\right)^2,$$

that is,

$$(1+|\lambda|)(1+k)^2 \le 2(1+2|\lambda|k+k^2),$$

which is equivalent to

$$(|\lambda| - 1)(k - 1)^2 \le 0,$$

which clearly holds as $|\lambda| \leq 1$. This shows that (1.5) is a refinement of (1.3).

2. Lemmas. For the proof of Theorem 1, we need the following lemmas. The first lemma is due to Govil, Qazi and Rahman [3].

Lemma 1. Let $P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu} \neq 0$ for |z| < k, where $k \ge 1$ and let $\lambda = \frac{ka_1}{na_0}$. Then for $1 \le R \le k^2$,

$$M(P,R) \le \left(\frac{R^2 + 2|\lambda|Rk + k^2}{1 + 2|\lambda|k + k^2}\right)^{\frac{n}{2}} M(P,1).$$

The following lemma is due to Aziz and Aliya [2].

Lemma 2. Let $P(z) = a_0 + \sum_{j=\mu}^n a_j z^j$, $1 \le \mu \le n$ be a polynomial of degree n such that $P(z) \ne 0$ in |z| < k, $k \ge 1$. Then for R > 1, $0 \le t \le 1$ and $m = \min_{|z|=k} |P(z)|$,

$$\left(\frac{R^{\mu}-1}{R^{n}-1}\right)\frac{|a_{\mu}|k^{\mu}}{|a_{0}|-tm} \le 1.$$

From Lemma 2, we easily get the following for $\mu = 1$.

Lemma 3. Let $P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu} \neq 0$ in $|z| < k, k \ge 1$ and $m = \min_{|z|=k} |P(z)|$. Then for $0 \le t \le 1$,

$$\frac{k|a_1|}{n(|a_0| - tm)} \le 1.$$

Lemma 4. Let $P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu} \neq 0$ in $|z| < k, k \ge 1$ and let $|\zeta| = \frac{k|a_1|}{n(|a_0|-tm)}$, where $0 \le t \le 1$ and $m = \min_{|z|=k} |P(z)|$. Then for $1 \le R \le k^2$, we have

(2.1)
$$M(P,R) \leq \left(\frac{R^2 + 2|\zeta|Rk + k^2}{1 + 2|\zeta|k + k^2}\right)^{\frac{n}{2}} M(P,1) \\ - \left\{ \left(\frac{R^2 + 2|\zeta|Rk + k^2}{1 + 2|\zeta|k + k^2}\right)^{\frac{n}{2}} - 1 \right\} tm$$

Proof of Lemma 4. Since $P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ has all its zeros in $|z| \ge k \ge 1$ and $m = \min_{|z|=k} |P(z)|$, therefore, $m \le |P(z)|$ for |z| = k. We first show that for every complex α with $|\alpha| \le 1$, the polynomial $F(z) = P(z) - \alpha m$ does not vanish in $|z| < k, k \ge 1$. This result is clear if P(z) has a zero on

|z| = k for then m = 0 and hence F(z) = P(z). In case P(z) has no zeros on |z| = k, that is, all the zeros of P(z) lie in $|z| > k, k \ge 1$, then clearly m>0 so that $\frac{m}{P(z)}$ is analytic in $|z|\leq k$ and

(2.2)
$$\left|\frac{m}{P(z)}\right| \le 1, \text{ for } |z| = k.$$

Since $\frac{m}{P(z)}$ is not a constant, by the Maximum Modulus Principle, it follows that

(2.3)
$$m < |P(z)|, \text{ for } |z| < k.$$

Now, if $F(z) = P(z) - \alpha m$ has a zero in $|z| < k, k \ge 1$, say at $z = z_1$ with $|z_1| < k$, then

$$F(z_1) = P(z_1) - \alpha m = 0.$$

This gives,

$$|P(z_1)| = |\alpha| m \le m,$$

where $|z_1| < k$, which contradicts (2.3).

Hence, we conclude that the polynomial F(z) does not vanish in |z| < k, $k \geq 1$. Applying Lemma 1 to the polynomial

$$F(z) = P(z) - \alpha m = (a_0 - \alpha m) + \sum_{j=1}^n a_j z^j,$$

we get for every complex α with $|\alpha| \leq 1$ and $1 \leq R \leq k^2$,

(2.4)
$$\max_{|z|=R} |P(z) - \alpha m| \le \left(\frac{R^2 + 2|\eta|Rk + k^2}{1 + 2|\eta|k + k^2}\right)^{\frac{1}{2}} \max_{|z|=1} |P(z) - \alpha m|,$$

where $\eta = \frac{ka_1}{n(a_0 - \alpha m)}$. Since for every α with $|\alpha| \leq 1$, we have

$$|a_0 - \alpha m| \ge |a_0| - |\alpha|m,$$

and by (2.3)

$$|\alpha|m \le m < |P(0)| = |a_0|,$$

we get

$$|\eta| = \left|\frac{ka_1}{n(a_0-\alpha m)}\right| \leq \frac{k|a_1|}{n(|a_0|-|\alpha|m)} = |\zeta|.$$

Also, by Lemma 3, we have $\frac{k|a_1|}{n(|a_0|-|\alpha|m)} \leq 1$ and since $\left(\frac{R^2+2Rkx+k^2}{1+2kx+k^2}\right)$ is an increasing function of x in [0, 1], it follows from (2.4) that for every α with $|\alpha| \leq 1$ and $1 \leq R \leq k^2$,

(2.5)
$$\max_{|z|=R} |P(z) - \alpha m| \le \left(\frac{R^2 + 2|\zeta|Rk + k^2}{1 + 2|\zeta|k + k^2}\right)^{\frac{n}{2}} \max_{|z|=1} |P(z) - \alpha m|.$$

Let z_0 on |z| = 1, be such that

(2.6)
$$\max_{|z|=1} |P(z) - \alpha m| = |P(z_0) - \alpha m|,$$

and let z_1 on |z| = R, be such that $|P(z_1)| = \max_{|z|=R} |P(z)|$. Then the inequalities (2.5) and (2.6) together imply

(2.7)
$$\max_{|z|=R} |P(z) - \alpha m| \le \left(\frac{R^2 + 2|\zeta|Rk + k^2}{1 + 2|\eta|k + k^2}\right)^{\frac{\mu}{2}} |P(z_0) - \alpha m|,$$

for every α with $|\alpha| \leq 1$ and $1 \leq R \leq k^2.$ Inequality (2.7) in particular gives

(2.8)
$$|P(z_1) - \alpha m| \leq \left(\frac{R^2 + 2|\zeta|Rk + k^2}{1 + 2|\zeta|k + k^2}\right)^{\frac{n}{2}} |P(z_0) - \alpha m|_{\frac{n}{2}}$$

for every α with $|\alpha| \leq 1$ and $1 \leq R \leq k^2$. If we choose the argument of α , so that

$$|P(z_0) - \alpha m| = |P(z_0)| - |\alpha|m,$$

we get from (2.8) that for $1 \le R \le k^2$,

(2.9)
$$|P(z_1)| - |\alpha|m \le \left(\frac{R^2 + 2|\zeta|Rk + k^2}{1 + 2|\zeta|k + k^2}\right)^{\frac{n}{2}} \left(|P(z_0)| - |\alpha|m\right).$$

The fact that the quantity $(|P(z_0)| - |\alpha|m)$ in the right hand side of (2.9) is positive follows from (2.2) and (2.3). This gives

$$M(P,R) \le \left(\frac{R^2 + 2|\zeta|Rk + k^2}{1 + 2|\zeta|k + k^2}\right)^{\frac{n}{2}} |P(z_0)| \\ - \left\{ \left(\frac{R^2 + 2|\zeta|Rk + k^2}{1 + 2|\zeta|k + k^2}\right)^{\frac{n}{2}} - 1 \right\} |\alpha|m$$

which is equivalent to (2.1) and this completes the proof of Lemma 4. \Box

The following two lemmas are due to Jain [4].

Lemma 5. Let P(z) be a polynomial of degree n having all its zeros in $|z| \leq 1$. If T(z) is a polynomial of degree at most n such that

$$|T(z)| \le |P(z)|, \text{ for } |z| = 1,$$

then for $0 \leq s < n$,

 $|T^{(s)}(z)| \le |P^{(s)}(z)|, \text{ for } |z| \ge 1.$

Lemma 6. If P(z) is a polynomial of degree at most n, then for $0 \le s < n$,

$$\left|P^{(s)}(z)\right| + \left|Q^{(s)}(z)\right| \le \left\{ \left|\frac{d^{s}}{dz^{s}}(1)\right| + \left|\frac{d^{s}}{dz^{s}}(z^{n})\right| \right\} M(P,1), \text{ for } |z| \ge 1,$$

where $Q(z) = z^n \overline{P(\frac{1}{\overline{z}})}$.

3. Proof of Theorem.

Proof of Theorem 1. Since $P(z) \neq 0$ in $|z| < k, k \ge 1$, the polynomial T(z) = P(kz) has no zeros in |z| < 1. Let $H(z) = z^n \overline{T(\frac{1}{\overline{z}})}$, then

$$|T(z)| \le |H(z)|, \text{ for } |z| = 1,$$

and H(z) has all its zeros in $|z| \leq 1$. Therefore, applying Lemma 5 to the polynomials T(z) and H(z), we get for $0 \leq s < n$ and $r \geq 1$,

(3.1)
$$\left|T^{(s)}(re^{i\theta})\right| \le \left|H^{(s)}(re^{i\theta})\right|, \ 0 \le \theta < 2\pi.$$

Also, by Lemma 6, we have for $r \ge 1$ and $0 \le s < n$,

$$\left|T^{(s)}(re^{i\theta})\right| + \left|H^{(s)}(re^{i\theta})\right| \le \left\{\frac{d^s}{dr^s}(r^n+1)\right\} M(T,1), \ 0 \le \theta < 2\pi,$$

which on combining with (3.1) gives

$$|T^{(s)}(re^{i\theta})| \le \frac{1}{2} \left\{ \frac{d^s}{dr^s}(r^n+1) \right\} M(T,1),$$

which further implies

(3.2)
$$\left|P^{(s)}(kre^{i\theta})\right| \leq \frac{1}{2k^s} \left\{ \frac{d^s}{dr^s}(r^n+1) \right\} M(P,k)$$

The above inequality (3.2) in conjunction with Lemma 4 gives

(3.3)
$$|P^{(s)}(kre^{i\theta})| \leq \frac{1}{2k^s} \left\{ \frac{d^s}{dr^s} (r^n + 1) \right\} \left[\left(\frac{k^2 + 2|\zeta|k^2 + k^2}{1 + 2|\zeta|k + k^2} \right)^{\frac{n}{2}} M(P, 1) - \left\{ \left(\frac{k^2 + 2|\zeta|k^2 + k^2}{1 + 2|\zeta|k + k^2} \right)^{\frac{n}{2}} - 1 \right\} tm \right].$$

Now taking $r = \frac{R}{k} \ge 1$ in (3.3), we get

$$\begin{split} \left| P^{(s)}(Re^{i\theta}) \right| &\leq \frac{1}{2} \Big\{ \frac{d^s}{dR^s} (R^n + k^n) \Big\} \left[\left(\frac{2+2|\zeta|}{1+2|\zeta|k+k^2} \right)^{\frac{n}{2}} M(P,1) \\ &- \Big\{ \left(\frac{2+2|\zeta|}{1+2|\zeta|k+k^2} \right)^{\frac{n}{2}} - \frac{1}{k^n} \Big\} tm \Big], \end{split}$$

which is equivalent to (1.4).

Remark 2. From Lemma 3, we have

$$\frac{k|a_1|}{n(|a_0| - tm)} \le 1,$$

and since, as mentioned earlier $\left(\frac{R^2+2Rkx+k^2}{1+2kx+k^2}\right)$ is an increasing function of x in [0, 1], it follows from (2.7) that for every α with $|\alpha| \leq 1$ and $1 \leq R \leq k^2$,

(3.4)
$$\max_{|z|=R} |P(z) - \alpha m| \le \left(\frac{R+k}{1+k}\right)^n \max_{|z|=1} |P(z) - \alpha m|.$$

Now proceeding similarly as in the proof of Lemma 4, it follows from (3.4) that

(3.5)
$$M(P,R) \le \left(\frac{R+k}{1+k}\right)^n M(P,1) - \left\{ \left(\frac{R+k}{1+k}\right)^n - 1 \right\} tm,$$

where $0 \le t \le 1$ and $1 \le R \le k^2$. If we use inequality (3.5) (for t = 1) instead of Lemma 4 in the proof of Theorem 1, we get the following refinement of Theorem A.

Corollary 2. If $P(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu} \neq 0$ in $|z| < k, k \ge 1$ and $m = \min_{|z|=k} |P(z)|$, then for $0 \le s < n$,

$$M(P^{(s)}, R) \leq \frac{1}{2} \left\{ \frac{d^s}{dR^s} (R^n + k^n) \right\} \left[\left(\frac{2}{1+k}\right)^n M(P, 1) - \left\{ \left(\frac{2}{1+k}\right)^n - \frac{1}{k^n} \right\} m \right], \text{ for } R \geq k.$$

Acknowledgement. The author is extremely grateful to the anonymous referee for valuable suggestions regarding the paper.

References

- Ankeny, N. C., Rivlin, T. J., On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849–852.
- [2] Aziz, A., Aliya, Q., Growth of polynomials not vanishing in a disk of prescribed radius, Int. J. Pure Appl. Math. 41 (2007), 713–734.

- [3] Govil, N. K., Qazi, M. A., Rahman, Q. I., Inequalities describing the growth of polynomials not vanishing in a disk of prescribed radius, Math. Ineq. Appl. 6 (2003), 453–467.
- [4] Jain, V. K., A generalization of Ankeny and Rivlin's result on the maximum modulus of polynomials not vanishing in the interior of the unit circle, Turk. J. Math. 31 (2007), 89–94.
- [5] Milovanovic, G. V., Mitrinovic, D. S., Rassias, Th. M., Topics in polynomials, Extremal problems, Inequalities, Zeros, World scientific, Singapore, 1944.

Abdullah Mir Department of Mathematics University of Kashmir Srinagar, 190006 India e-mail:drabmir@yahoo.com

Received January 23, 2019