ANNALES
 UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA
 LUBLIN - POLONIA

ABDULLAH MIR

Growth of a polynomial not vanishing in a disk

Abstract

This paper deals with the problem of finding some upper bound estimates for the maximum modulus of the derivative and higher order derivatives of a complex polynomial on a disk under the assumption that the polynomial has no zeros in another disk. The estimates obtained strengthen the well-known inequality of Ankeny and Rivlin about polynomials.

1. Introduction and statement of results. For an arbitrary entire function $f(z)$, let $M(f, r)=\max _{|z|=r}|f(z)|$. For a polynomial $P(z)$ of degree n, it is known that

$$
\begin{equation*}
M(P, R) \leq R^{n} M(P, 1), R \geq 1 \tag{1.1}
\end{equation*}
$$

Inequality (1.1) is a simple consequence of Maximum Modulus Principle (see [5]). It was shown by Ankeny and Rivlin [1] that if $P(z) \neq 0$ in $|z|<1$, then (1.1) can be replaced by

$$
\begin{equation*}
M(P, R) \leq \frac{R^{n}+1}{2} M(P, 1), \quad R \geq 1 \tag{1.2}
\end{equation*}
$$

Over the last 40 years many different authors produced a large number of generalizations and refinements of inequality (1.2) by introducing coefficients of the polynomial, using higher order derivatives, by involving polar derivative of polynomials etc.

[^0]Recently, Jain [4] obtained a generalization of (1.2) by considering polynomials with no zeros in $|z|<k, k \geq 1$ and has simultaneously taken into consideration the s th derivative $(0 \leq s<n)$ of the polynomial, instead of the polynomial itself. More precisely, Jain proved
Theorem A. If $P(z)$ is a polynomial of degree n with no zeros in $|z|<k$, $k \geq 1$, then for $0 \leq s<n$,

$$
\begin{equation*}
M\left(P^{(s)}, R\right) \leq \frac{1}{2}\left\{\frac{d^{s}}{d R^{s}}\left(R^{n}+k^{n}\right)\right\}\left(\frac{2}{1+k}\right)^{n} M(P, 1), \text { for } R \geq k \tag{1.3}
\end{equation*}
$$

Equality holds in (1.3) (with $s=0$ and $k=1$) for $P(z)=z^{n}+1$.
In this paper, we prove the following sharpening of Theorem A. Our theorem includes as special cases several refinements and generalizations of (1.2) as well.

Theorem 1. Let $P(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree n having no zeros in $|z|<k, k \geq 1$. If $|\zeta|=\frac{k\left|a_{1}\right|}{n\left(\left|a_{0}\right|-t m\right)}$ with $0 \leq t \leq 1$ and $m=$ $\min _{|z|=k}|P(z)|$, then for $0 \leq s<n$ and $R \geq k$,

$$
\begin{align*}
& M\left(P^{(s)}, R\right) \leq \frac{1}{2}\left\{\frac{d^{s}}{d R^{s}}\left(R^{n}+k^{n}\right)\right\}\left[\left(\frac{2+2|\zeta|}{1+2|\zeta| k+k^{2}}\right)^{\frac{n}{2}} M(P, 1)\right. \tag{1.4}\\
&\left.-\left\{\left(\frac{2+2|\zeta|}{1+2|\zeta| k+k^{2}}\right)^{\frac{n}{2}}-\frac{1}{k^{n}}\right\} t m\right]
\end{align*}
$$

Equality holds in (1.4) (with $s=0$ and $k=1$) for $P(z)=z^{n}+1$.
Taking $t=0$ in Theorem 1, we get the following result.
Corollary 1. Let $P(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ be a polynomial of degree n having no zeros in $|z|<k, k \geq 1$ and let $|\lambda|=\left|\frac{k a_{1}}{n a_{0}}\right|$. Then for $0 \leq s<n$ and $R \geq k$,

$$
\begin{equation*}
M\left(P^{(s)}, R\right) \leq \frac{1}{2}\left\{\frac{d^{s}}{d R^{s}}\left(R^{n}+k^{n}\right)\right\}\left(\frac{2+2|\lambda|}{1+2|\lambda| k+k^{2}}\right)^{\frac{n}{2}} M(P, 1) . \tag{1.5}
\end{equation*}
$$

Equality holds in (1.5) (with $s=0$ and $k=1$) for $P(z)=z^{n}+1$.
Remark 1. Since if $P(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu} \neq 0$ in $|z|<k, k \geq 1$, then from
Lemma 3, we have $|\lambda|=\left|\frac{k a_{1}}{n a_{0}}\right| \leq 1$. We show that in general

$$
\left(\frac{2+2|\lambda|}{1+2|\lambda| k+k^{2}}\right)^{\frac{n}{2}} \leq\left(\frac{2}{1+k}\right)^{n}
$$

which is equivalent to showing

$$
\left(\frac{2+2|\lambda|}{1+2|\lambda| k+k^{2}}\right) \leq\left(\frac{2}{1+k}\right)^{2},
$$

that is,

$$
(1+|\lambda|)(1+k)^{2} \leq 2\left(1+2|\lambda| k+k^{2}\right)
$$

which is equivalent to

$$
(|\lambda|-1)(k-1)^{2} \leq 0,
$$

which clearly holds as $|\lambda| \leq 1$. This shows that (1.5) is a refinement of (1.3).
2. Lemmas. For the proof of Theorem 1, we need the following lemmas. The first lemma is due to Govil, Qazi and Rahman [3].
Lemma 1. Let $P(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu} \neq 0$ for $|z|<k$, where $k \geq 1$ and let $\lambda=\frac{k a_{1}}{n a_{0}}$. Then for $1 \leq R \leq k^{2}$,

$$
M(P, R) \leq\left(\frac{R^{2}+2|\lambda| R k+k^{2}}{1+2|\lambda| k+k^{2}}\right)^{\frac{n}{2}} M(P, 1)
$$

The following lemma is due to Aziz and Aliya [2].
Lemma 2. Let $P(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}, 1 \leq \mu \leq n$ be a polynomial of degree n such that $P(z) \neq 0$ in $|z|<k, k \geq 1$. Then for $R>1,0 \leq t \leq 1$ and $m=\min _{|z|=k}|P(z)|$,

$$
\left(\frac{R^{\mu}-1}{R^{n}-1}\right) \frac{\left|a_{\mu}\right| k^{\mu}}{\left|a_{0}\right|-t m} \leq 1
$$

From Lemma 2 , we easily get the following for $\mu=1$.
Lemma 3. Let $P(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu} \neq 0$ in $|z|<k, k \geq 1$ and $m=$ $\min _{|z|=k}|P(z)|$. Then for $0 \leq t \leq 1$,

$$
\frac{k\left|a_{1}\right|}{n\left(\left|a_{0}\right|-t m\right)} \leq 1
$$

Lemma 4. Let $P(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu} \neq 0$ in $|z|<k, k \geq 1$ and let $|\zeta|=$ $\frac{k\left|a_{1}\right|}{n\left(\left|a_{0}\right|-t m\right)}$, where $0 \leq t \leq 1$ and $m=\min _{|z|=k}|P(z)|$. Then for $1 \leq R \leq k^{2}$, we have

$$
\begin{align*}
M(P, R) \leq(& \left.\frac{R^{2}+2|\zeta| R k+k^{2}}{1+2|\zeta| k+k^{2}}\right)^{\frac{n}{2}} M(P, 1) \tag{2.1}\\
& -\left\{\left(\frac{R^{2}+2|\zeta| R k+k^{2}}{1+2|\zeta| k+k^{2}}\right)^{\frac{n}{2}}-1\right\} t m .
\end{align*}
$$

Proof of Lemma 4. Since $P(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ has all its zeros in $|z| \geq k \geq$ 1 and $m=\min _{|z|=k}|P(z)|$, therefore, $m \leq|P(z)|$ for $|z|=k$. We first show that for every complex α with $|\alpha| \leq 1$, the polynomial $F(z)=P(z)-\alpha m$ does not vanish in $|z|<k, k \geq 1$. This result is clear if $P(z)$ has a zero on
$|z|=k$ for then $m=0$ and hence $F(z)=P(z)$. In case $P(z)$ has no zeros on $|z|=k$, that is, all the zeros of $P(z)$ lie in $|z|>k, k \geq 1$, then clearly $m>0$ so that $\frac{m}{P(z)}$ is analytic in $|z| \leq k$ and

$$
\begin{equation*}
\left|\frac{m}{P(z)}\right| \leq 1, \text { for }|z|=k \tag{2.2}
\end{equation*}
$$

Since $\frac{m}{P(z)}$ is not a constant, by the Maximum Modulus Principle, it follows that

$$
\begin{equation*}
m<|P(z)|, \text { for }|z|<k \tag{2.3}
\end{equation*}
$$

Now, if $F(z)=P(z)-\alpha m$ has a zero in $|z|<k, k \geq 1$, say at $z=z_{1}$ with $\left|z_{1}\right|<k$, then

$$
F\left(z_{1}\right)=P\left(z_{1}\right)-\alpha m=0
$$

This gives,

$$
\left|P\left(z_{1}\right)\right|=|\alpha| m \leq m
$$

where $\left|z_{1}\right|<k$, which contradicts (2.3).
Hence, we conclude that the polynomial $F(z)$ does not vanish in $|z|<k$, $k \geq 1$. Applying Lemma 1 to the polynomial

$$
F(z)=P(z)-\alpha m=\left(a_{0}-\alpha m\right)+\sum_{j=1}^{n} a_{j} z^{j}
$$

we get for every complex α with $|\alpha| \leq 1$ and $1 \leq R \leq k^{2}$,

$$
\begin{equation*}
\max _{|z|=R}|P(z)-\alpha m| \leq\left(\frac{R^{2}+2|\eta| R k+k^{2}}{1+2|\eta| k+k^{2}}\right)^{\frac{n}{2}} \max _{|z|=1}|P(z)-\alpha m|, \tag{2.4}
\end{equation*}
$$

where $\eta=\frac{k a_{1}}{n\left(a_{0}-\alpha m\right)}$.
Since for every α with $|\alpha| \leq 1$, we have

$$
\left|a_{0}-\alpha m\right| \geq\left|a_{0}\right|-|\alpha| m
$$

and by (2.3)

$$
|\alpha| m \leq m<|P(0)|=\left|a_{0}\right|,
$$

we get

$$
|\eta|=\left|\frac{k a_{1}}{n\left(a_{0}-\alpha m\right)}\right| \leq \frac{k\left|a_{1}\right|}{n\left(\left|a_{0}\right|-|\alpha| m\right)}=|\zeta| .
$$

Also, by Lemma 3, we have $\frac{k\left|a_{1}\right|}{n\left(\left|a_{0}\right|-|\alpha| m\right)} \leq 1$ and since $\left(\frac{R^{2}+2 R k x+k^{2}}{1+2 k x+k^{2}}\right)$ is an increasing function of x in $[0,1]$, it follows from (2.4) that for every α with
$|\alpha| \leq 1$ and $1 \leq R \leq k^{2}$,

$$
\begin{equation*}
\max _{|z|=R}|P(z)-\alpha m| \leq\left(\frac{R^{2}+2|\zeta| R k+k^{2}}{1+2|\zeta| k+k^{2}}\right)^{\frac{n}{2}} \max _{|z|=1}|P(z)-\alpha m| . \tag{2.5}
\end{equation*}
$$

Let z_{0} on $|z|=1$, be such that

$$
\begin{equation*}
\max _{|z|=1}|P(z)-\alpha m|=\left|P\left(z_{0}\right)-\alpha m\right|, \tag{2.6}
\end{equation*}
$$

and let z_{1} on $|z|=R$, be such that $\left|P\left(z_{1}\right)\right|=\max _{|z|=R}|P(z)|$. Then the inequalities (2.5) and (2.6) together imply

$$
\begin{equation*}
\max _{|z|=R}|P(z)-\alpha m| \leq\left(\frac{R^{2}+2|\zeta| R k+k^{2}}{1+2|\eta| k+k^{2}}\right)^{\frac{n}{2}}\left|P\left(z_{0}\right)-\alpha m\right|, \tag{2.7}
\end{equation*}
$$

for every α with $|\alpha| \leq 1$ and $1 \leq R \leq k^{2}$. Inequality (2.7) in particular gives

$$
\begin{equation*}
\left|P\left(z_{1}\right)-\alpha m\right| \leq\left(\frac{R^{2}+2|\zeta| R k+k^{2}}{1+2|\zeta| k+k^{2}}\right)^{\frac{n}{2}}\left|P\left(z_{0}\right)-\alpha m\right|, \tag{2.8}
\end{equation*}
$$

for every α with $|\alpha| \leq 1$ and $1 \leq R \leq k^{2}$. If we choose the argument of α, so that

$$
\left|P\left(z_{0}\right)-\alpha m\right|=\left|P\left(z_{0}\right)\right|-|\alpha| m,
$$

we get from (2.8) that for $1 \leq R \leq k^{2}$,

$$
\begin{equation*}
\left|P\left(z_{1}\right)\right|-|\alpha| m \leq\left(\frac{R^{2}+2|\zeta| R k+k^{2}}{1+2|\zeta| k+k^{2}}\right)^{\frac{n}{2}}\left(\left|P\left(z_{0}\right)\right|-|\alpha| m\right) . \tag{2.9}
\end{equation*}
$$

The fact that the quantity $\left(\left|P\left(z_{0}\right)\right|-|\alpha| m\right)$ in the right hand side of (2.9) is positive follows from (2.2) and (2.3). This gives

$$
\begin{aligned}
M(P, R) \leq & \left(\frac{R^{2}+2|\zeta| R k+k^{2}}{1+2|\zeta| k+k^{2}}\right)^{\frac{n}{2}}\left|P\left(z_{0}\right)\right| \\
& -\left\{\left(\frac{R^{2}+2|\zeta| R k+k^{2}}{1+2|\zeta| k+k^{2}}\right)^{\frac{n}{2}}-1\right\}|\alpha| m
\end{aligned}
$$

which is equivalent to (2.1) and this completes the proof of Lemma 4.
The following two lemmas are due to Jain [4].
Lemma 5. Let $P(z)$ be a polynomial of degree n having all its zeros in $|z| \leq 1$. If $T(z)$ is a polynomial of degree at most n such that

$$
|T(z)| \leq|P(z)|, \text { for }|z|=1,
$$

then for $0 \leq s<n$,

$$
\left|T^{(s)}(z)\right| \leq\left|P^{(s)}(z)\right|, \text { for }|z| \geq 1
$$

Lemma 6. If $P(z)$ is a polynomial of degree at most n, then for $0 \leq s<n$,

$$
\left|P^{(s)}(z)\right|+\left|Q^{(s)}(z)\right| \leq\left\{\left|\frac{d^{s}}{d z^{s}}(1)\right|+\left|\frac{d^{s}}{d z^{s}}\left(z^{n}\right)\right|\right\} M(P, 1), \text { for }|z| \geq 1,
$$

where $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$.

3. Proof of Theorem.

Proof of Theorem 1. Since $P(z) \neq 0$ in $|z|<k, k \geq 1$, the polynomial $T(z)=P(k z)$ has no zeros in $|z|<1$. Let $H(z)=z^{n} \overline{T\left(\frac{1}{\bar{z}}\right)}$, then

$$
|T(z)| \leq|H(z)|, \text { for }|z|=1,
$$

and $H(z)$ has all its zeros in $|z| \leq 1$. Therefore, applying Lemma 5 to the polynomials $T(z)$ and $H(z)$, we get for $0 \leq s<n$ and $r \geq 1$,

$$
\begin{equation*}
\left|T^{(s)}\left(r e^{i \theta}\right)\right| \leq\left|H^{(s)}\left(r e^{i \theta}\right)\right|, 0 \leq \theta<2 \pi \tag{3.1}
\end{equation*}
$$

Also, by Lemma 6 , we have for $r \geq 1$ and $0 \leq s<n$,

$$
\left|T^{(s)}\left(r e^{i \theta}\right)\right|+\left|H^{(s)}\left(r e^{i \theta}\right)\right| \leq\left\{\frac{d^{s}}{d r^{s}}\left(r^{n}+1\right)\right\} M(T, 1), 0 \leq \theta<2 \pi,
$$

which on combining with (3.1) gives

$$
\left|T^{(s)}\left(r e^{i \theta}\right)\right| \leq \frac{1}{2}\left\{\frac{d^{s}}{d r^{s}}\left(r^{n}+1\right)\right\} M(T, 1),
$$

which further implies

$$
\begin{equation*}
\left|P^{(s)}\left(k r e^{i \theta}\right)\right| \leq \frac{1}{2 k^{s}}\left\{\frac{d^{s}}{d r^{s}}\left(r^{n}+1\right)\right\} M(P, k) . \tag{3.2}
\end{equation*}
$$

The above inequality (3.2) in conjunction with Lemma 4 gives

$$
\begin{align*}
\left|P^{(s)}\left(k r e^{i \theta}\right)\right| \leq \frac{1}{2 k^{s}} & \left\{\frac{d^{s}}{d r^{s}}\left(r^{n}+1\right)\right\}\left[\left(\frac{k^{2}+2|\zeta| k^{2}+k^{2}}{1+2|\zeta| k+k^{2}}\right)^{\frac{n}{2}} M(P, 1)\right. \\
& \left.-\left\{\left(\frac{k^{2}+2|\zeta| k^{2}+k^{2}}{1+2|\zeta| k+k^{2}}\right)^{\frac{n}{2}}-1\right\} t m\right] . \tag{3.3}
\end{align*}
$$

Now taking $r=\frac{R}{k} \geq 1$ in (3.3), we get

$$
\begin{aligned}
&\left|P^{(s)}\left(R^{i \theta}\right)\right| \leq \frac{1}{2}\left\{\frac{d^{s}}{d R^{s}}\left(R^{n}+k^{n}\right)\right\}\left[\left(\frac{2+2|\zeta|}{1+2|\zeta| k+k^{2}}\right)^{\frac{n}{2}} M(P, 1)\right. \\
&\left.-\left\{\left(\frac{2+2|\zeta|}{1+2|\zeta| k+k^{2}}\right)^{\frac{n}{2}}-\frac{1}{k^{n}}\right\} t m\right]
\end{aligned}
$$

which is equivalent to (1.4).
Remark 2. From Lemma 3, we have

$$
\frac{k\left|a_{1}\right|}{n\left(\left|a_{0}\right|-t m\right)} \leq 1
$$

and since, as mentioned earlier $\left(\frac{R^{2}+2 R k x+k^{2}}{1+2 k x+k^{2}}\right)$ is an increasing function of x in $[0,1]$, it follows from (2.7) that for every α with $|\alpha| \leq 1$ and $1 \leq R \leq k^{2}$,

$$
\begin{equation*}
\max _{|z|=R}|P(z)-\alpha m| \leq\left(\frac{R+k}{1+k}\right)^{n} \max _{|z|=1}|P(z)-\alpha m| \tag{3.4}
\end{equation*}
$$

Now proceeding similarly as in the proof of Lemma 4, it follows from (3.4) that

$$
\begin{equation*}
M(P, R) \leq\left(\frac{R+k}{1+k}\right)^{n} M(P, 1)-\left\{\left(\frac{R+k}{1+k}\right)^{n}-1\right\} t m \tag{3.5}
\end{equation*}
$$

where $0 \leq t \leq 1$ and $1 \leq R \leq k^{2}$. If we use inequality (3.5) (for $t=$ 1) instead of Lemma 4 in the proof of Theorem 1 , we get the following refinement of Theorem A.
Corollary 2. If $P(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu} \neq 0$ in $|z|<k, k \geq 1$ and $m=$ $\min _{|z|=k}|P(z)|$, then for $0 \leq s<n$,

$$
\begin{aligned}
M\left(P^{(s)}, R\right) \leq \frac{1}{2}\left\{\frac{d^{s}}{d R^{s}}\left(R^{n}+k^{n}\right)\right\} & {\left[\left(\frac{2}{1+k}\right)^{n} M(P, 1)\right.} \\
& \left.-\left\{\left(\frac{2}{1+k}\right)^{n}-\frac{1}{k^{n}}\right\} m\right], \text { for } R \geq k
\end{aligned}
$$

Acknowledgement. The author is extremely grateful to the anonymous referee for valuable suggestions regarding the paper.

References

[1] Ankeny, N. C., Rivlin, T. J., On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849-852.
[2] Aziz, A., Aliya, Q., Growth of polynomials not vanishing in a disk of prescribed radius, Int. J. Pure Appl. Math. 41 (2007), 713-734.
[3] Govil, N. K., Qazi, M. A., Rahman, Q. I., Inequalities describing the growth of polynomials not vanishing in a disk of prescribed radius, Math. Ineq. Appl. 6 (2003), 453-467.
[4] Jain, V. K., A generalization of Ankeny and Rivlin's result on the maximum modulus of polynomials not vanishing in the interior of the unit circle, Turk. J. Math. 31 (2007), 89-94.
[5] Milovanovic, G. V., Mitrinovic, D. S., Rassias, Th. M., Topics in polynomials, Extremal problems, Inequalities, Zeros, World scientific, Singapore, 1944.

Abdullah Mir
Department of Mathematics
University of Kashmir
Srinagar, 190006
India
e-mail: drabmir@yahoo.com
Received January 23, 2019

[^0]: 2010 Mathematics Subject Classification. 30A10, 30C10, 30C155.
 Key words and phrases. Polynomial, maximum modulus principle, zeros.

