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Growth of a polynomial
not vanishing in a disk

Abstract. This paper deals with the problem of finding some upper bound
estimates for the maximum modulus of the derivative and higher order deriva-
tives of a complex polynomial on a disk under the assumption that the poly-
nomial has no zeros in another disk. The estimates obtained strengthen the
well-known inequality of Ankeny and Rivlin about polynomials.

1. Introduction and statement of results. For an arbitrary entire func-
tion f(z), let M(f, r) = max|z|=r |f(z)|. For a polynomial P (z) of degree n,
it is known that

M(P,R) ≤ RnM(P, 1), R ≥ 1.(1.1)

Inequality (1.1) is a simple consequence of Maximum Modulus Principle
(see [5]). It was shown by Ankeny and Rivlin [1] that if P (z) 6= 0 in |z| < 1,
then (1.1) can be replaced by

M(P,R) ≤ Rn + 1

2
M(P, 1), R ≥ 1.(1.2)

Over the last 40 years many different authors produced a large number
of generalizations and refinements of inequality (1.2) by introducing coeffi-
cients of the polynomial, using higher order derivatives, by involving polar
derivative of polynomials etc.
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Recently, Jain [4] obtained a generalization of (1.2) by considering poly-
nomials with no zeros in |z| < k, k ≥ 1 and has simultaneously taken into
consideration the sth derivative (0 ≤ s < n) of the polynomial, instead of
the polynomial itself. More precisely, Jain proved

Theorem A. If P (z) is a polynomial of degree n with no zeros in |z| < k,
k ≥ 1, then for 0 ≤ s < n,

M
(
P (s), R

)
≤ 1

2

{ ds

dRs
(Rn + kn)

}( 2

1 + k

)n
M(P, 1), for R ≥ k.(1.3)

Equality holds in (1.3) (with s = 0 and k = 1) for P (z) = zn + 1.

In this paper, we prove the following sharpening of Theorem A. Our
theorem includes as special cases several refinements and generalizations of
(1.2) as well.

Theorem 1. Let P (z) =
∑n

ν=0 aνz
ν is a polynomial of degree n having

no zeros in |z| < k, k ≥ 1. If |ζ| = k|a1|
n(|a0|−tm) with 0 ≤ t ≤ 1 and m =

min|z|=k |P (z)|, then for 0 ≤ s < n and R ≥ k,

(1.4)

M
(
P (s), R

)
≤ 1

2

{ ds

dRs
(Rn + kn)

}[( 2 + 2|ζ|
1 + 2|ζ|k + k2

)n
2

M(P, 1)

−

{(
2 + 2|ζ|

1 + 2|ζ|k + k2

)n
2

− 1

kn

}
tm

]
.

Equality holds in (1.4) (with s = 0 and k = 1) for P (z) = zn + 1.

Taking t = 0 in Theorem 1, we get the following result.

Corollary 1. Let P (z) =
∑n

ν=0 aνz
ν be a polynomial of degree n having no

zeros in |z| < k, k ≥ 1 and let |λ| =
∣∣ ka1
na0

∣∣. Then for 0 ≤ s < n and R ≥ k,

M
(
P (s), R

)
≤ 1

2

{ ds

dRs
(Rn + kn)

}( 2 + 2|λ|
1 + 2|λ|k + k2

)n
2

M(P, 1).(1.5)

Equality holds in (1.5) (with s = 0 and k = 1) for P (z) = zn + 1.

Remark 1. Since if P (z) =
∑n

ν=0 aνz
ν 6= 0 in |z| < k, k ≥ 1, then from

Lemma 3, we have |λ| =
∣∣∣ ka1na0

∣∣∣ ≤ 1. We show that in general(
2 + 2|λ|

1 + 2|λ|k + k2

)n
2

≤
( 2

1 + k

)n
,

which is equivalent to showing(
2 + 2|λ|

1 + 2|λ|k + k2

)
≤
( 2

1 + k

)2
,
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that is,

(1 + |λ|)(1 + k)2 ≤ 2(1 + 2|λ|k + k2),

which is equivalent to

(|λ| − 1)(k − 1)2 ≤ 0,

which clearly holds as |λ| ≤ 1. This shows that (1.5) is a refinement of (1.3).

2. Lemmas. For the proof of Theorem 1, we need the following lemmas.
The first lemma is due to Govil, Qazi and Rahman [3].

Lemma 1. Let P (z) =
∑n

ν=0 aνz
ν 6= 0 for |z| < k, where k ≥ 1 and let

λ = ka1
na0
. Then for 1 ≤ R ≤ k2,

M(P,R) ≤

(
R2 + 2|λ|Rk + k2

1 + 2|λ|k + k2

)n
2

M(P, 1).

The following lemma is due to Aziz and Aliya [2].

Lemma 2. Let P (z) = a0+
∑n

j=µ ajz
j, 1 ≤ µ ≤ n be a polynomial of degree

n such that P (z) 6= 0 in |z| < k, k ≥ 1. Then for R > 1, 0 ≤ t ≤ 1 and
m = min|z|=k |P (z)|, (

Rµ − 1

Rn − 1

)
|aµ|kµ

|a0| − tm
≤ 1.

From Lemma 2, we easily get the following for µ = 1.

Lemma 3. Let P (z) =
∑n

ν=0 aνz
ν 6= 0 in |z| < k, k ≥ 1 and m =

min|z|=k |P (z)|. Then for 0 ≤ t ≤ 1,

k|a1|
n(|a0| − tm)

≤ 1.

Lemma 4. Let P (z) =
∑n

ν=0 aνz
ν 6= 0 in |z| < k, k ≥ 1 and let |ζ| =

k|a1|
n(|a0|−tm) , where 0 ≤ t ≤ 1 and m = min|z|=k |P (z)|. Then for 1 ≤ R ≤ k2,
we have

(2.1)

M(P,R) ≤

(
R2 + 2|ζ|Rk + k2

1 + 2|ζ|k + k2

)n
2

M(P, 1)

−

{(
R2 + 2|ζ|Rk + k2

1 + 2|ζ|k + k2

)n
2

− 1

}
tm.

Proof of Lemma 4. Since P (z) =
∑n

ν=0 aνz
ν has all its zeros in |z| ≥ k ≥

1 and m = min|z|=k |P (z)|, therefore, m ≤ |P (z)| for |z| = k. We first show
that for every complex α with |α| ≤ 1, the polynomial F (z) = P (z) − αm
does not vanish in |z| < k, k ≥ 1. This result is clear if P (z) has a zero on
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|z| = k for then m = 0 and hence F (z) = P (z). In case P (z) has no zeros
on |z| = k, that is, all the zeros of P (z) lie in |z| > k, k ≥ 1, then clearly
m > 0 so that m

P (z) is analytic in |z| ≤ k and∣∣∣ m

P (z)

∣∣∣ ≤ 1, for |z| = k.(2.2)

Since m
P (z) is not a constant, by the Maximum Modulus Principle, it follows

that

m < |P (z)|, for |z| < k.(2.3)

Now, if F (z) = P (z)− αm has a zero in |z| < k, k ≥ 1, say at z = z1 with
|z1| < k, then

F (z1) = P (z1)− αm = 0.

This gives,

|P (z1)| = |α|m ≤ m,

where |z1| < k, which contradicts (2.3).
Hence, we conclude that the polynomial F (z) does not vanish in |z| < k,

k ≥ 1. Applying Lemma 1 to the polynomial

F (z) = P (z)− αm = (a0 − αm) +

n∑
j=1

ajz
j ,

we get for every complex α with |α| ≤ 1 and 1 ≤ R ≤ k2,

max
|z|=R

∣∣P (z)− αm∣∣ ≤ (R2 + 2|η|Rk + k2

1 + 2|η|k + k2

)n
2

max
|z|=1

∣∣P (z)− αm∣∣,(2.4)

where η = ka1
n(a0−αm) .

Since for every α with |α| ≤ 1, we have

|a0 − αm| ≥ |a0| − |α|m,

and by (2.3)

|α|m ≤ m < |P (0)| = |a0|,

we get

|η| =
∣∣∣ ka1
n(a0 − αm)

∣∣∣ ≤ k|a1|
n(|a0| − |α|m)

= |ζ|.

Also, by Lemma 3, we have k|a1|
n(|a0|−|α|m) ≤ 1 and since

(
R2+2Rkx+k2

1+2kx+k2

)
is an

increasing function of x in [0, 1], it follows from (2.4) that for every α with
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|α| ≤ 1 and 1 ≤ R ≤ k2,

max
|z|=R

∣∣P (z)− αm∣∣ ≤ (R2 + 2|ζ|Rk + k2

1 + 2|ζ|k + k2

)n
2

max
|z|=1

∣∣P (z)− αm∣∣.(2.5)

Let z0 on |z| = 1, be such that

max
|z|=1

∣∣P (z)− αm∣∣ = ∣∣P (z0)− αm∣∣,(2.6)

and let z1 on |z| = R, be such that |P (z1)| = max|z|=R|P (z)|. Then the
inequalities (2.5) and (2.6) together imply

max
|z|=R

∣∣P (z)− αm∣∣ ≤ (R2 + 2|ζ|Rk + k2

1 + 2|η|k + k2

)n
2 ∣∣P (z0)− αm∣∣,(2.7)

for every α with |α| ≤ 1 and 1 ≤ R ≤ k2. Inequality (2.7) in particular
gives

∣∣P (z1)− αm∣∣ ≤ (R2 + 2|ζ|Rk + k2

1 + 2|ζ|k + k2

)n
2 ∣∣P (z0)− αm∣∣,(2.8)

for every α with |α| ≤ 1 and 1 ≤ R ≤ k2. If we choose the argument of α,
so that

|P (z0)− αm| = |P (z0)| − |α|m,

we get from (2.8) that for 1 ≤ R ≤ k2,

|P (z1)| − |α|m ≤

(
R2 + 2|ζ|Rk + k2

1 + 2|ζ|k + k2

)n
2 (
|P (z0)| − |α|m

)
.(2.9)

The fact that the quantity
(
|P (z0)| − |α|m

)
in the right hand side of (2.9)

is positive follows from (2.2) and (2.3). This gives

M(P,R) ≤

(
R2 + 2|ζ|Rk + k2

1 + 2|ζ|k + k2

)n
2

|P (z0)|

−

{(
R2 + 2|ζ|Rk + k2

1 + 2|ζ|k + k2

)n
2

− 1

}
|α|m,

which is equivalent to (2.1) and this completes the proof of Lemma 4. �

The following two lemmas are due to Jain [4].

Lemma 5. Let P (z) be a polynomial of degree n having all its zeros in
|z| ≤ 1. If T (z) is a polynomial of degree at most n such that

|T (z)| ≤ |P (z)|, for |z| = 1,
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then for 0 ≤ s < n, ∣∣T (s)(z)
∣∣ ≤ ∣∣P (s)(z)

∣∣, for |z| ≥ 1.

Lemma 6. If P (z) is a polynomial of degree at most n, then for 0 ≤ s < n,

∣∣P (s)(z)
∣∣+ ∣∣Q(s)(z)

∣∣ ≤ {∣∣∣ ds
dzs

(1)
∣∣∣+ ∣∣∣ ds

dzs
(zn)

∣∣∣}M(P, 1), for |z| ≥ 1,

where Q(z) = znP (1z ).

3. Proof of Theorem.

Proof of Theorem 1. Since P (z) 6= 0 in |z| < k, k ≥ 1, the polynomial
T (z) = P (kz) has no zeros in |z| < 1. Let H(z) = znT (1z ), then

|T (z)| ≤ |H(z)|, for |z| = 1,

and H(z) has all its zeros in |z| ≤ 1. Therefore, applying Lemma 5 to the
polynomials T (z) and H(z), we get for 0 ≤ s < n and r ≥ 1,∣∣T (s)(reiθ)

∣∣ ≤ ∣∣H(s)(reiθ)
∣∣, 0 ≤ θ < 2π.(3.1)

Also, by Lemma 6, we have for r ≥ 1 and 0 ≤ s < n,

∣∣T (s)(reiθ)
∣∣+ ∣∣H(s)(reiθ)

∣∣ ≤ { ds

drs
(rn + 1)

}
M(T, 1), 0 ≤ θ < 2π,

which on combining with (3.1) gives

∣∣T (s)(reiθ)
∣∣ ≤ 1

2

{
ds

drs
(rn + 1)

}
M(T, 1),

which further implies

∣∣P (s)(kreiθ)
∣∣ ≤ 1

2ks

{
ds

drs
(rn + 1)

}
M(P, k).(3.2)

The above inequality (3.2) in conjunction with Lemma 4 gives

(3.3)

∣∣P (s)(kreiθ)
∣∣ ≤ 1

2ks

{
ds

drs
(rn + 1)

}[(
k2 + 2|ζ|k2 + k2

1 + 2|ζ|k + k2

)n
2

M(P, 1)

−

{(
k2 + 2|ζ|k2 + k2

1 + 2|ζ|k + k2

)n
2

− 1

}
tm

]
.
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Now taking r = R
k ≥ 1 in (3.3), we get

∣∣P (s)(Reiθ)
∣∣ ≤ 1

2

{ ds

dRs
(Rn + kn)

}[( 2 + 2|ζ|
1 + 2|ζ|k + k2

)n
2

M(P, 1)

−

{(
2 + 2|ζ|

1 + 2|ζ|k + k2

)n
2

− 1

kn

}
tm

]
,

which is equivalent to (1.4). �

Remark 2. From Lemma 3, we have

k|a1|
n(|a0| − tm)

≤ 1,

and since, as mentioned earlier
(
R2+2Rkx+k2

1+2kx+k2

)
is an increasing function of x

in [0, 1], it follows from (2.7) that for every α with |α| ≤ 1 and 1 ≤ R ≤ k2,

max
|z|=R

∣∣P (z)− αm∣∣ ≤ (R+ k

1 + k

)n
max
|z|=1

∣∣P (z)− αm∣∣.(3.4)

Now proceeding similarly as in the proof of Lemma 4, it follows from
(3.4) that

M(P,R) ≤

(
R+ k

1 + k

)n
M(P, 1)−

{(
R+ k

1 + k

)n
− 1

}
tm,(3.5)

where 0 ≤ t ≤ 1 and 1 ≤ R ≤ k2. If we use inequality (3.5) (for t =
1) instead of Lemma 4 in the proof of Theorem 1, we get the following
refinement of Theorem A.

Corollary 2. If P (z) =
∑n

ν=0 aνz
ν 6= 0 in |z| < k, k ≥ 1 and m =

min|z|=k |P (z)|, then for 0 ≤ s < n,

M
(
P (s), R

)
≤ 1

2

{ ds

dRs
(Rn + kn)

}[( 2

1 + k

)n
M(P, 1)

−

{( 2

1 + k

)n
− 1

kn

}
m

]
, for R ≥ k.
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