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Some results on convex meromorphic functions

Abstract. In this paper, we define a function F : D×D×D → C in terms
of f and show that ReF > 0 for all ζ, z, w ∈ D if and only if f belongs to the
class of convex meromorphic functions.

1. Introduction and preliminaries. Let us denote by S(p) with 0 < p <
1 the set of univalent functions in the unit disk D = {z ∈ C : |z| < 1} such
that f(0) = 0, f ′(0) = 1 and f(p) =∞. We denote by K the subset of func-
tions in S(p) which omits a convex set in the extended plane Ĉ = C∪{∞},
that is, f ∈ K if and only if the set Ĉ \ f(D) = {w ∈ C : f(z) 6= w} is con-
vex. Functions in K are called convex meromorphic functions. Many people
have worked on convex holomorphic functions and the results obtained have
already found their place in many books; see, for examle Ruscheweyh and
Sheil-Small [6], Sheil-Small [8], Schober [7] and Duren [1]. So far, several
works on convex meromorphic functions have appeared in the literature; for
further reading see Ohno [5] and the references therein including Yulin and
Owa [9]. It should be remarked that the functions that omit a convex set
are called concave functions, nowadays. The set K we described above is a
subset of concave functions that belong to the set S(p). Therefore, we prefer
to call the functions in K convex meromorphic functions. In this paper, we
also consider these functions and we think our results in a way unify the
earlier results. That is, as Duren [1, p. 250] comments “We shall digress
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briefly to establish some global properties of convex functions. Everything
is a consequence of the following proposition ...”; many earlier results will
follow from ours. However, a slight modification in the statement and the
proof of our Theorem 1 below yields that it is true for all concave functions.
To see this, it is enough to assume p ∈ D and replace the factor 1−pz

1−pζ by
1−pz
1−pζ in Theorem 1.

2. Main theorems.

Theorem 1. Let F : D ×D ×D → C be the function defined by

(2.1) F (ζ, z, w) =
z + ζ

z − ζ
− 2ζ

z − ζ
(p− z)(1− pz)
(p− ζ)(1− pζ)

f(w)− f(z)
f(w)− f(ζ)

w − ζ
w − z

for each f in K. Then, F has a positive real part with F (0, z, w) = 1.

Proof. Without loss of generality, we can assume that the function f can be
extended to the boundary as a continuous function. The function F (ζ, z, w)
has a holomorphic extension to D3, that is, all the singularities of F are
removable. To see this, it is enough to observe the following three evalua-
tions:

1) F (ζ, z, p) =
1 + pζ

1− pζ
,

2) F (ζ, p, w) =
p+ ζ

p− ζ
− 2ζ

(p− ζ)2
1− p2

1− pζ
αf

f(w)− f(ζ)
w − ζ
w − p

where αf = Resz=p(f) which implies

F (ζ, p, p) = lim
w→p

F (ζ, p, w) =
1 + pζ

1− pζ
,

3) lim
ζ→z

F (ζ, z, w) = 0.

Now, we consider the function

F (ζ, z, w) =
z + ζ

z − ζ
− 2ζ

z − ζ
(p− z)(1− pz)
(p− ζ)(1− pζ)

f(w)− f(z)
f(w)− f(ζ)

w − ζ
w − z

.

Since
(p− z)(1− pz)/z
(p− ζ)(1− pζ)/ζ

=
|1− pz|2

|1− pζ|2
> 0,

(2.1) can be written as

(2.2) F (ζ, z, w) =
z + ζ

z − ζ
− 2z

z − ζ
|1− pz|2

|1− pζ|2
f(w)− f(z)
f(w)− f(ζ)

w − ζ
w − z

for |z| = |ζ| = 1. We set z = αw and ζ = βw in (2.2), where α = eia and
β = eib, 0 < a, b < 2π are distinct constants. Thus we have

F (βw, αw,w) =
eia + eib

eia − eib
− 2eia

eia − eib

∣∣1− pweia∣∣2
|1− pweib|2

f(w)− f(eiaw)
f(w)− f(eibw)

1− eib

1− eia
.
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Since

eia + eib

eia − eib
= −i

cos
(
a−b
2

)
sin
(
a−b
2

)
is purely imaginary and

2eia

eia − eib
1− eib

1− eia
= −i

sin
(
b
2

)
sin
(
a−b
2

)
sin
(
a
2

) ,
we have

F (βw, αw,w) = i
sin
(
b
2

)
sin
(
a−b
2

)
sin
(
a
2

) ∣∣1− pweia∣∣2
|1− pweib|2

f(w)− f(eiaw)
f(w)− f(eibw)

− i
cos
(
a−b
2

)
sin
(
a−b
2

)
and thus

Re {F (βw, αw,w)} = −
sin
(
b
2

)
sin
(
a−b
2

)
sin
(
a
2

) ∣∣1− pweia∣∣2
|1− pweib|2

R sinϕ,

where f(w)−f(eiaw)
f(w)−f(eibw) = Reiϕ for |w| = 1. Note that for a < b, the images

of w, eiaw and eibw under f have the same order on ∂F (D) in positive
direction. Therefore in this case ϕ ∈ (0, π). Similarly, ϕ ∈ (π, 2π) for
b < a. It follows that Re {F (βw, αw,w)} > 0 on (∂D)3. Furthermore,
it is a consequence of the Cauchy integral formula in a polydisk that the
absolute value of the holomorphic function e−F (ζ,z,w) attains its maximum
on the distinguished boundary (∂D)3 of the polydisk D3 (see, for example,
Gunning [3] Theorem 4, p. 6 or Hörmander [4] Section 2.2, p. 25). It follows
that Re {F (ζ, z, w)} > 0 throughout the polydisk D×D×D. Thus we get
the desired result. Obviously F (0, z, w) = 1. �

Now we can prove that the converse of our theorem is also true:

Theorem 2. If F : D ×D ×D → C defined by

F (ζ, z, w) =
z + ζ

z − ζ
− 2ζ

z − ζ
(p− z)(1− pz)
(p− ζ)(1− pζ)

f(w)− f(z)
f(w)− f(ζ)

w − ζ
w − z

has a positive real part, then f ∈ K.
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Proof. Observe that

F (ζ,z, z) =
z + ζ

z − ζ
− 2ζ

(p− z)(1− pz)
(p− ζ)(1− pζ)

f ′(z)

f(z)− f(ζ)

=
z + ζ

z − ζ
− 2ζf ′(z)

f(z)− f(ζ)
−
[
(p− z)(1− pz)
(p− ζ)(1− pζ)

− 1

]
2ζf ′(z)

f(z)− f(ζ)

=
z + ζ

z − ζ
− 2ζf ′(z)

f(z)− f(ζ)
+

2 (z − ζ)
[
1 + p2 − p (z + ζ)

]
(p− ζ)(1− pζ)

ζf ′(z)

f(z)− f(ζ)

=
(z + ζ) (f(z)− f(ζ))− 2ζf ′(z) (z − ζ)

(z − ζ) (f(z)− f(ζ))

+
2 (z − ζ)

[
1 + p2 − p (z + ζ)

]
(p− ζ)(1− pζ)

ζf ′(z)

f(z)− f(ζ)
,

so for z → ζ, we have 0
0 and applying L’Hospital’s rule, we find

lim
z→ζ

F (ζ, z, z) = lim
z→ζ

f(z)− f(ζ) + (z + ζ)f ′(z)− 2ζf ′′(z)(z − ζ)− 2ζf ′(z)

f(z)− f(ζ) + (z − ζ)f ′(z)

+ 2ζ
1 + p2 − 2pζ

(p− ζ)(1− pζ)

= 1 + 2ζ
1 + p2 − 2pζ

(p− ζ)(1− pζ)
− 2ζ lim

z→ζ

(z − ζ) f ′′(z)
f(z)− f(ζ) + (z − ζ) f ′(z)

= 1− ζf ′′ (ζ)

f ′ (ζ)
+ 2ζ

1 + p2 − 2pζ

(p− ζ)(1− pζ)
.

A simple calculation gives (compare, for example Miller [2, formula (1)])

lim
z→ζ

F (ζ, z, z) = −1− ζf ′′ (ζ)

f ′ (ζ)
+ 2 + 2ζ

1 + p2 − 2pζ

(p− ζ)(1− pζ)

= 2p
1− ζ2

(p− ζ)(1− pζ)
−
{
1 +

ζf ′′ (ζ)

f ′ (ζ)

}
.

Since 2p(1−ζ2)
(p−ζ)(1−pζ) is purely imaginary on the boundary |ζ| = 1, we have

Re

{
1 +

ζf ′′ (ζ)

f ′ (ζ)

}
< 0.

Thus the set of omitted values of f is convex. �

3. A set of useful corollaries. As we pointed out above, the function

F (ζ, z, w) =
z + ζ

z − ζ
− 2ζ

z − ζ
p− z
p− ζ

1− pz
1− pζ

f(z)− f(w)
f(ζ)− f(w)

ζ − w
z − w

is a holomorphic function for (ζ, z, w) ∈ D × D × D = D3. Theorems 1
and 2 show that ReF (ζ, z, w) > 0 if and only if f is a convex meromorphic
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function in S(p). To simplify, we define the function H : D2 → C by

H(z, w) =
(p− z)(1− pz)

p

f(z)− f(w)
z − w

w

f(w)
,

then

F (ζ, z, w) =
z + ζ

z − ζ
− 2ζ

z − ζ
H(z, w)

H(ζ, w)
.

Note that ReF (ζ, z, w) > 0 implies |F − 1| < |F + 1|, hence we obtain∣∣∣∣z + ζ

z − ζ
− 2ζ

z − ζ
H(z, w)

H(ζ, w)
− 1

∣∣∣∣ < ∣∣∣∣z + ζ

z − ζ
− 2ζ

z − ζ
H(z, w)

H(ζ, w)
+ 1

∣∣∣∣ ,
and after some simplification in the last inequality, we have

|H(z, w)−H(ζ, w)| < |ζH(z, w)− zH(ζ, w)| .

To summarize, we display

ReF (ζ, z, w) > 0⇔ |H(z, w)−H(ζ, w)| < |ζH(z, w)− zH(ζ, w)| .

Now, we state several corollaries for convex meromorphic functions f in K.

Corollary 1. The function H(z, w) maps the domain D×D onto the unit
disk centered at 1, i.e., |H(z, w)− 1| < 1.

Proof. Choosing ζ = 0 in the inequality

|H(z, w)−H(ζ, w)| < |ζH(z, w)− zH(ζ, w)| ,

we obtain |H(z, w)− 1| < |z|. �

Corollary 2. The function H(z, w)/z, considered as a function of z, is
univalent in D.

Proof. Suppose
H(z, w)

z
=
H(ζ, w)

ζ
,

then the inequality

|H(z, w)−H(ζ, w)| < |ζH(z, w)− zH(ζ, w)|

implies H(z, w) = H(ζ, w). By Corollary 1, both H(z, w) and H(ζ, w) are
different from zero. Dividing both sides of the equality

H(z, w)

z
=
H(ζ, w)

ζ

by H(z, w) = H(ζ, w), we get z = ζ. �

Corollary 3. We have the following inequalities∣∣∣∣(p− z)(1− pz)p

f(z)

z
− 1

∣∣∣∣ < |z| and
∣∣∣∣(p− z)(1− pz)p

zf ′(z)

f(z)
− 1

∣∣∣∣ < |z| .



80 F. Uçar and Y. Avci

Proof. In Corollary 1, putting w = 0 and w = z, respectively, we obtain
the desired inequalities. �

Corollary 4. We have ∣∣∣∣−1− p2

p2
αf − 1

∣∣∣∣ < p,

where αf is the residue of f at z = p.

Proof. We get this inequality by letting z → p in the first inequality of
Corollary 3. �

Remark 1. Note that − p2

1−p2 is the residue of k(z) = pz
(p−z)(1−pz) . Therefore,

the inequality in Corollary 4 can be stated as
∣∣∣αf

αk
− 1
∣∣∣ < p.

Corollary 5. We have∣∣∣∣zH ′(z, w)H(z, w)

∣∣∣∣ < ∣∣∣∣zH ′(z, w)H(z, w)
− 1

∣∣∣∣ ,
where H ′(z, w) = ∂H(z,w)

∂z .

Proof. We divide both sides of the inequality

|H(z, w)−H(ζ, w)| < |ζH(z, w)− zH(ζ, w)|

by |z − ζ| and let ζ → z; hence, we obtain∣∣H ′(z, w)∣∣ < ∣∣zH ′(z, w)−H(z, w)
∣∣ .

Corollary follows by dividing both sides by |H(z, w)| and multiplying the
left hand side by |z|. �

Remark 2. Note that Corollary 5 implies

Re

{
zH ′(z, w)

H(z, w)

}
<

1

2
,

or

Re

{
1− 2

zH ′(z, w)

H(z, w)

}
= Re

{
1− 2z

[
− 1

p− z
− p

1− pz
+

f ′(z)

f(z)− f(w)
− 1

z − w

]}
= Re

{
1 + 2

[
z

p− z
+

pz

1− pz
+

z

z − w
− zf ′(z)

f(z)− f(w)

]}
> 0.

From this we obtain Theorem 2 by letting w → z.

Corollary 6. The function z/H2(z, w) is a holomorphic starlike function
as a function of z and therefore it is univalent.
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Proof. We define a function h by

1− 2
zH ′(z, w)

H(z, w)
=:

zh′(z, w)

h(z, w)
.

Dividing both sides by z and then integrating both sides with respect to z,
we find h(z, w) = z/H2(z, w). �

Corollary 7. The integral representation

logH(z, w) =

∫
|η|=1

log(1− ηz)dµ

holds, where µ is a probability measure on ∂D with log 1 = 0.

Proof. It follows from Corollary 5 that there exists a probability measure
µ on ∂D such that

1− 2
zH ′(z, w)

H(z, w)
=

∫
|η|=1

1 + ηz

1− ηz
dµ.

Subtracting 1 from both sides and dividing by −2z, we obtain

H ′(z, w)

H(z, w)
=

∫
|η|=1

−η
1− ηz

dµ.

Integrating both sides with respect to z and noting that the integral constant
is zero, we arrive at

logH(z, w) =

∫
|η|=1

log(1− ηz)dµ.

�

4. Conclusions. In this paper we focused on the main results and their
implications that are listed in a series of corollaries. Of course, each of these
results has implications about the coefficients of the convex meromorphic
functions. For example, the absolute values of the coefficients of the function

H(z, w) = 1 + c1(w)z + c2(w)z
2 + . . .

are bounded by 1, i.e.,

|c1(w)| =
∣∣∣∣ 1w − 1

f(w)
−
(
p+

1

p

)∣∣∣∣ < 1.

Here we note that many coefficient inequalities for concave functions can
be found in the references. We think that applications of our results to
coefficient inequalities will be the subject of another paper.
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