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Abstract. In this note we explore the concept of the logarithmic norm of
a matrix and illustrate its applicability by using it to find conditions under
which the convergence of solutions of regularly perturbed systems of ordinary
differential equations is uniform globally in time.

1. Introduction

The concept of the logarithmic norm of a matrix, also known as a logarith-
mic derivative, or the logarithmic Lipschitz constant for nonlinear operators,
was introduced independently by Dahlquist [3] and Lozinski [6], whose aim
was to estimate the error of discretization in numerical analysis of differen-
tial equations, see e.g. [5, Section I.10]. This “norm” (which is not really
a norm in the sense of functional analysis as it can take negative values)
is a measure of the dissipativity of an operator. It has, nevertheless, many
norm-like properties that allow to use the dissipative terms in the origi-
nal problem to generate negative terms in the error estimates. In this way
the error estimates are reduced to linear differential inequalities that reflect
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the structure of the original problem in a much better way than the Gron-
wall inequality. In particular, in many cases it yields estimates uniform in
time, remedying thus one of the main drawbacks of the Gronwall inequality,
namely that the constants grow exponentially in time.

It turns out that this feature of the logarithmic norm can be used to pro-
vide uniform globally in time estimates for solutions to perturbed systems
of differential equations. To explain the problem, let us recall a classical
regular perturbation result.

Theorem 1.1 ([17, Theorem VI, Chapter III §12]). Let J be a compact in-
terval with t0 ∈ J and let the function x = x0(t) be a solution of the initial
value problem

(1) x′ = f(t,x) in J, x(t0) = x̊.

The α-neighbourhood (α > 0) of graph of x0 (definition: the set of all points
(t,x) with t ∈ J , |x−x0(t)| ≤ α) will be denoted by Sα. Suppose there exists
α > 0 such that f(t,x) is continuous and Lipschitz in x uniformly in t in
Sα. Then the solution x0(t) depends continuously on the initial values and
on the right-hand side f . In other words: For every ε > 0, there is δ > 0
such that if g is continuous in Sα and the inequalities

(2) |g(t,x)− f(t,x)| < δ in Sα, |̊z − x̊| < δ

are satisfied, then every solution z(t) of the perturbed initial value problem

(3) z′ = g(t, z), z(t0) = z̊.

exists in all of J and satisfies the inequality

(4) |z(t)− x0(t)| < ε in J.

This result does not give, however, a satisfactory answer as far as the
long term dynamics is concerned. In fact, even if solutions to (1) converge
as t → ∞ to, say, a stationary point, the solutions to (3) can diverge as
t→∞, or even blow-up at finite time for any δ > 0.

Example 1.2. Consider the family of Cauchy problems

x′ε = εx2
ε , xε(0) = 1.(5)

Then x0(t) = 1, t ≥ 0, and

xε(t) =
1

1− εt
, 0 ≤ t < 1

ε
.

It is clear that for ε > 0, xε(t) blows up as t → 1
ε

−. On the other hand,
for any compact interval [0, T ] the solution xε(t) is defined on [0, T ] for
ε < ε0 = 1

T and satisfies
lim
ε→0+

xε(t) = x0(t)
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uniformly on [0, T ].
On the other hand, if we consider

x′ε = −xε + εx2
ε , xε(0) = 1,(6)

then x0(t) = e−t and

xε(t) =
1

et(1− ε) + ε
, t ≥ 0.

Since ∣∣∣∣ 1

et(1− ε) + ε
− e−t

∣∣∣∣ =
ε(et − 1)

et(et(1− ε) + ε)
≤ ε e

−t

1− ε
,

we see that

lim
ε→0+

xε(t) = x0(t)

uniformly on [0,∞).

We observe that, contrary to the first case, in the second case x∗ = 0 is
the hyperbolic equilibrium of the limit problem. To simplify the discussion,
we slightly modify (1) to

(7) x′ε = f(xε, ε) in J, xε(t0) = x̊ε,

assume that f is differentiable with respect to all variables and f(x∗, 0) = 0.
Then, if the Jacobian J f(x∗, 0) is not singular, then the Implicit Func-
tion Theorem implies that for some ε0 > 0 there is a differentiable family
x∗(ε), ε ∈ (−ε0, ε0), of solutions to f(x∗(ε), ε) = 0. If, in addition, x∗ is
a hyperbolic equilibrium, then the theorem on continuous dependence of
the roots of a polynomial on its coefficients, see e.g. [8, 15], shows that for
sufficiently small ε the equilibria x∗(ε) are of the same type as x∗. In other
words, for regularly perturbed problems (7) we have the convergence of its
solutions on any finite time interval to the solution of the limit problem
(with ε = 0). Moreover, provided the equilibria of the limit problem are
hyperbolic, (7) has the same structure and the type of the equilibria, and
these equilibria converge to the equilibria of the limit problem. However,
this does not prove that the interval of convergence of the solutions can be
extended to [t0,∞). To prove this fact, some uniform estimates of xε for
large times would be required. The aim of this note is to show how the
logarithmic norm can be used to prove such estimates.

Acknowledgements. The author is grateful to Dr. S. Shindin for drawing
his attention to the concept of the logarithmic norm.
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2. Basic mathematical tools

As the main idea of using the logarithmic norm to error estimates consists
in deriving an appropriate differential inequality for the norm of the error,
we must specify in what sense that norm can be differentiated. In this
section we discuss this issue as well as the solvability of relevant differential
inequalities, mostly following [2, Chapter I].

Let X = Rn and let ‖ · ‖ be a norm on X.

Definition 2.1. Let f : (a, b) → R be any function. The upper and lower
right Dini derivatives of f at t ∈ (a, b) are defined, respectively, as

(8) D+f(t) = lim sup
h→0+

f(t+ h)− f(t)

h
, D+f(t) = lim inf

h→0+

f(t+ h)− f(t)

h
.

Similarly, the upper and lower left Dini derivatives of f are defined, respec-
tively, as

(9) D−f(t) = lim sup
h→0+

f(t)− f(t− h)

h
, D−f(t) = lim inf

h→0+

f(t)− f(t− h)

h
.

If D+f(t) = D+f(t) (resp. D−f(t) = D−f(t)) at some t, then we say that f
has right (resp. left) hand side derivative at t and denote it by f ′+(t) (resp.
f ′−(t)), or by d

dt+
f(t) (resp. d

dt− f(t)).

Due to the properties of the upper and lower limits we have

(10) D±±(f + g) = D±±f + g′

as long as g is differentiable. Clearly, the formula remains correct if g
only has one side derivatives and D is the corresponding one sided Dini’s
derivative. We shall be concerned with the system of differential equations

(11)
x′(t) = f(t,x), t ∈ (a, b)

x(t0) = x0,

where t0 ∈ (a, b).

Definition 2.2. A vector function f = (f1, . . . , fn) : D → Rn, D ⊂ Rn,
is said to be of type K (or to be quasimonotone increasing) if for each
i = 1, . . . , n we have fi(x) ≤ fi(y) for any x,y ∈ D with xj ≤ yj for j 6= i
and xi = yi.

Theorem 2.3 ([2, Theorem I.10] or [12, Theorem B.1]). Let (t,x) 7→f(t,x)
be continuous for (t,x) in an open set (a, b) × Ω and of type K for each
t ∈ (a, b). Let t 7→ x(t) be a solution to (11) defined on an interval [a, b].
If z is continuous on [a, b], satisfies D−z(t) ≤ f(t, z) for a < t < b and
z(a) ≤ x(a), then z(t) ≤ x(t) on [a, b]. Similarly, if y is continuous on
[a, b], satisfies D−y(t) ≥ f(t,y) for a < t < b and y(a) ≥ x(a), then
y(t) ≥ x(t) on [a, b].
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Corollary 2.4 ([2, Corollary to Theorem I.10]). A continuous vector func-
tion z is non-increasing on an interval [a, b] if and only if D−z ≤ 0 (or,
equivalently, D+z ≤ 0).

Remark 2.5. Clearly, if D−z ≤ 0 (resp. D+z ≤ 0), then the same is true
for D−z (resp. D+z) so also in these two cases we obtain the monotonicity
of z, see also [17, Appendix B.I].

Remark 2.6. Following Remark 2.5, in the statement of Theorem 2.3 the
inequality D−z ≤ f(t, z) can be replaced by D+z ≤ f(t, z). Indeed, con-
sider

u(t) = z(t)−
t∫

a

f(s, z(s))ds.

Then, by (10),

D−u(t) = D−z(t)− f(t, z(t)), D+u(t) = D+z(t)− f(t, z(t)).

Since, by Corollary 2.4, D+u(t) ≤ 0 is equivalent to D−u(t) ≤ 0, we see
that D+z ≤ f(t, z) implies D−z ≤ f(t, z) and the statement of the first
part of Theorem 2.3 follows.

Similarly, in the second part of Theorem 2.3, the inequalityD−y ≥ f(t,y)
can be replaced by D+y ≥ f(t,y). Indeed, consider

u(t) =

t∫
a

f(s,y(s))ds− y(t).

Then, again by (10),

D−u(t) = f(t,y(t))−D−y(t), D+u(t) = f(t,y(t))−D+y(t)

and Corollary 2.4 implies that D+u(t) ≤ 0 is equivalent to D−u(t) ≤ 0.
Thus we see that D+y(t) ≥ f(t,y) implies D−y(t) ≥ f(t,y) and the state-
ment of the second part of Theorem 2.3 follows.

The following theorem is a consequence of the convexity of the norm.

Theorem 2.7 ([17, Theorem B.IV]). If t 7→ u(t) is continuous and has
left/right derivative at t, then t 7→ ‖u(t)‖ has left/right derivative at t and

(12) −‖u′±(t)‖ ≤ ‖u(t)‖′± ≤ ‖u′±(t)‖.

In particular, if u is differentiable at t = t0, then

(13) −‖u′(t)‖ ≤ ‖u(t)‖′− ≤ ‖u(t)‖′+ ≤ ‖u′(t)‖.
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3. Logarithmic, or Lozinski’s, norm

Let A be an n × n matrix. Usually we shall use real matrices but most
considerations are valid also in the complex case. Let ‖ · ‖ be a norm on Rn
(or Cn). For a given norm ‖ · ‖, we define the logarithmic norm of A by

(14) µ(A) = lim
h→0+

‖I + hA‖ − 1

h
=

d

dt+
‖I + tA‖|t=0.

The existence of µ(A) is ensured by Theorem 2.7. As mentioned in Intro-
duction, µ(A) has most properties of the norm. These properties, as well
as other ones relevant to this paper, are listed for instance in [2, Section 1
of Chapter 2], or in [6, 13, 14]. Some of them are proved in [6], while the
proofs of others are scattered among sources that are not easily accessible
and thus we decided to provide them here.

Lemma 3.1 ([6, Lemma 2]). For any square matrices A and B of the same
dimension

a) For any α ≥ 0,

(15) µ(αA) = αµ(A);

b)

(16) |µ(A)| ≤ ‖A‖;
c)

(17) µ(A+B) ≤ µ(A) + µ(B).

Proof. a) We can write

(18)
µ(αA) = lim

h→0+

‖I + h(αA)‖ − 1

h

= α lim
h→0+

‖I + (αh)A‖ − 1

αh
= αµ(A).

b) Similarly, by the triangle inequality for ‖ · ‖,

µ(A) = lim
h→0+

‖I + hA‖ − 1

h
≤ ‖A‖,

µ(A) = lim
h→0+

‖I + hA‖ − 1

h
≥ lim

h→0+

|‖I‖ − h‖A‖| − 1

h
= −‖A‖.

c) We have

‖I + h(A+B)‖ − 1

h
=
‖1

2I + hA+ 1
2I + hB)‖ − 1

2 −
1
2

h

≤
‖1

2I + hA‖ − 1
2

h
+
‖1

2I + hB‖ − 1
2

h

=
‖I + (2h)A‖ − 1

2h
+
‖I + (2h)B‖ − 1

2h
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and the result follows by passing to the limit as h→ 0+. �

Theorem 3.2.

µ(A) ≤ 0 if and only if ‖etA‖ ≤ 1 for all t ≥ 0.

Proof. Let us consider t 7→ ‖etA‖. Then

(19)

‖e(t+h)A‖ − ‖etA‖
h

=
‖ehAetA‖ − ‖etA‖

h

=
‖(I + hA+O(h2))etA‖ − ‖etA‖

h

≤ ‖I + hA‖ − 1

h
‖etA‖+O(h)

and hence, as h→ 0+,
d

dt+
‖etA‖ ≤ 0

provided µ(A) ≤ 0. But this, by Corollary 2.4, implies

‖etA‖ ≤ ‖e0A‖ = 1.

To prove the converse, we have

‖I + hA‖ − 1

h
=
‖ehA +O(h2)‖ − 1

h
≤ ‖e

hA‖ − 1

h
+O(h)

and, letting h→ 0+,

(20) µ(A) ≤ d

dt+
‖etA‖|t=0.

Since ‖etA‖ ≤ 1 = ‖e0A‖, from the definition of the right hand derivative
and its existence, we infer d

dt+
‖etA‖|t=0 ≤ 0, which proves the thesis. �

Corollary 3.3. We have

(21) µ(A) =
d

dt+
‖etA‖|t=0.

Proof. Eqn (21) follows from (20) and (19) with t = 0. �

We shall need the following lemma.

Lemma 3.4.
(i) The function A 7→ µ(A) is Lipschitz continuous; that is, for any

matrices A and B, we have

(22) |µ(A)− µ(B)| ≤ ‖A−B‖.
(ii) For any z ∈ C, we have

(23) µ(A+ zI) = µ(A) + <z
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Proof. (i) By (17) and (16), we have

µ(A) ≤ µ(A−B) + µ(B) ≤ ‖A−B‖+ µ(B),

µ(B) ≤ µ(B −A) + µ(A) ≤ ‖A−B‖+ µ(A),

and the statement follows.
(ii) We have

‖I + h(A+ zI)‖ = |1 + hz|
∥∥∥∥I +

h

1 + hz
A

∥∥∥∥
= |1 + hz|

∥∥∥∥I +
h(1 + h<z − ih=z)

|1 + hz|2
A

∥∥∥∥
= |1 + hz|

∥∥∥∥I +
h(1 + h<z)
|1 + hz|2

A− h2i=z
|1 + hz|2

A

∥∥∥∥ .
Hence, by (i)

lim
h→0+

‖I + h(A+ zI)‖ − 1

h
= lim

h→0+

|1 + hz|
∥∥∥I + h(1+h<z)

|1+hz|2 A
∥∥∥− 1

h

= lim
h→0+

(1 + h<z)
|1 + hz|

∥∥∥I + h(1+h<z)
|1+hz|2 A

∥∥∥− 1 + 1− 1
|1+hz|

h(1+h<z)
|1+hz|2

.

Next,

1− 1

|1 + hz|
=

√
(1 + h<z)2 + h2=z2 − 1

|1 + hz|
= h<z +O(h2)

and the thesis follows as 0 < 1+h<z
|1+hz| → 1 as h→ 0. �

Theorem 3.5. The logarithmic norm satisfies µ(A) ≤ 0 if and only if
the semigroup (etA)t≥0 is quasi-contractive. Precisely, ‖etA‖ ≤ eµ(A)t and
µ(A) = min{ω; ‖etA‖ ≤ eωt}.

Proof. By Lemma 3.4 (ii), we have µ(A − µ(A)I) = 0 and thus, by The-
orem 3.2, 1 ≥ ‖et(A−µ(A)I)‖ = e−µ(A)t‖etA‖, or ‖etA‖ ≤ eµ(A)t. Con-
versely, if ‖etA‖ ≤ eωt, then ‖et(A−ωI)‖ ≤ 1 and, again by Lemma 3.4
(ii), 0 ≥ µ(A− ωI) = µ(A)− ω; that is, µ(A) ≤ ω. �

One of the drawbacks of the logarithmic norm is that it strongly depends
on the underlying norm, see e.g. [2, Section 1 of Chapter 2], and thus it is
not directly related to the dynamical properties of (etA)t≥0. More precisely,
if µ(A) < 0, then (etA)t≥0 is an exponentially stable contractive semigroup.
On the other hand, if (etA)t≥0 is only exponentially stable; that is, for some
M ≥ 1, ω < 0

(24) ‖etA‖ ≤Meωt



Logarithmic norms and regular perturbations... 13

for all t ≥ 0, then nothing can be said about µ(A) for a given norm ‖ ·‖. We
observe that in finite dimensional spaces the stability (24) is determined by

(25) s(A) := max{<λ; λ ∈ σ(A)},

where σ(A) is the spectrum of A, which is independent of the norm. We
have, however,

Theorem 3.6. For any ε > 0 there is a norm ‖ ·‖ε (equivalent to ‖ ·‖) such
that the logarithmic norm µε defined by ‖ · ‖ε satisfies

(26) s(A) ≤ µε(A) ≤ s(A) + ε.

Further, if s(A) is a semi-simple eigenvalue of A, then we can take ε = 0.

Proof. The first inequality follows from Theorem 3.5. Indeed, if λ ∈ σ(A)
satisfies <λ = s(A), then for the normalized eigenvector e belonging to λ
we have

‖etAe‖ = et<λ = ets(A)

so that
etµ(A) ≥ ‖etA‖ ≥ ‖etAe‖ = ets(A).

From general theory of linear systems, see e.g. [2, Chapter III, Eqn. (11)],
for any ε > 0 there is Mε such that

(27) ‖etA‖ ≤Mεe
t(s(A)+ε),

thus
‖etAε‖ := ‖et(A−(s(A)+ε)I‖ ≤Mε.

Defining an equivalent norm, see [4, Lemma II.3.10], by

‖x‖ε := sup
s∈R+

‖esAεx‖,

we see that

‖etAεx‖ε = sup
s∈R+

‖esAεetAεx‖ = sup
s∈R+

‖e(s+t)Aεx‖ ≤ ‖x‖ε,

hence (etAε)t≥0 is contractive and, by Theorem 3.2, µε(Aε) ≤ 0. Thus, by
Lemma 3.4 (ii),

µε(A) ≤ s(A) + ε.

If all λ ∈ σ(A) with <λ = s(A) are (semi)-simple, then (27) is valid with
ε = 0 and the second statement of the theorem follows. �

Remark 3.7. Theorem 3.6 goes back possibly to [9, 10] but the proof above
seems to be more elementary. On the other hand, the construction of [10]
gives an inner product norm

√
(x, Pεx), where Pε is the hermitian solution

of the Lyapunov equation

PεA+A∗Pε = −I.
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4. Regularly perturbed systems

As mentioned in Introduction, we consider a family of Cauchy problems in
D × [0, ε0), where D ∈ Rn is a open domain and ε0 > 0,

(28)
x′ε(t) = f(xε(t), ε), t > 0,

xε(0) = x̊ε,

with x̊ε ∈ D for ε ∈ [0, ε0). We assume that f(·, ε) ∈ C2
b (D) with respect

to x uniformly in ε ∈ [0, ε0) and f(x, ·) ∈ C1
b ([0, ε0)) uniformly in x ∈ D.

We denote the semiflow generated by (28) by xε(t, x̊) and use the simplified
notation x(t, x̊) := x0(t, x̊).

Theorem 4.1. Assume that x∗ ∈ D is a stationary solution of the limit
equation

x′(t) = f(x, 0), t > 0,(29)

and the spectral bound of the Jacobian J of f(x∗, 0), s(J f(x∗, 0)), satisfies
s(J f(x∗, 0)) < 0. Further, let limε→0+ x̊ε = x̊ ∈ D with x̊ belonging to the
domain of attraction of x∗. Then

(30) lim
ε→0+

xε(t, x̊ε) = x(t, x̊)

uniformly on [0,∞).

Proof. To fix notation, let Rn be normed with the l1 norm ‖ · ‖1 and let
‖ · ‖ be a fixed equivalent norm on Rn such that the logarithmic norm of
J f(x∗, 0) with respect to ‖ · ‖ satisfies µ(J f(x∗, 0)) < 0, see Theorem 3.6.
Let us specify

(31) c‖x‖1 ≤ ‖x‖ ≤ C‖x‖1
for some c, C > 0, .

Using (22) and the regularity of f , we find that there are δ1 > 0, 0 <
ε1 < ε0, such that B(x∗, δ1) ⊂ D and

(32) µ(J f(x, ε)) ≤ µ∗ < 0

for (x, ε) ∈ B(x∗, δ1)× [0, ε1).
Before we proceed, we need to combine the estimates for the logarithmic

norm with some estimates of the second order remainder of the expansion
of f . For arbitrary u,v ∈ D, we have

(33) f(u, ε) = f(v, ε) + J f(v, ε)(u− v) +R(u− v, ε)(v − u),

where
R(u− v, ε) = O(‖u− v‖), ‖u− v‖ → 0,

uniformly in ε. Indeed, suppressing in the notation ε as not relevant for the
discussion, we proceed as in the classical proof of the multivariate Taylor
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expansion and consider the function φ = (φ1, . . . , φn), where the scalar
functions φi, 1 ≤ i ≤ n, are defined as

φi(s) = fi(v + s(u− v)), s ∈ [0, 1],

so that φ(0) = f(v) and φ(1) = f(u). Using the Taylor expansion with
the integral remainder,

φi(1) = φi(0) + φ′i(0) +

1∫
0

(1− σ)φ′′i (σ)dσ,

upon using

φ′i(s) =
n∑
j=1

∂xjfi(v + s(u− v))(uj − vj),

φ′′i (s) =
n∑

j,k=1

∂2
xjxk

fi(v + s(u− v))(uj − vj)(uk − vk),

in the original notation we get

fi(u) = fi(v) +Dfi(v)(u− v) + 〈Hi(u,v)(u− v), (u− v)〉 ,(34)

where

Hi(u,v) =

1∫
0

(1− σ)(Hfi)(v + σ(u− v))dσ

and Hfi is the Hessian of fi. Let us now return to the (uniform) dependence
on ε and write down the complete estimate in vector notation. To do this,
we introduce H = {Hik}1≤i,j≤n by

Hik(u,v, ε) = (Hi(u,v, ε)(u− v))k

=

1∫
0

(1− σ)

n∑
j

∂2
xjxk

fi(v + σ(u− v), ε)(uj − vj)dσ

so that

(35) f(u, ε) = f(v, ε) + J f(v, ε)(u− v) + H(u,v, ε)(u− v),

where

(36) ‖H(u,v, ε)‖ ≤M‖u− v‖;

here M = C
c2
Ln
2 ,

L = sup{|∂2
xjxk

fi(x, ε)|; x ∈ D, ε ∈ [0, ε0), i, j, k = 1, . . . , n}

and C, c were defined in (31). We see that there is δ < δ1 such that

(37) µ∗ +Mδ ≤ µ̄ < 0
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for some µ̄. By assumption, there is T such that for all t ≥ T we have
x(t, x̊) ∈ B

(
x∗, δ4

)
. Then, by the regular perturbation theorem, Theorem

1.1, for any 0 < η < δ
4 there is εη > 0 such that for all ε ∈ [0, εη) and

t ∈ [0, T ] we have

(38) ‖xε(t, x̊ε)− x(t, x̊)‖ ≤ η.

Thus, xε(T, x̊ε) ∈ B
(
x∗, δ2

)
for ε < εη.

Next, following the ideas of [1, 7], we introduce a C∞0 (Rn) cut-off function
0 ≤ ψ ≤ 1 that satisfies

ψ(x) =

{
1 for ‖x− x∗‖ ≤ δ

2 ,
0 for ‖x− x∗‖ ≥ δ.

Such a function exists by [16, Lemma 1, Chapter 2, §5] and the fact that
‖ · ‖ is equivalent to the Euclidean norm used in the proof in op. cit. so that
there is an Euclidean neighbourhood separating B

(
x∗, δ2

)
and the exterior

of B(x∗, δ). Shortening notation to x(t) := x(t, x̊) and xε(t) := xε(t, x̊ε),
we consider the following modification of (28),

(39)
y′ε = f̃(t,yε, ε), t > T,

yε(T ) = xε(T ),

where

f̃(t,yε, ε) := f(x(t), ε) + J f(x, ε)(yε − x(t))

+ ψ(yε − x(t))H(yε,x(t), ε)(yε − x(t)).

We observe that yε(t) = xε(t) as long as ‖yε(τ)−x(τ)‖ ≤ δ
2 for T ≤ τ ≤ t.

Now, as in [5, Section I.10], we derive a differential inequality for the
norm of the error eε(t) = yε(t)− x(t), t ≥ T . For a fixed t ≥ T , we have

‖eε(t+ h)‖ = ‖yε(t+ h)− x(t+ h)‖ ≤ ‖eε(t) + h(y′ε(t)− x′(t) +O(h2)‖

≤ ‖eε(t) + h(f̃(t,yε(t), ε)− f(x(t), 0))‖+O(h2)

≤ ‖eε(t) + h(f̃(t,yε(t), ε)− f(x(t), ε))‖
+ h‖f(x(t), ε)− f(x(t), 0)‖+O(h2)

≤ ‖I + h(J f(x, ε) + ψ(yε(t)− x(t))H(yε(t),x(t), ε))‖‖eε(t)‖
+ εhK +O(h2),

where K = sup
{
‖∂εf(x, ε)‖; x ∈ B

(
x∗, δ

4

)
, ε ∈ [0, ε0)

}
. Now, subtract-

ing ‖eε(t)‖ from both sides, dividing by h and passing to the limit as h→ 0+,
we obtain, by Corollary 2.7, for any fixed t ≥ T ,

(40)
‖eε(t)‖′+ ≤ µ(J f(x, ε) + ψ(yε(t)− x(t))H(yε(t),x(t), ε))‖eε(t)‖

+ εK.
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Next, using the definition of ψ, we estimate:
(i) For ‖yε(t)− x(t)‖ ≤ δ

2 , by (32),

µ(J f(x, ε) + ψ(yε(t)− x(t))H(yε(t),x(t), ε)) = µ(J f(yε(t), ε)) ≤ µ∗ < 0,

as ‖yε(t)− x∗‖ ≤ ‖yε(t)− x(t)‖+ ‖x(t)− x∗‖ ≤ δ < δ1.
(ii) For δ

2 < ‖yε(t)− x(t)‖ ≤ δ, using (22) and (37),

µ(J f(x, ε) + ψ(yε(t)− x(t))H(yε(t),x(t), ε))

≤ µ(J f(x, ε)) + ‖H(yε(t),x(t), ε)‖ ≤ µ̄ < 0,

as 0 ≤ ψ ≤ 1.
(iii) For ‖yε(t)− x(t)‖ > δ, again by (32),

µ(J f(x, ε) + ψ(yε(t)− x(t))H(yε(t),x(t), ε)) = µ(J f(x(t), ε)) ≤ µ∗

as x(t) ∈ B
(
x∗, δ4

)
for t ≥ T .

Since 0 > µ̄ > µ∗, we obtain the following differential inequality for the
norm of the error

(41)
‖eε(t)‖′+ ≤ µ̄‖eε(t)‖+ εK, t ≥ T
‖eε(T )‖ = ‖xε(T )− x(T )‖.

Since scalar equations automatically are of type K, from Remark 2.6 we
obtain

(42)
‖eε(t)‖ ≤ eµ̄(t−T )‖xε(T )− x(T )‖+ ε

K

−µ̄

(
1− eµ̄(t−T )

)
≤ ‖xε(T )− x(T )‖+ ε

K

−µ̄
, t ≥ T.

Thus, defining ε3 := −µ̄δ
2K , (38) implies that ‖yε(t) − x(t)‖ ≤ δ

2 for any
ε ∈ [0, ε3) and hence, for such ε, yε(t) = xε(t). Therefore, (42) can be
written as

(43) ‖xε(t)− x(t)‖ ≤ ‖xε(T )− x(T )‖+ ε
K

−µ̄
, t ≥ T.

Combining (38) and (43), we obtain that for any (sufficiently small) η there
is ε4 < min

{
ε3, εη, η

−µ̄
K

}
such that for all 0 < ε < ε4 and t ∈ [0,∞)

‖xε(t, x̊ε)− x(t, x̊)‖ ≤ 3η,

proving the uniform convergence of xε(t) to x(t) on [0,∞). �

Example 4.2. To illustrate the result, let us consider the Ross model of
malaria, as derived in [11],

(44)
I ′h = b1aIv

H − Ih
H

− (γH + µH)Ih,

I ′v = b2a(V − Iv)
Ih
H
− (γV + µV )Iv,
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where Ih and Iv are, respectively, the numbers of infected humans and
mosquitoes, H and V are, respectively, the total populations of humans
and mosquitoes, b1 is the probability of a human becoming infectious after
an infectious bite, a is the rate of bites of infectious mosquitoes, γH is the
human rate of recovery, µH is the human death rate, b2 is the probability
that a mosquito becomes infectious after an infectious bite, while γV and
µV are, respectively, the recovery and death rates of infected mosquitoes.
Since it is assumed that the human and mosquito populations are constant,
we normalize them by setting x = Ih/H and y = Iv/V so that (44) becomes

(45)
x′ = mb1ay(1− x)− (γH + µH)x,

y′ = b2a(1− y)x− (γV + µV )y,

where m = V/H. Furthermore, it is observed that human mortality is
negligible on the time scale of the recovery rate. Also, in epidemiological
literature it is assumed that mosquitoes remain infected practically for the
whole life after becoming infectious. Thus, using µH = γV ≈ 0, (45) can be
written as

(46)
x′ = mb1ay(1− x)− γHx,
y′ = b2a(1− y)x− µV y.

Can we say that that the dynamics described by (45) does not change, when
we simplify it to (46)? To illustrate the application of Theorem 4.1, let us
focus on the disease free equilibrium (0, 0). The Jacobian at this point is
given by

J =

(
−γH mab1
ab2 −µV

)
,

with the characteristic equation λ2 + (γH + µV )λ −ma2b1b2 + γHµV = 0.
Since ∆ = (γH − µV )2 +ma2b1b2 > 0, if

ma2b1b2
γHµV

< 1,

then s(J ) < 0 and (0, 0) is asymptotically stable (in fact, globally asymp-
totically stable in [0, 1]× [0, 1], see [11, Theorem 2.3.1]). Other assumptions
being satisfied, Theorem 4.1 (subject to a small modification to allow for
the fact that µH and γV are not necessarily functions of a single parame-
ter ε) asserts that the solutions to (45) originating from (̊x, ẙ) ∈ [0, 1]× [0, 1]
converge to the solution to (46) with the same initial condition, uniformly
on [0,∞) as γH , µV → 0.

We mention that while in the epidemiological context this result is not
unexpected as we dropped negative terms on the right hand side of (45) so
that the solutions to (46) decay to zero faster than those of (46) mathemat-
ically, however, the result does not depend on the sign of µH and γV .
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