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Abstract. The paper improves approximation theory based on the Trotter–
Kato product formulae. For self-adjoint C0-semigroups we develop a lifting
of the strongly convergent Chernoff approximation (or product) formula to
convergence in the operator-norm topology. This allows to obtain optimal
estimate for the rate of operator-norm convergence of Trotter–Kato product
formulae for Kato functions from the class K2.

1. Introduction

The aim of the paper is to present a new generalised proof of approximation
theory developed in [6, 7]. For self-adjoint Trotter–Kato product formulae
it allows to obtain optimal estimate for the rate of convergence in operator
norm for Kato functions of class Kβ, where β = 2 (see [7]).

Instead of a double-iteration procedure of [7] we extend in this paper
the Chernoff approximation formula [5] and the Trotter–Neveu–Kato ap-
proximation theorem [8], Theorem IX.2.16, to the operator-norm topology.
Essentially we follow here the idea of lifting the strongly convergent Cher-
noff approximation formula to operator-norm convergence [9, 11], whereas
majority of results concerning this formula are about the strong operator
topology, see, for example, review [2]. In the same vein we quote a recent
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book [1], where different aspects of semigroup convergence in the strong
operator topology are presented in great details.

To proceed, we first recall definition of the Kato functions that belong to
the class Kβ.

Definition 1.1. If a real-valued Borel measurable function f : [0,∞) →
[0, 1] satisfying

(1.1) 0 ≤ f(s) ≤ 1, f(0) = 1, f ′(+0) = −1,

is such that for any ε > 0 there exists a positive constant δε < 1 implying

(1.2) f(s) ≤ 1− δε, s ≥ ε,

and that for some β, where 1 < β ≤ 2,

(1.3) [f ]β := sup
s>0

|f(s)− 1 + s|
sβ

<∞,

then f ∈ Kβ.

Some elementary examples of functions satisfying Definition 1.1 are

(1.4) f(s) = e−s, f(s) = (1 + k−1s)−k, k > 0.

Note that the Kato functions of class Kβ are not necessarily monotonously
decreasing, but it is true in a vicinity of s = +0. For more details about
different types of Kato functions see Appendix C in [12].

By Definition 1.1 and by the spectral theorem one gets that for any
non-negative self-adjoint operator A the bounded operator-valued function
t 7→ f(tA) ∈ L(H) is strongly continuous in R+ and right-continuous on
R+

0 = R+ ∪ {0}, that is, s-limt→+0 f(tA) = 1.
One of the main corollaries of the semigroup approximation results estab-

lished in the present paper (Theorem 4.5) is the statement about operator
norm convergence of the Trotter–Kato product formulae, see Section 5.

Proposition 1.2. Let f, g ∈ K2. If A and B are non-negative self-adjoint
operators in a separable Hilbert space H with domains dom A and dom B
such that the operator sum C := A+B is self-adjoint on dom C = dom A∩
dom B, then∥∥[g(tB/n)1/2f(tA/n)g(tB/n)1/2

]n − e−tC∥∥ = O(n−1),(1.5) ∥∥[f(tA/n)g(tB/n)
]n − e−tC∥∥ = O(n−1),(1.6)

for n→∞, hold in the operator norm topology. The convergence is locally
uniform on R+

0 , but if operator C is strictly positive, it is uniform on R+
0 .

Note that the rates of convergence in (1.5) and in (1.6) are optimal, i.e.,
they can not be improved in the general setup [7].
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2. Chernoff approximation formula: strong operator topology

In this section we give a proof of the Chernoff approximation formula in
the strong operator topology, which is alternative to the original one based
on the

√
n-Lemma [5]. In conclusion we relax some conditions of the main

Theorem 2.3.
Let F (·) : R+

0 −→ L(H) be a measurable family of non-negative self-
adjoint contractions F (t) ≤ 1 such that F (0) = 1. We set

(2.1) S(τ) :=
1− F (τ)

τ
, τ > 0.

Then for each τ > 0 bounded operator S(τ) is self-adjoint and positive.
Let H ≥ 0 be self-adjoint operator in H. Then by the Trotter–Neveu–

Kato convergence theorem we obtain that

(2.2) s- lim
τ→+0

(1 + S(τ))−1 = (1 +H)−1,

holds if and only if

(2.3) s- lim
τ→+0

e−tS(τ) = e−tH ,

uniformly in t ∈ I for any closed bounded interval I ⊂ R+
0 . In this case

we say that this convergence holds locally uniformly in t ∈ R+
0 , whereas

if I ⊂ R+, then convergence holds locally uniformly away from zero. For
example, setting τ = t/η for η ≥ 1, we obtain

(2.4) s- lim
η→+∞

e−tS(t/η) = e−tH ,

locally uniformly away from zero.
To proceed, we need the following elementary estimate:

Lemma 2.1. For λ ∈ [0, 1] and r ≥ 1, one has

(2.5) 0 ≤ e−r(1−λ) − λr ≤ 1

r
.

The next assertion serves to lift the weak convergence of vectors {un}n≥1

in H to the strong convergence of this sequence.

Lemma 2.2. Let {un}n≥1 be a weakly convergent sequence of vectors,
w-limn→∞ un = u, in a Hilbert space H. If, in addition, limn→∞ ‖un‖ = ‖u‖,
then s-limn→∞ un = u.

Proof. Note that

‖un − u‖2 = ‖un‖2 + ‖u‖2 − 2 Re (un, u).

Then by conditions of the lemma this yields s-limn→∞ un = u. �

Now we are in position to prove the Chernoff approximation formula for
self-adjoint semigroups in the strong operator topology.
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Theorem 2.3. Let F (·) : R+
0 −→ L(H) be a measurable family of non-

negative self-adjoint contractions such that F (0) = 1 and let H ≥ 0 be a
self-adjoint operator in H. The convergence

(2.6) s- lim
η→+∞

F (t/η)η = e−tH ,

holds locally uniformly in t away from zero if and only if the condition (2.2)
is satisfied.

Proof. First we assume that condition (2.2) is satisfied. Let us show that

(2.7) s- lim
η→+∞

(
F (t/η)η − e−tS(t/η)

)
= 0,

locally uniformly in t > 0. To this end we use the spectral functional
calculus for self-adjoint operators to obtain the representation

(2.8) F (τ)r−e−r(1−F (τ)) =

∫
[0,1]

dEF (τ)(λ)
(
λr − e−r(1−λ)

)
, τ > 0, r ≥ 1.

Then inequality (2.5) yields the estimate∥∥∥(F (τ)r − e−r(1−F (τ))
)
u
∥∥∥ ≤ r−1‖u‖, r ≥ 1, u ∈ H.

Setting τ = t/η, η ≥ 1, and r = t/τ ≥ 1, we obtain∥∥∥(F (t/η)η − e−tS(t/η)
)
u
∥∥∥ ≤ η−1‖u‖, η ≥ 1, u ∈ H.

This proves the limit (2.7) locally uniformly in t away from zero. Since
condition (2.2) is equivalent to (2.4), the representation

F (t/η)η − e−tH = F (t/η)η − e−tS(t/η) + e−tS(t/η) − e−tH , η ≥ 1, t > 0,

and (2.7) yield (2.6) .
Conversely, assume that (2.6) is satisfied. Using representation

e−tS(t/η) − e−tH = F (t/η)η − e−tH + e−tS(t/η) − F (t/η)η,

we get from (2.6) and (2.7) that (2.4) holds locally uniformly in t away from
zero. For τ = t/η, we verify that convergence in (2.3) holds locally uniformly
in t ∈ R+

0 . Then by the Trotter–Neveu–Kato convergence theorem the limit
(2.3) implies (2.2). �

The limit (2.6) yields in particular that the semigroup approximation
formula

(2.9) s- lim
n→∞

F (t/n)n = e−tH ,

also holds locally uniformly away from zero for the sequence when η = n ∈
N.

We note that formula (2.9) follows from general Banach space Chernoff
approximation formula, see Theorem 2.2 in [11], as a particular case for
self-adjoint semigroups.
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Lemma 2.4. Let K(·) : R+ → L(H) be a measurable family of non-negative
self-adjoint operators and let H be a non-negative self-adjoint operator. If
the weak operator limit:

(2.10) w- lim
τ→+0

(λ1 +K(τ))−1 = (λ1 +H)−1,

for each λ > 0, then it is also true in the strong operator topology:

(2.11) s- lim
τ→+0

(λ1 +K(τ))−1 = (λ1 +H)−1.

Proof. By virtue of (2.10) we get

(2.12) lim
τ→+0

‖(λ1+K(τ))−1/2u‖ = ‖(λ1 +H)−1/2u‖, u ∈ H,

for λ > 0. Since

(λ1 +K(τ))−1/2 =
1

π

∫ ∞
0

dx
1√
x

(x1 + λ1 +K(τ))−1,

the limit (2.10) yields w-limτ→+0(λ1 + K(τ))−1/2 = (λ1 + H)−1/2. This,
together with (2.12) and the lifting Proposition 2.2, imply s-limτ→+0(λ1+

K(τ))−1/2 = (λ1 + H)−1/2. Since the product of operators is strongly
continuous, this limit yields (2.11). �

Taking into account Lemma 2.4, the conditions of Theorem 2.3 can be
relaxed as follows.

Theorem 2.5. Let F (·) : R+
0 −→ L(H) be a measurable family of non-

negative contractions such that F (0) = 1 and let H ≥ 0 be a self-adjoint
operator in H. The statement (2.6) is valid if and only if for each λ > 0 the
condition

(2.13) w- lim
τ→+0

(λ1 + S(τ))−1 = (λ1 +H)−1,

is satisfied.

We skip the proof since the line of reasoning is straightforward.

3. Lifting the Chernoff approximation formula to operator-norm
topology

A natural question arises: can the limit (2.6) in Theorem 2.3 (or in Theo-
rem 2.5) be lifted to convergence in the operator-norm topology?

First we note that in contrast to quasi-sectorial contractions [10], the es-
timates for self-adjoint contraction C in the Chernoff

√
n-Lemma [5] and in

its refinement due to the 1/ 3
√
n -Theorem (see Lemma 2.1 and Theorem 3.3

in [11]) can be significantly improved. Namely, the spectral functional cal-
culus of self-adjoint contraction C and Lemma 2.1 yield

(3.1)
∥∥Cn − en(C−1)

∥∥ =

∥∥∥∥∫ 1

0
dEC(λ)

(
λn − en(λ−1)

)∥∥∥∥ ≤ 1

n
, n ∈ N.



180 V. A. Zagrebnov

Similarly to the case of the strong operator topology, the next step in the
program of lifting the approximation formula to operator-norm topology in-
volves the lifting of the Trotter–Neveu–Kato convergence theorem. There-
fore, we proceed with the following lemma, which is well suited for self-
adjoint lifting of this theorem.

Lemma 3.1. Let K and L be non-negative self-adjoint operators in a Hilbert
space H. Then

(3.2)
∥∥e−K − e−L∥∥ ≤ c∥∥(1 +K)−1 − (1+ L)−1

∥∥
with a constant c > 0 independent of operators K and L.

Proof. By the Riesz–Dunford functional calculus, one obtains for the dif-
ference of exponentials the representation

(3.3) e−K − e−L =
1

2πi

∫
Γ
dz e−z

(
(z −K)−1 − (z − L)−1

)
,

where the contour Γ is a union of two branches: Γ = Γ0 ∪ Γ∞, with

Γ0 = {z ∈ C : z = eiϕ, π/4 ≤ ϕ ≤ 2π − π/4},

Γ∞ = {z ∈ C : z = re±iπ/4, r ≥ 1}.
(3.4)

From (3.3) we find the representation

e−K−e−L =
1

2πi

∫
Γ
dz e−z(1 +K)(z −K)−1 ×

×
[
(1 + L)−1 − (1 +K)−1

]
(1 + L)(z − L)−1.

(3.5)

Since (1+K)(z −K)−1 = −1+ (1 + z)(z −K)−1, one gets the estimate∥∥(1 +K)(z −K)−1
∥∥ ≤ 1 +

1 + |z|
dist (z,R+)

.

Setting

cΓ := sup
z∈Γ

1 + |z|
dist (z,R+)

<∞,

we find

(3.6) sup
z∈Γ

∥∥(1 +K)(z −K)−1
∥∥ ≤ (1 + cΓ),

where the constant cΓ depends only on Γ but not on the operator K. Sim-
ilarly, from (3.6) one also gets

sup
z∈Γ

∥∥(1 + L)(z − L)−1
∥∥ ≤ (1 + cΓ).

Using these estimates, we find from (3.5) that∥∥e−K − e−L∥∥ ≤ c∥∥(1 +K)−1 − (1+ L)−1
∥∥
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with

c :=
1

2π
(1 + cΓ)2

∫
Γ
|dz| |e−z|.

Since for z ∈ Γ∞ the value of <e z > 0, the integral is convergent and c
depends only on the contour Γ. �

The first step towards the proof the operator-norm convergence of the
Chernoff approximation formula (2.6) would be lifting of the strong conver-
gence in (2.2) to the operator-norm convergence. To study the consequence
of this lifting we prove the following assertion.

Lemma 3.2. Let F (·) : R+
0 −→ L(H) be a measurable family of non-

negative self-adjoint contractions such that F (0) = 1. Let self-adjoint family
{S(τ)}τ>0 be defined by (2.1)–(2.2), where H is a non-negative self-adjoint
operator in H. Then the condition

(3.7) lim
τ→+0

‖(1 + S(τ))−1 − (1 +H)−1‖ = 0,

is satisfied if and only if

(3.8) lim
η→∞

sup
t∈I
‖(1 + tS(t/η))−1 − (1 + tH)−1‖ = 0,

for any closed interval I ⊂ R+, i.e., locally uniformly away from zero.

Proof. A straightforward computation shows that

(1 + tS(τ))−1 − (1 + tH)−1 = t(1+ S(τ))(1 + tS(τ))−1[(1 + S(τ))−1

− (1 +H)−1](1 +H)(1 + tH)−1.

Here we used the fact that if t > 0 and τ > 0, then for self-adjoint operator
S(τ) the closure

(1 + tS(τ))−1(1 + S(τ)) = (1 + S(τ))(1 + tS(τ))−1.

For these values of arguments t and τ we get

‖(1 + S(τ))(1 + tS(τ))−1‖ ≤ (1 + 2/t),

‖(1 +H)(1 + tH)−1‖ ≤ (1 + 2/t).

If I is a closed interval of R+, for example, I := [a, b], 0 < a < b < ∞,
then

‖(1 + tS(τ))−1 − (1 + tH)−1‖ ≤ b(1 + 2/a)2‖(1 + S(τ))−1 − (1 +H)−1‖,
for t ∈ I and τ > 0. Setting τ = t/η we find

(3.9)
‖(1 + tS(t/η))−1 − (1 + tH)−1‖

≤ b(1 + 2/a)2‖(1 + S(t/η))−1 − (1 +H)−1‖.
Since by (3.7) we obtain for the last factor in the right-hand side of (3.9)

lim
η→∞

sup
t∈I
‖(1 + S(t/η))−1 − (1 +H)−1‖ = 0,
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the estimate (3.9) yields (3.8). The converse is obvious. �

Lemma 3.2 allows to advance in generalisation of self-adjoint Chernoff
approximation formula for operator-norm convergence.

Theorem 3.3. Let F (·) : R+
0 −→ L(H) be a measurable family of non-

negative self-adjoint contractions such that F (0) = 1. Let self-adjoint family
{S(τ)}τ>0 be defined by (2.1)–(2.2), where H ≥ 0 is self-adjoint operator in
H. Then we have

(3.10) lim
η→∞

sup
t∈I

∥∥F (t/η)η − e−tH
∥∥ = 0,

for any closed interval I ⊂ R+, if and only if the family {S(τ)}τ>0 satisfies
condition (3.7).

Proof. For t > 0 and η > 0, we obviously have the estimate

(3.11)
∥∥F (t/η)η − e−tH

∥∥ ≤ ∥∥F (t/η)η − e−tS(t/η)
∥∥+

∥∥e−tS(t/η) − e−tH
∥∥.

By the functional calculus of self-adjoint contraction C := F (τ), Lemma
2.1 yields estimate (3.1), which improves the Chernoff

√
n-Lemma [5], as

well as an estimate in [11]. Then (3.1), for continuous variable n = η, and
(3.11), where S(t/η) is defined by (2.1), imply

(3.12)
∥∥F (t/η)η − e−tH

∥∥ ≤ 1

η
+
∥∥e−tS(t/η) − e−tH

∥∥, t > 0, η > 0 .

Note that by Lemma 3.1, there is a constant c > 0 such that

(3.13)
∥∥e−tS(t/η) − e−tH

∥∥ ≤ c∥∥(1 + tS(t/η))−1 − (1 + tH)−1
∥∥,

for t > 0, η > 0. Inserting the estimate (3.13) into (3.12), we obtain

(3.14)
∥∥F (t/η)η − e−tH

∥∥ ≤ 1

η
+ c
∥∥(1 + tS(t/η))−1 − (1 + tH)−1

∥∥,
Then applying Lemma 3.2, we get (3.10).

Conversely, let us assume (3.10). Note that∥∥e−tS(t/η) − e−tH
∥∥ ≤ ∥∥F (t/η)η − e−tH

∥∥+
∥∥F (t/η)η − e−tS(t/η)

∥∥,
for t > 0 and η > 0. Applying to the last term the spectral representation
for F (t) and Lemma 2.1 for the corresponding integrand, we find for t > 0
and η > 0

(3.15)
∥∥e−tS(t/η) − e−tH

∥∥ ≤ ∥∥F (t/η)η − e−tH
∥∥+

1

η
.

Then by assumption (3.10) the estimate (3.15) yields

(3.16) lim
η→∞

sup
t∈I

∥∥e−tS(t/η) − e−tH
∥∥ = 0,
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locally uniformly away from zero. Hence, the limit limη→∞
∥∥e−tS(t/η) −

e−tH
∥∥ = 0, or equivalently limτ→+0

∥∥e−tS(τ) − e−tH
∥∥ = 0, holds for any

t > 0.
Now, using representation:

(3.17) (1 + S(τ))−1 − (1 +H)−1 =

∫ ∞
0

ds e−s
(
e−sS(τ) − e−sH

)
,

we obtain the estimate

(3.18) ‖(1 + S(τ))−1 − (1 +H)−1‖ ≤
∫ ∞

0
ds e−s

∥∥e−sS(τ) − e−sH
∥∥ .

Let Φτ (s) := e−s
∥∥e−sS(τ) − e−sH

∥∥. Since S(τ) ≥ 0 and H ≥ 0, one gets
Φτ (s) ≤ 2 e−s ∈ L1(R+

0 ) and limτ→+0 Φτ (s) = 0. Then limit limτ→+0 in
the right-hand side of (3.18) is zero by the Lebesgue dominated convergence
theorem, that yields (3.7). �

Lemma 3.4. Let {Xn}n>0 be a sequence of bounded non-negative self-
adjoint operators such that limn→∞ ‖Xn − X‖ = 0 for a linear operator
X. Then
(i) X ∈ L(H) and X = X∗ ≥ 0;
(ii) for any continuous function g(·) : [0, ‖X‖] −→ R one gets

lim
n→∞

‖g(Xn)− g(X)‖ = 0.

Proof. (i) This part is a straightforward corollary of the properties of the
sequence {Xn}n≥1.
(ii) Note that limn→∞ ‖Xn − X‖ = 0 implies limn→∞ ‖Xn

n − Xn‖ = 0 for
n ∈ N, and estimate ‖Xn‖ ≤ ‖X‖+ δ for any δ > 0, where n > N(δ). Then

lim
n→∞

‖p(Xn)− p(X)‖ = 0,

for any polynomial p : [0, ‖X‖] −→ R.
By the Weierstrass theorem, polynomials are dense in the set of con-

tinuous functions C∞([0, ‖X‖]) in topology ‖ · ‖∞ of uniform convergence.
Thus, for any given ε > 0, we can find polynomial p(·) such that ‖g−p‖∞ =
supx∈[0,‖X‖] |g(x)− p(x)| < ε/3. Then by spectral representation for opera-
tors X and Xn, we obtain for n > N(ε):

‖g(X)− p(X)‖ < ε/3 ,

‖g(Xn)− p(Xn)‖ < ε/3 .

Now taking n > N(δ) ∧ N(ε), one gets ‖p(Xn) − p(X)‖ < ε/3, which
consequently yields the estimate ‖g(Xn)− g(X)‖ < ε and therefore proves
the lemma. �

Corollary 3.5. Let F (·) : R+
0 −→ L(H) be a measurable family of non-

negative self-adjoint contractions such that F (0) = 1. Let self-adjoint family
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{S(τ)}τ>0 be defined by (2.1)–(2.2), where H is non-negative self-adjoint
operator in H. If

(3.19) lim
η→∞

∥∥F (t0/η)η − e−t0H
∥∥ = 0,

holds for some t0 > 0, then (3.10) holds for any closed interval I ⊂ R+.

Proof. We use the representation

(3.20) F (t/η)η = (F (t0/ν)ν)t/t0 , ν :=
t0
t
η, t > 0.

Let X := e−t0H and Xν := F (t0/ν)ν . Then by assumption (3.19),
limν→∞ ‖Xν − X‖ = 0. Now, let function x 7→ g(x) := xt/t0 be defined
for x ≥ 0. Then by Lemma 3.4, we obtain

lim
ν→∞

∥∥Xt/t0
ν −Xt/t0

∥∥ = 0 ,

and by virtue of representation (3.20) it follows that limη→∞
∥∥F (t/η)η −

e−tH
∥∥ = 0 holds for any t ∈ R+.

Now, proceeding as above in the proof of Theorem 3.3, one deduces (3.18),
which yields (3.7). Finally, applying Theorem 3.3, we obtain (3.10) for any
closed interval I ⊂ R+. �

Since by definition of {e−sS(τ)}s≥0 and by C0-semigroup property of
{e−sH}t≥0 the corresponding strong limits: s-lims→+0 , are well-defined,
the limτ→+0

∥∥e−sS(τ) − e−sH
∥∥ = 0 in (3.18) is valid also for s = 0. A ques-

tion arises: what happens if the condition (3.16) is satisfied uniformly for
any bounded interval I ⊂ R+

0 ?

Theorem 3.6. Let F (·) : R+
0 −→ L(H) be a measurable family of non-

negative self-adjoint contractions such that F (0) = 1. Let self-adjoint family
{S(τ)}τ>0 be defined by (2.1)–(2.2), where H is non-negative self-adjoint
operator in H. Then the convergence

(3.21) lim
τ→+0

sup
t∈I

∥∥e−tS(τ) − e−tH
∥∥ = 0,

holds for any bounded interval I ⊂ R+
0 if and only if the condition

(3.22) lim
τ→0

sup
t∈I
‖(1 + tS(τ))−1 − (1 + tH)−1‖ = 0,

is valid for any bounded interval I ⊂ R+
0 .

Proof. By conditions of theorem and by Lemma 3.1, we obtain from (3.13)
the estimate

sup
t∈I

∥∥e−tS(τ) − e−tH
∥∥ ≤ c sup

t∈I
‖(1 + tS(τ))−1 − (1 + tH)−1‖ ,

for τ > 0 and for any bounded interval I ⊂ R+
0 . This estimate and condition

(3.22) imply the convergence in (3.21).
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Conversely, assume (3.21). Note that by representation (3.17), one gets

(1+ tS(τ))−1 − (1+ tH)−1 =

∫ ∞
0

ds e−s
(
e−s tS(τ) − e−s tH

)
, t ≥ 0 ,

that yields the estimate∥∥(1 + tS(τ))−1 − (1 + tH)−1
∥∥ ≤ ∫ ∞

0
ds e−s

∥∥e−s tS(τ) − e−s tH
∥∥,

for τ > 0 and t ≥ 0.
Now, let 0 < ε < 1 and let Nε := − ln(ε/2). Then∫ ∞

Nε

ds e−s
∥∥e−s tS(τ) − e−s tH

∥∥ ≤ ε,
for τ > 0 and t ≥ 0. Hence,∥∥(1 + tS(τ))−1 − (1 + tH)−1

∥∥ ≤ ∫ Nε

0
ds e−s

∥∥e−stS(τ) − e−stH
∥∥+ ε,

that yields

sup
t∈I

∥∥(1+ tS(τ))−1 − (1 + tH)−1
∥∥ ≤ sup

t ∈ I
s ∈ [0, Nε]

∥∥e−s tS(τ) − e−s tH
∥∥+ ε,

for τ > 0 and for any bounded interval I of R+
0 . Applying (3.21), we obtain

lim
τ→+0

sup
t∈I

∥∥(1+ tS(τ))−1 − (1 + tH)−1
∥∥ ≤ ε,

for any ε > 0. This completes the proof of (3.22). �

Now we are in position to prove another version of Theorem 3.3 for the
operator-norm Chernoff approximation formula. We relax the restriction
I ⊂ R+ to condition I ⊂ R+

0 , but for (3.8) instead of (3.7).

Theorem 3.7. Let F (·) : R+
0 −→ L(H) be a measurable family of non-

negative self-adjoint contractions such that F (0) = 1. Let self-adjoint family
{S(τ)}τ>0 be defined by (2.1)–(2.2), where H is non-negative self-adjoint
operator in H. Then

(3.23) lim
η→∞

sup
t∈I

∥∥F (t/η)η − e−tH
∥∥ = 0,

for any bounded interval I ⊂ R+
0 if and only if

(3.24) lim
η→∞

sup
t∈I

∥∥(1 + tS(t/η))−1 − (1 + tH)−1
∥∥ = 0,

is satisfied for any bounded interval I ⊂ R+
0 .
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Proof. By (3.14) and by assumption (3.24), we obtain the limit (3.23).
Conversely, using (3.15) and assumption (3.23), one gets (3.21) for τ = t/η
and for any bounded interval I ⊂ R+

0 . Then application of Theorem 3.6
yields (3.24). �

4. Operator-norm approximation and estimates of the rate of con-
vergence

Theorem 3.7 admits further modifications. In particular, it allows estab-
lishing estimates for the rate of operator-norm convergence.

Theorem 4.1. Let F (·) : R+
0 −→ L(H) be a measurable family of non-

negative self-adjoint contractions such that F (0) = 1. Let self-adjoint family
{S(τ)}τ>0 be defined by (2.1)–(2.2), where H is non-negative self-adjoint
operator in H.
(i) If ρ ∈ (0, 1] and there is a constant Mρ > 0 such that the estimate

(4.1) ‖(1 + tS(τ))−1 − (1 + tH)−1‖ ≤Mρ

(τ
t

)ρ
,

holds for τ, t ∈ (0, 1] and 0 < τ ≤ t, then there is a constant cρ > 0 such
that the estimate

(4.2) ‖F (τ)t/τ − e−tH‖ ≤ cρ
(τ
t

)ρ
,

is valid for 0 < τ ≤ t ≤ 1.
(ii) If ρ ∈ (0, 1) and there is a constant cρ such that (4.2) holds, then there
is a constant Mρ > 0 such that the estimate (4.1) is valid for 0 < τ ≤ t ≤ 1.

Proof. (i) By Lemma 3.1, there is a constant c > 0 such that

(4.3)
∥∥e−tS(τ) − e−tH

∥∥ ≤ c‖(1 + tS(τ))−1 − (1+ tH)−1‖,
for τ, t > 0. Using (4.1), we obtain∥∥e−tS(τ) − e−tH

∥∥ ≤ c Mρ

(τ
t

)ρ
.

If 0 < τ ≤ t, the inequality (2.5) and the spectral representation for F (τ)
(2.8) yield

(4.4)
∥∥F (τ)t/τ − e−tS(τ)

∥∥ ≤ τ

t
.

Then estimate

(4.5)
∥∥F (τ)t/τ − e−tH

∥∥ ≤ ∥∥F (τ)t/τ − e−tS(τ)
∥∥+

∥∥e−tS(τ) − e−tH
∥∥

gives ∥∥F (τ)t/τ − e−tH
∥∥ ≤ τ

t
+ c Mρ

(τ
t

)ρ
,

for τ, t ∈ (0, 1] with 0 < τ ≤ t. Since for ρ ∈ (0, 1] one has τ/t ≤ (τ/t)ρ,
this implies

(4.6)
∥∥F (τ)t/τ − e−tH

∥∥ ≤ (1 + c Mρ)
(τ
t

)ρ
.
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Setting cρ := 1 + c Mρ, we prove (4.2) for ρ ∈ (0, 1].
(ii) To prove (4.1), we use the representation

(1 + tS(τ))−1 − (1+ tH)−1 =

∫ ∞
0

dx e−x
(
e−xtS(τ) − e−xtH

)
,

for τ, t > 0. Then we get

(1 + tS(τ))−1 − (1+ tH)−1 =
∞∑
n=0

∫ n+1

n
dx e−x

(
e−xtS(τ) − e−xtH

)
.

Substitution x = y + n yields

(1 + tS(τ))−1 − (1 + tH)−1

=

∞∑
n=0

e−n
∫ 1

0
dy e−y

(
e−(y+n)tS(τ) − e−(y+n)tH

)
.

Since

e−(y+n) t S(τ) − e−(y+n) tH

=
(
e−n t S(τ) − e−n tH

)
e−y t S(τ) + e−n tH

(
e−y t S(τ) − e−y tH

)
,

and

e−n tS(τ) − e−n tH =

n−1∑
k=0

e−ktS(τ)
(
e−tS(τ) − e−tH

)
e−(n−k−1)tH ,

we get

(1+ tS(τ))−1 − (1+ tH)−1

=
∞∑
n=0

e−n
{( n−1∑

k=0

e−ktS(τ)
(
e−tS(τ) − e−tH

)
e−(n−k−1)tH

)∫ 1

0
dy e−y e−ytS(τ)

+ e−ntH
∫ 1

0
dy e−y

(
e−ytS(τ) − e−ytH

)}
.

Hence, we obtain for τ, t > 0 the estimate

(4.7)

‖(1 + tS(τ))−1 − (1 + tH)−1‖

≤
∞∑
n=0

e−n
{
n
∥∥e−tS(τ) − e−tH

∥∥+

∫ 1

0
dy e−y

∥∥e−ytS(τ) − e−ytH
∥∥}.

Note that assumption (4.2) and estimate (4.4) yield

(4.8)
∥∥e−tS(τ) − e−tH

∥∥ ≤ (1 + cρ)
(τ
t

)ρ
,
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for 0 < τ ≤ t ≤ 1. To treat the last term in (4.7) we use decomposition

(4.9)

∫ 1

0
dy e−y

∥∥e−ytS(τ) − e−ytH
∥∥

=

∫ 1

τ/t
dy e−y

∥∥e−ytS(τ) − e−ytH
∥∥+

∫ τ/t

0
dy e−y

∥∥e−ytS(τ) − e−ytH
∥∥.

Hence, by (4.8) we obtain∥∥e−ytS(τ) − e−ytH
∥∥ ≤ (1 + cρ)

(
τ

ty

)ρ
,

for τ, t, y ∈ (0, 1] and τ/t ≤ y. This yields the estimate

(4.10)
∫ 1

τ/t
dy e−y

∥∥e−ytS(τ) − e−ytH
∥∥ ≤ (1 + cρ)

∫ 1

0
dy e−yy−ρ

(τ
t

)ρ
,

for 0 < τ ≤ t ≤ 1 and ρ ∈ (0, 1). Since ρ < 1, one gets

(4.11)
∫ τ/t

0
dy e−y

∥∥e−ytS(τ) − e−ytH
∥∥ ≤ 2

(τ
t

)ρ
.

Taking into account (4.10) and (4.11), we obtain from (4.9) the estimate

(4.12)
∫ 1

0
dy e−y

∥∥e−ytS(τ)−e−ytH
∥∥ ≤ ((1+cρ)

∫ 1

0
dy e−yy−ρ+2

)(τ
t

)ρ
.

Finally, using (4.8) and (4.12), one gets for (4.7) the estimate

‖(1 + tS(τ))−1 − (1 + tH)−1‖ ≤
∞∑
n=0

e−n
{
n (1 + cρ) + (1 + cρ)

∫ 1

0
dy e−yy−ρ + 2

}(τ
t

)ρ
.

Now setting

(4.13) Mρ :=
∞∑
n=0

e−n
{
n (1 + cρ) + (1 + cρ)

∫ 1

0
dy e−yy−ρ + 2

}
,

we obtain the estimate (4.1) for 0 < τ ≤ t ≤ 1. �

In Theorem 4.1(i) it is shown that for ρ = 1 the condition (4.1) implies
(4.2). Since integral in (4.13) diverges for ρ = 1, it is unclear whether the
converse is also true. Hence, Theorem 4.1(ii) does not cover this case.

Note that the setting τ = t/η transforms inequality (4.2) into

(4.14) sup
t∈[0,1]

∥∥F (t/η)η − e−tH
∥∥ ≤ cρ 1

ηρ
, η ≥ 1.

This inequality gives the convergence rate estimate for restricted interval:
t ∈ (0, 1], and local conditions: 0 < τ ≤ t ≤ 1. The same conditions yield
generalisation of (4.14) to any bounded interval I ⊂ R+

0 .
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Theorem 4.2. Let F (·) : R+
0 −→ L(H) be a measurable family of non-

negative self-adjoint contractions such that F (0) = 1. Let self-adjoint family
{S(τ)}τ>0 be defined by (2.1)–(2.2), where H is a non-negative self-adjoint
operator in H.

If for some ρ ∈ (0, 1] there is a constant Mρ > 0 such that the estimate
(4.1) holds for τ, t ∈ (0, 1] and 0 < τ ≤ t, then for any bounded interval
I ⊂ R+

0 there is a constant cIρ > 0 such that the estimate

(4.15) sup
t∈I

∥∥F (t/η)η − e−tH
∥∥ ≤ CIρ 1

ηρ
,

holds for η ≥ 1.

Proof. Let N ∈ N such that I ⊆ [0, N ]. Then representation

F (t/Nη)Nη − e−tH

=

N−1∑
k=0

e−k tH/N (F (t/Nη)η − e−tH/N )F (t/Nη)(N−1−k)η,

yields the estimate∥∥F (t/Nη)Nη − e−tH
∥∥ ≤ N∥∥F (t/Nη)η − e−tH/N

∥∥.
Let t′ := t/N and τ ′ := t′/η, η ≥ 1. Then 0 < τ ′ ≤ t′ ≤ 1. Applying
Theorem 4.1, we find that∥∥F (t/Nη)η − e−tH/N

∥∥ =
∥∥F (τ ′)t

′/τ ′ − e−t′H
∥∥ ≤ cρ(τ ′

t′

)ρ
.

This implies for 0 < τ ′ ≤ t′ ≤ 1, i.e., for t ≤ N the estimate∥∥F (t/Nη)Nη − e−tH
∥∥≤ cρN (τ ′

t′

)ρ
.

Since τ ′ = t′/η, then for η′ := Nη ≥ 1 we get, cf. (4.14),∥∥F (t/η′)η
′ − e−tH

∥∥ ≤ cρN1+ρ

(
1

η′

)ρ
, t ∈ [0, N ].

Setting c
[0,N ]
ρ := cρN

1+ρ, we get the proof of the theorem for I = [0, N ].
Since for any bounded interval I one can always find a N ∈ N such that
I ⊆ [0, N ], this completes the proof. �

To extend this result to I = R+
0 one needs global conditions for 0 < τ ≤

t <∞.

Theorem 4.3. Let F (·) : R+
0 −→ L(H) be a measurable family of non-

negative self-adjoint contractions such that F (0) = 1. Let self-adjoint family
{S(τ)}τ>0 be defined by (2.1)–(2.2), where H is a non-negative self-adjoint
operator in H.
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If for some ρ ∈ (0, 1] there is a constant Mρ > 0 such that the estimate
(4.1) holds for 0 < τ ≤ t < ∞, then there is a constant cR

+

ρ > 0 such that
the estimate

(4.16) sup
t∈R+

0

∥∥F (t/η)η − e−tH
∥∥ ≤ cR+

ρ

1

ηρ
,

holds for η ≥ 1.

Proof. The line of reasoning that leads from (4.3) to the estimate (4.6) is
obviously still valid if we assume 0 < τ ≤ t <∞. Then setting τ := t/η, we
deduce from (4.6) ∥∥F (t/η)η − e−tH

∥∥ ≤ cR+

ρ

1

ηρ
, η ≥ 1,

where cR
+

ρ := 1 + cMρ and t ∈ R+
0 . �

For the case ρ = 1 the assumption (4.1) can be simplified and reduced to
t-independent canonical form (3.7). To use Theorem 4.1 and Theorem 4.2,
we return to local conditions: 0 < τ ≤ t ≤ 1.

Theorem 4.4. Let F (·) : R+
0 −→ L(H) be a measurable family of non-

negative self-adjoint contractions such that F (0) = 1. Let self-adjoint family
{S(τ)}τ>0 be defined by (2.1)–(2.2), where H is a non-negative self-adjoint
operator in H.

If there is a constant M1 > 0 such that the estimate

(4.17) ‖(1 + S(τ))−1 − (1 +H)−1‖ ≤M1τ ,

holds for τ ∈ (0, 1], then for any bounded interval I ⊂ R+
0 there is a constant

cI1 > 0 such that the estimate

(4.18) sup
t∈I

∥∥F (t/η)η − e−tH
∥∥ ≤ cI1 1

η
,

holds for η ≥ 1.

Proof. For t > 0 the identity

(1 + tS(τ))−1 − (1 + tH)−1

= t(1 + S(τ))(1 + tS(τ))−1[(1 + S(τ))−1− (1 +H)−1](1 +H)(1 + tH)−1,

yields estimate

‖(1+ tS(τ))−1 − (1 + tH)−1‖
≤M1τ t ‖(1 + S(τ))(1 + tS(τ))−1‖‖(1 +H)(1 + tH)−1‖ ,

(4.19)

where we used condition (4.17).
Let 0 < t ≤ 1. Then ‖(1+S(τ))(1+ tS(τ))−1‖ ≤ 1/t and ‖(1+H)((1+

tH)−1‖ ≤ 1/t. Therefore (4.19) implies estimate (4.1) for 0 < τ ≤ t ≤ 1
and ρ = 1. By virtue of Theorem 4.1 we obtain (4.14). Finally, applying
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Theorem 4.2 for ρ = 1 we extend the proof of (4.18) to any bounded interval
I ⊂ R+

0 . �

To extend Theorem 4.4 (case ρ = 1) to infinite interval I = R+
0 we add

more conditions, including a global one.

Theorem 4.5. Let in addition to conditions of Theorem 4.4 the operator
H ≥ µ1, µ > 0. Moreover, we assume that for any ε ∈ (0, 1] there exists
δε ∈ (0, 1) such that

(4.20) 0 ≤ F (τ) ≤ (1− δε)1,
is valid for τ ≥ ε, cf. Definition 1.1. If there is constant M1 > 0 such that
the (4.17) holds for τ ∈ (0, ε), then there exists constant cR

+

1 > 0 such that
estimate (4.18) is valid for infinite interval I = R+

0 .

Proof. Since (4.17) implies the resolvent-norm convergence of {S(τ)}τ>0,
when τ → +0, and since H ≥ µ1, there exists 0 < µ′ ≤ µ such that
S(τ) ≥ µ′1 for τ ∈ (0, ε), where ε ≤ 1.

On the other hand, (4.19) yields that for t > 0

‖(1+ tS(τ))−1 − (1 + tH)−1‖ =

≤M1
τ

t
‖(1 + S(τ))(1/t+ S(τ))−1‖‖(1 +H)(1/t+H)−1‖ .

(4.21)

Since S(τ) ≥ µ′1, τ ∈ (0, ε), and H ≥ µI, for t > 0 we obtain estimates

‖(1 + S(τ))(1/t+ S(τ))−1‖ ≤ 1 + µ′

µ′
,

‖(1 +H)(1/t+H)−1‖ ≤ 1 + µ

µ
.

(4.22)

By (4.21) these estimates give

(4.23) ‖(1+ tS(τ))−1 − (1+ tH)−1‖ ≤MR+

1

τ

t
,

for τ ∈ (0, ε) and 0 < t <∞. Here MR+

1 := M1 (1 + µ′)(1 + µ)/µ′µ.
Note that if τ/t ≤ 1, then (4.23), for 0 < τ ≤ t < ∞ and τ ∈ (0, ε),

satisfies conditions of Theorem 4.3. Indeed, for τ/t ≤ 1 and spectral repre-
sentation for F (τ) ≥ 0 we obtain the estimate∥∥F (τ)t/τ − e−tS(τ)

∥∥ ≤ τ

t
, 0 < τ ≤ t <∞,

which together with (4.3) for (4.23) and (4.5) allow to extend the result
(4.18) of Theorem 4.4 to the case 0 < τ ≤ t <∞, for τ = t/η, η ≥ 1. Since,
τ = t/η < ε, this yields

(4.24)
∥∥F (t/η)η − e−tH

∥∥ ≤ ĉ R+

1

1

η
,

where ĉ R+

1 := 1 + cMR+

1 for interval t ∈ [0, εη).
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Now let t ≥ εη. Then by assumption (4.20) we have

(4.25) ‖F (t/η)η‖ ≤ (1− δε)η = eη ln(1−δε), t ≥ ηε.

Note that H ≥ µ1 implies ‖e−tH‖ ≤ e−ηεµ for t ≥ ηε. This together with
(4.24) and (4.25) yield the estimate∥∥F (t/η)η − e−tH

∥∥ ≤ ĉ R+

1

1

η
+ eη ln(1−δε) + e−ηεµ,

for ε > 0, cf. (4.23) and for any t ≥ 0.
Since c̃1 := supη≥1 η(eη ln(1−δε)+e−ηεµ) <∞, there exists constant cR

+

1 :=

ĉR
+

1 + c̃1 such that (4.18) is valid for η ≥ 1 and infinite interval I = R+
0 �

5. Concluding remarks

1. Let the Kato functions f, g ∈ K2 (Definition 1.1) and a measurable family
of non-negative self-adjoint contractions with F (0) = 1 be defined by

F (t) := g(tB)1/2f(tA)g(tB)1/2 , t ≥ 0.

Here A and B are positive self-adjoint operators in a Hilbert space H with
domains dom A and dom B such that the operator sum C := A + B is
self-adjoint on dom C = dom A ∩ dom B.

Then by (1.2) the family {F (t)}t≥0 satisfies condition (4.20), i.e., Theo-
rem 4.5 yields (1.5) in Proposition 1.2 for H = C and for discrete choice of
continuous parameter: η = n, where n ∈ N.

2. To prove convergence of the sequences of non-self-adjoint approxi-
mants (1.6), we note that for n ∈ N and t ≥ 0:

(f(tA/n)g(tB/n))n = f(tA/n)g(tB/n)1/2F (t/n)n−1g(tB/n)1/2.

Using the representation

(f(tA/n)g(tB/n))n − e−tC

= f(tA/n)g(tB/n)1/2(F (t/n)n−1 − e−tC)g(tB/n)1/2

+ f(tA/n)g(tB/n)1/2e−tC(g(tB/n)1/2 − 1)

+ f(tA/n)(g(tB/n)1/2 − 1)e−tC + (f(tA/n)− 1)e−tC ,

we obtain the following estimate:∥∥(f(tA/n)g(tB/n))n − e−tC
∥∥ ≤ ∥∥F (t/n)n−1 − e−tC

∥∥
+ 2
∥∥(1− g(tB/n)1/2)e−tC

∥∥+
∥∥(1− f(tA/n))e−tC

∥∥.
Since

∥∥(1− g(tB/n)1/2)e−tC
∥∥ ≤ ∥∥(1− g(tB/n))e−tC

∥∥, we obtain∥∥(f(tA/n)g(tB/n))n − e−tC
∥∥ ≤ ∥∥F (t/n)n−1 − e−tC

∥∥
+ 2
∥∥(1− g(tB/n))e−tC

∥∥+
∥∥(1− f(tA/n))e−tC

∥∥.
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Note that by Theorem 4.5, (4.24), one gets for cR
+

1 > 1 and η = n− 1 ≥ 1,

(5.1)
∥∥F (t/n)n−1 − e−tC

∥∥ ≤ c R+

1

2

n
, n ≥ 2 , t ≥ 0.

On the other hand, since f, g ∈ K2 and C = A+B, one obtains estimates:

(5.2)

∥∥(1− f(tA/n))e−tC
∥∥ ≤ CAC γ[f ]

1

n
,∥∥(1− g(tB/n))e−tC

∥∥ ≤ CBC γ[g]
1

n
,

where γ[f ] := supx>0(1−f(x))/x and similarly for g. Collecting inequalities
(5.1) and (5.2), we get for some Γ > 0 the estimate∥∥(f(tA/n)g(tB/n))n − e−tC

∥∥ ≤ Γ
1

n
,

that proves in (1.6) the asymptotic for n→∞.
3. The proof of optimality of the asymptotic (1.5) and (1.6) is a subtle

matter, see [7]. To this aim, one has to establish for convergence an estimate
from below and also an example, where the operator-norm convergence is
broken if operator A+B is not self-adjoint, but only essentially self-adjoint.

In the present paper we developed the lifting topology of convergence
for self-adjoint Chernoff approximation. It yields optimal estimate for the
rate of convergence for Trotter–Kato product formulae. For non-self-adjoint
case one uses other schemes essentially based on analyticity of semigroups,
see [3, 4]. The results for quasi-sectorial contractions [10] improved by the
1/ 3
√
n -Theorem [11], are still not sufficiently refined to yield optimality for

estimates of the rate of convergence.

Acknowledgements. I thank the referee for very useful remarks and sug-
gestions.
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