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Abstract. We prove an almost sure random version of a maximum limit
theorem, using logarithmic means for max1≤i≤Nn Xi, where {Xn, n ≥ 1} is
a sequence of identically distributed random variables and {Nn, n ≥ 1} is a
sequence of positive integer random variables independent of {Xn, n ≥ 1}.
Furthermore, we consider the almost sure random version of a limit theorem
for kth order statistics.

1. Introduction

Let {Xn, n ≥ 1} be a sequence of independent and identically distributed
random variables with EX1 = 0, EX2

1 = 1, and let Sn = X1+X2+ · · ·+Xn.
The almost sure central limit theorem (ASCLT) says that for any fixed x ∈ <
we have

(1) lim
n→∞

1

log n

n∑
j=1

1

j
I

[
Sj√
j
≤ x

]
= Φ(x), a.s.,

where Φ(x) denotes the standard normal distribution function. This result
is a generalization of the arcsin law of Andersen and was firstly obtained by
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Brosamler [4] and Schatte [19] under additional moment conditions on X1

and by Lacey and Philipp [13] under assuming only finite variance. This
result is probably the most intensively investigated in the last decade. For
the different generalizations of (1) cf. [3].

Let us consider the following three sets of distribution functions:
Case (i) D1 =

{
F ∈ L : there exists the positive function g such that

1−F (t+xg(t))
1−F (t) −→ e−x, as t→ xF , for all x ∈ <

}
,

Case (ii) D2,α =
{
F ∈ L : xF = ∞ and 1−F (tx))

1−F (t) −→ x−α, as t → ∞,

for all x > 0
}
, for some α > 0,

Case (iii) D3,α =
{
F ∈ L : xF < ∞ and 1−F (xF−xh)

1−F (xF−h) −→ xα,

as h→ 0+, for all x > 0
}
, for some α > 0,

where F (.) denotes the distribution function of X1, xF = inf{x : F (x) = 1},
and L denotes the set of distribution functions on <. It is known (cf. [14, 17])
that if F belongs to D1, D2,α or D3,α with some α > 0, then there exist con-
stants {an, bn, n ≥ 1} such that

(2) an

(
max
1≤j≤n

Xj − bn
)
D−→ G, as n→∞,

where G is equal to

G1(x) = e−e
−x
,

G2,α(x) =

{
0, x ≤ 0,

e−x
−α
, x > 0,

or

G3,α(x) =

{
e−(−x)

α
, x ≤ 0,

1, $x > 0,

respectively. Conversely, if (2) holds for some sequence of independent and
identically distributed random variables {Xn, n ≥ 1}, then the possible
nondegenerate limits G are G1, G2,α, or G3,α only. Furthermore, under
assumption (2) we have

(3) an(Xn−k:n − bn)
D−→ G(x)

k∑
t=0

(− logG(x))t

t!
, as n→∞,

where by X1:n ≤ X2:n ≤ X3:n ≤ · · · ≤ Xn:n we denote the order statistics of
{X1, X2, . . . , Xn}. These results are called the max limit theorems. In 1998,
Fahrner I. and Stadtmüller V. [8], and independently Cheng S., Peng L. and
Qi Y. [6] proved the max limit schema version of ASCLT with k = 0 (cf. [7],
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too). They proved that if (2) holds, then

(4) lim
n→∞

1

log n

n∑
j=1

1

j
I

[
aj( max

1≤i≤j
Xi − bj) ≤ x

]
= G(x), a.s.

for any x ∈ <. This result was generalized on case kth order statististic
by Stadtmüller [18]. Assuming (2) and that {Xn, n ≥ 1} is an independent
and identically distributed sequence with continuous distribution function
of X1, he proved that

(5) lim
n→∞

1

log n

n∑
j=1

1

j
I[aj(Xj−k:j − bj) ≤ x] = G(x)

k∑
t=0

(− logG(x))t

t!
, a.s.

(In order to get simpler formulas here and in what follows, we put P [Xj:k ≤
x] := 1 for j ≤ 0, k ≥ 0 or k > j.) However, among the different generaliza-
tions of ASCLT there is no version of ASCLT with random indices, although
the first central limit theorem results and max limit theorem results almost
at once obtained such generalization (cf., for e.g., [16], in CLT case and [1]
in max limit theorem case). The main reason is that the random indexing
introduces the big level of complications and numerical difficulties. In this
paper we generalize the results of [6, 8] and [18] in the following directions:

(i) We drop the assumption of interindependency of {Xn, n ≥ 1} con-
sidering the stationary sequences.

(ii) We consider the randomly indexed version of (5). Assuming inde-
pendence between the sequence {Xn, n ≥ 1} and the sequence of
random indices {Nn, n ≥ 1}, we give the conditions under which

(6)

lim
n→∞

1

log n

n∑
j=1

1

j

(
I[aj(XNj−k:Nj − bj) ≤ x]

−G
Nj
j (x)

k∑
t=0

1

t!

[
− Nj

j
logG(x)

]t)
= 0, a.s.

(iii) In comparison with the result of [18], we omit the assumption on
continuity of the distribution function of X1.

In the whole paper we will use the notations: x ∨ y = max{x, y} and
x ∧ y = min{x, y}.

2. Main results

Let {Xn, n ≥ 1} be a sequence of identically distributed random variables
with the common distribution function F such that for some constants
{an, bn, n ≥ 1} we have

(7) an

(
max
1≤j≤n

Xj − bn
)
D−→ G, as n→∞,
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with G equal to G1, G2,α or G3,α. Let {X̃n, n ≥ 1} be a sequence of inde-
pendent and identically distributed random variables with the distribution
function F . For x, y ∈ < we will put

vj = x/aj + bj , j ≥ 1,

and for some positive constants θ and positive integer k:

αj,h(x, y) = |P [Xj−k:j ≤ x,Xh−k:h ≤ y]− P [X̃j−k:j ≤ x, X̃h−k:h ≤ y]θ|,

αj(x) = |P [Xj−k:j ≤ x]− P [X̃j−k:j ≤ x]θ|.(8)

The coefficients αj(x) defined in (8) are called the extremal index of sta-
tionary sequence {Xn, n ≥ 1} and were introduced in [15] and studied in-
tensively in [11]. These coefficients stand the analogue of mixing condition
in max-limit theory.

Theorem 1. Let {Xn, n ≥ 1} be a sequence of identically distributed ran-
dom variables with common distribution function F satisfying condition (7)
for some numbers {an, bn, n ≥ 1}. Let {Nn, n ≥ 1} be a sequence of pairwise
independent random indexes independent of {Xn, n ≥ 1}. Let us assume
that for some fixed µ ∈ (0, 1),

n∑
h=1

h−1∑
j=1

1

jh
E

(
Nj ∧Nh

h
∧ 1

)
= O

(
(log n)2−µ

)
.(9)

Furthermore, let us assume that
n∑
h=1

h−1∑
j=1

1

jh
EαNj ,Nh(vj , vh) = O

(
(log n)2−µ

)
,(10)

and
n∑
j=1

1

j
EαNj (vj) = O

(
(log n)2−µ

)
.(11)

In the case when G = G2,α with some α > 0, we assume additionally that
for some δ0 > 0,

P

[
Nj

j
< δ0

]
= O

(
(log j)−µ

)
, as j →∞.(12)

Then

(13)
1

log n

n∑
j=1

1

j

(
I
[
aj(XNj−k:Nj − bj) ≤ x

]
−Hθ

G,k,Nj/j
(x)
)
a.s.−→ 0,

as n→∞, where

HG,k,β(x) =

{
Gβ(x)

∑k
t=0

1
t! [−β logG(x)]t, if G(x) > 0,

0, if G(x) = 0.
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Let f(.) be a a.e. continuous, bounded real function, such that f(−∞) = 0,
f(+∞) = 0. If lim inf

Nj
j > C > 0, then

(14)
1

log n

n∑
j=1

1

j

(
f
(
aj(XNj−k:Nj − bj)

)
−
∫ ∞
−∞

f(x)Hθ
G,k,Nj/j

(dx)

)
a.s.−→ 0,

as n→∞.
Additionally, if there exists a positive bounded from 0 random variable λ

such that d
(
Nj
j , λ

)
= O((log j)−µ), where d(X,Y ) is the Lévy–Prokhorov’s

distance between random variables X and Y (i.e. d(X,Y ) = inf{ε > 0 :
P [|X − Y | > ε] < ε}), then

(15)
1

log n

n∑
j=1

1

j

(
f
(
aj(XNj−k:Nj − bj)

)
−
∫ ∞
−∞

f(x)Hθ
G,k,λ(dx)

)
a.s.−→ 0,

as n→∞.

Corollary 1. Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed random variables with common distribution function F, and let
{Nn, n ≥ 1} be a sequence of pairwise independent random indexes indepen-
dent of {Xn, n ≥ 1}. Let us assume (7), (9), and in case when G = G2,α

with some α > 0, (12) hold. Then

1

log n

n∑
j=1

1

j

(
I
[
aj(XNj−k:Nj − bj) ≤ x

]
−HG,k,Nj/j(x)

)
a.s.−→ 0,

as n→∞.
Let f(.) be a a.e. continuous, bounded real function, such that f(−∞) = 0,

f(+∞) = 0. If lim inf
Nj
j > C > 0, then

1

log n

n∑
j=1

1

j

(
f
(
aj(XNj−k:Nj − bj)

)
−
∫ ∞
−∞

f(x)HG,k,Nj/j(dx)

)
a.s.−→ 0,

as n→∞.
Additionally, if there exists a positive bounded from 0 random variable λ

such that d
(
Nj
j , λ

)
= O((log j)−µ), then

1

log n

n∑
j=1

1

j

(
f
(
aj(XNj−k:Nj − bj)

)
−
∫ ∞
−∞

f(x)HG,k,λ(dx)

)
a.s.−→ 0,

as n→∞.

Corollary 2. Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed random variables with common distribution function F, and let
{Nn, n ≥ 1} be a sequence of pairwise independent random indexes indepen-
dent of {Xn, n ≥ 1}. Let us assume (7), (9), and in case when G = G2,α



96 A. Krajka, Z. Rychlik and J. Wasiura-Maślany

with some α > 0, (12) hold. Then

1

log n

n∑
j=1

1

j

(
I
[
aj

(
max

1≤i≤Nj
Xi − bj

)
≤ x

]
−GNj/j(x)

)
a.s.−→ 0,

as n→∞.
Let f(.) be a a.e. continuous, bounded real function, such that f(−∞) = 0,

f(+∞) = 0. If lim inf
Nj
j > C > 0, then

1

log n

n∑
j=1

1

j

(
f
(
aj

(
max

1≤i≤Nj
Xi − bj

))
−
∫ ∞
−∞

f(x)GNj/j(dx)

)
a.s.−→ 0,

as n→∞.
Additionally, if there exists a positive bounded from 0 random variable λ

such that d
(
Nj
j , λ

)
= O((log j)−µ), then

1

log n

n∑
j=1

1

j

(
f
(
aj

(
max

1≤i≤Nj
Xi − bj

))
−
∫ ∞
−∞

f(x)Gλ(dx)

)
a.s.−→ 0,

as n→∞.

Putting in Corollary 1 and 2 the sequence Nj = j, a.s., j ≥ 1, we obtain
the main results in [6], [8] and [18].

3. Proofs

Lemma 1. Let x, y ∈ [0, 1], α > 0 be arbitrary numbers.
(i) For y > 0, we have

|xα − yα| ≤ α|x− y|α∧1.
(ii) For α ≤ 1, we have

|xα − yα| ≤ |x− y|
|y|2

.

(iii) For arbitrary t ∈ N , 1/t > α, we have

|x(− log x)t − y(− log y)t| ≤
( e
α
∧ t
) (e/α)t−1

1− αt
|x1−αt − y1−αt|.

Proof of Lemma 1. If α ≤ 1 we consider the functions f(x) = xα−yα and
g(x) = (x− y)α in the interval [y, 1]. Now f(y) = 0 = g(y) and inequality

f ′(x) =
α

x1−α
≤ α

(x− y)1−α
= g′(x),

ends the proof of (i) in the case x > y. Case x < y follows by symmetry
and case x = y is obvious.

When α ∈ (0, 1) let k be chosen such that 1
2k
< α ≤ 1

2k−1 . Then

(x2
kα−y2kα) = (xα−yα)(xα+yα)(x2α+y2α)(x4α+y4α) . . . (x2

k−1α+y2
k−1α).
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Thus, by the above proved case α > 1, we have

|x− y| ≥ |xα − yα|yα(1+2+4+···+2k−1) = |xα − yα|yα(2k−1) ≥ |xα − yα|y2−α,

which gives (ii).
For proof of Lemma 1 (iii) we consider the case that x ≥ y > 0 and

x(− log x)t ≥ y(− log y)t, firstly. Let us define two functions

f(x) = x(− log x)t − y(− log y)t and g(x) =
(e/α)t

1− αt
(x1−αt − y1−αt).

Obviously f(y) = g(y) = 0 and

f ′(x) = (− log x)t−1(− log x− t) ≤ (− log x)t, g′(x) = (e/α)tx−αt.

Now we remark that the maximum of the function −xα log x in area (0,+∞)

is achieved for x = e−1/α and is equal e/α, which ends the proof of Lemma 1
(iii) in this case.

When x ≥ y > 0 and x(− log x)t ≤ y(− log y)t, then −t ≤ log x ≤ 0
(note that function x(− log x)t is increasing in the interval (0, e−t)). Thus,
putting f(x) = −x(− log x)t + y(− log y)t, and g(x) = t (e/α)

t−1

1−αt (x1−αt −
y1−αt), we have f(y) = g(y) = 0 and f ′(x) = (− log x)t−1(log x + t) ≤
t(− log x)t−1, g′(x) = t(e/α)t−1x−αt, such that the argumentation similar to
the above ends the proof. �

In the paper [12] (Lemma 7) the following lemma was proved.

Lemma 2.

(a) Let {Xn, n ≥ 1} be a sequence of random variables such that Xn →
0, a.s., as n→∞, and for some positive real constant K and every
n, |Xn| < K, a.s. Then

1

log n

n∑
j=1

Xj

j

a.s.−→ 0, as n→∞.

(b) Let {Xn, n ≥ 1} be an arbitrary sequence of random variables such
that for some µ ∈ (0, 1), we have d(Xn, 0) = O((log n)−µ) and
|Xn| < K a.s. for some positive constants K. Then

1

log n

n∑
j=1

Xj

j

a.s.−→ 0, as n→∞.

(c) For every convergent to zero sequence of real numbers {εn, n ≥ 1},
we have

1

log n

n∑
j=1

εj
j
−→ 0, as n→∞.
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Lemma 3. Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed random variables such that L(X1) = F (.). Then for every posi-
tive integers j, l, k such that j ∧ l ≥ k, we have

(16) P [Xj−k:j ≤ x] =
k∑
t=0

(
j

t

)
F j−t(x)(1− F (x))t,

and

(17) P [Xj−k:j ≤ x,Xl−k:l ≤ y] ≤ P [Xj−k:j ≤ x]P [Xl−k:l ≤ y]F (x ∨ y)−j∧l.

Proof of Lemma 3. The evaluation (16) is proved in Lemma A.1 whereas
the evaluation (17) is a small generalization of Lemma A.2 ([18], p. 422–
424). From Lemma A.2 in case 1 ≤ k ≤ j ≤ l and x ≥ y and inequality
P [Xj−k:j ≤ x] ≤ P [Xj:j ≤ x] = F j(x), we have

P [Xj−k:j ≤ x,Xl−k:l ≤ y] = P [Xl−k:l ≤ y]

≤ P [Xj−k:j ≤ x]P [Xl−k:l ≤ y]F (x ∨ y)−j .

�

Proof of Theorem 1. In the whole proof we will use notation ξl,j(k) =
I[aj(Xl−k:l − bj) ≤ x], k ≥ 0. We have

1

log n

n∑
j=1

1

j

(
I
[
aj(XNj−k:Nj − bj) ≤ x

]
−Hθ

G,k,Nj/j
(x)
)

=
1

log n

n∑
j=1

1

j

∞∑
l=1

(ξl,j(k)− Eξl,j(k))I[Nj = l]

+
1

log n

n∑
j=1

1

j

∞∑
l=1

(Eξl,j(k)−Hθ
G,k,l/j(x))I[Nj = l]

= V1(n) + V2(n), say.

Step 1. At first we consider the case G(x) > 0.
In order to prove that |V1(n)| a.s.−→ 0, we need some upper estimation on the
value cov(ξh,j(k), ξl,i(k)). However, firstly we evaluate

Ih,j;l,i(k; θ) = P θ[X̃h−k:h ≤ vj , X̃l−k:l ≤ vi]−P θ[X̃h−k:h ≤ vj ]P θ[X̃l−k:l ≤ vi].

By Lemma 3 and the fact that F is nondecreasing and vi∨j ≤ vi ∨ vj we
have

Ih,j;l,i(k; θ) ≤ |F−θ(h∧l)(vj∨i)− 1| ∧ 1.

Now we consider the sequence ch = h(1−F (vh)). By (2) and Theorem 1.5.1
in Leadbetter [14] we have for x ∈ R, and h→∞,

ch → − logG(x).
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Since limh→∞ 1 − F (vh) = limh→∞
− log(G(x))

h = 0, then we may choose no
such that 1− F (vh) ≤ 1

4 , for every h ≥ no. Thus

Ih,j;l,i(k; θ) ≤

∣∣∣∣∣
(

1−
(i ∨ j)(1− F (v(i∨j)))

i ∨ j

)−θ(l∧h)
− 1

∣∣∣∣∣ ∧ 1.

From inequalities e−2x ≤ 1−x (valid for 0 ≤ x ≤ 1
4) and |1− ex| ≤ |x|e|x|

we have for i ∨ j > no,

(18)
Ih,j;l,i(k; θ) ≤

∣∣∣∣eθ 2c(i∨j)
i∨j (l∧h) − 1

∣∣∣∣ ∧ 1 ≤
2θc(i∨j)

i ∨ j
(l ∧ h)e

2θc(i∨j)
(i∨j) (l∧h) ∧ 1

≤
2eθc(i∨j)(l ∧ h)

i ∨ j
∧ 1,

and for i ∨ j ≤ no,
Ih,j;l,i(k; θ) ≤ 1.

On the other hand, by (8)

P [Xh−k:h ≤ x]P [Xl−k:l ≤ y]−P [X̃h−k:h ≤ x]θP [X̃l−k:l ≤ y]θ ≤ αh(x)+αl(y),

thus in the case h ≤ l, and vj ≤ vi
(19) cov(ξh,j(k), ξl,i(k)) ≤ αh,l(vj , vi) + Ih,j;l,i(k; θ) + αh(vj) + αl(vi),

whereas in the case h ≤ l, and vj > vi

(20) cov(ξh,j(k), ξl,i(k)) ≤ Ih,j;l,i(k; θ) + αh(vj) + 2αl(vi).

Thus from (9)–(11) and (18)–(20)

V ar(V1(n) log n) =
∑

{lj∈NN}

P [Nj = lj , j ≥ 1]V ar

(
n∑
h=1

ξlh,h
h

)

≤ 2

n∑
h=1

h−1∑
j=1

1

jh
EαNj ,Nh(vj , vh) + 2

n∑
h=1

h−1∑
j=1

θ

jh
E

(
Nj ∧Nh

h
∧ 1

)

+ 4

n∑
h=1

1

h
EαNh(vh) log h+ log n+ log2 no = O

(
(log n)2−µ

)
.

Now we put n = n(k) = 2k
2/µ

and by Chebyshev’s inequality and Borel–
Cantelli lemma, we have

V1(n(k)) −→ 0, as k →∞,(21)

with probability one. Furthermore, for n(k) < n < n(k + 1)

V1(n) =
log n(k)

log n
V1(n(k))+

1

log n

n∑
j=n(k)+1

1

j

∞∑
l=1

(
ξl,j(k)−Eξl,j(k)

)
I[Nj = l].
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Taking into account ( k
1+k )2/µV1(n(k)) ≤ logn(k)

logn V1(n(k)) ≤ V1(n(k)), (21)
and evaluation

1

log n

n∑
j=n(k)+1

1

j
≤

log n(k+1)
n(k)

log n(k)
= C

(k + 1)2/µ

k2/µ
→ 0, as k →∞,

we get
lim
n→∞

V1(n) = 0 a.s.

Let us prove V2(n)
a.s.−→ 0. We have by Lemma 1

|V2(n)| ≤ 1

log n

n∑
j=1

1

j

∞∑
l=1

|P [Xl−k:l ≤ vj ]− P θ[X̃l−k:l ≤ vj ]|I[Nj = l]

+
1

log n

n∑
j=1

1

j

∞∑
l=1

|P [X̃l−k:l ≤ vj ]−HG,k,l/n(x)|θ∧1I[Nj = l]

≤ 1

log n

n∑
j=1

1

j
EαNj (vj) +

1

log n

n∑
j=1

1

j

∞∑
l=1

kθ∧1
(

max
0≤t≤k

1

t!
|F l(vj)[− logF l(vj)]

t

−Gl/j(x)[− logGl/j(x)]t|θ∧1
)
I[Nj = l]

≤ 1

log n

n∑
j=1

1

j
EαNj (vj) +

1

log n

n∑
j=1

1

j
kθ∧1 max

0≤t≤k

1

t!

|F j(vj)−G(x)|θ∧1

G2θ∧2(x)
.

Because from (7) we have F (vn)n → G(x), thus by Lemma 2

|V2(n)| a.s.−→ 0, as n→∞.
Thus (13) is proved in case G(x) > 0.

Step 2. Let us consider the case x such that G(x) = 0.
By the part of Theorem proved above and monotonicity the indicator

function for arbitrary δ > 0, x ≤ 0, we have

0 ≤ 1

log n

n∑
j=1

1

j

(
ξNj ,j(k)−Hθ

G,k,Nj/j
(x)
)

=
1

log n

n∑
j=1

1

j
ξNj ,j(k)

≤ 1

log j

n∑
j=1

1

j
I[ajXNj−k:Nj + bj < δ]

≤ Hθ
G,k,δo(δ) +

1

log n

n∑
j=1

1

j
I[
Nj

j
< δo] + δ.

Then from the arbitrariness of δ > 0, Lemma 2(b) and (12), we have (13).

Step 3. We show the proof of (14) because (15) runs similarly.

For every ε > 0 let us define the partition of real axis Π(ε) = {−∞ =
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co < c1 < c2 < · · · < cm(ε) = ∞} such that supx,y∈(ci,ci+1) |f(x) − f(y)| <
ε/2, i = 0, 1, 2, . . . ,m(ε) − 1. Let us define A(x) = si, for x ∈ (ci, ci+1), i =
0, 1, 2, ..,m(ε)− 1, where si = supt∈(ci,ci+1) f(t), i = 0, 1, 2, . . . ,m(ε)− 1. For
a sufficiently large n, we have

1

log n

n∑
j=1

1

j
f
(
aj(XNj−k:Nj − bj)

)
≤ 1

log n

n∑
j=1

1

j
A
(
aj(XNj−k:Nj − bj)

)
=

m(ε)∑
k=1

skH
θ
G,k,Nj/j

((ck, ck+1) +
ε

2

=

∫ ∞
−∞

A(x)Hθ
G,k,Nj/j

(dx) +
ε

2

≤
∫ ∞
−∞

f(x)Hθ
G,k,Nj/j

(dx) +

∫ ∞
−∞
|A(x)− f(x)|Hθ

G,k,Nj/j
(dx) +

ε

2

≤
∫ ∞
−∞

f(x)Hθ
G,k,Nj/j

(dx) + ε.

From the arbitrariness of ε, we get (14).

Step 4. Now we will prove the second part of Theorem 1.

If 0 < G(x) < 1 then, considering the different cases of limiting laws
G1,G2,α, and G3,α, and taking into account inequality

|ex − ey| ≤ |x− y|(ex + ey),

we always obtain∣∣∣∣GNj
j (x)−Gλ(x)

∣∣∣∣ ≤ ∣∣∣∣Nj

j
− λ

∣∣∣∣ (|e−x| ∨ |x−α| ∨ |xα|(GNj
j (x) +Gλ(x)

))
≤ C

∣∣∣∣Nj

j
− λ

∣∣∣∣ .
On the other hand, by Lemma 1, we have∣∣∣Hθ
G,k,Nj/j

(x)−Hθ
G,k,λ(x)

∣∣∣ ≤ |HG,k,Nj/j(x)−HG,k,λ(x)|θ∧1

≤ kθ∧1 max
0≤t≤k

∣∣∣∣GNj/j(x)
[
− logGNj/j(x)

]t
−Gλ(x)

[
− logGλ(x)

]t∣∣∣∣θ∧1
≤ C max

0≤t≤k

∣∣∣GNj/j(x)−Gλ(x)
∣∣∣(1−βt)(θ∧1)

≤ Cd(Nj/j, λ)(1−βk)(θ∧1) ∧ 1,

for every 0 < β < 1/k, which, by Lemma 2(b), proves Theorem 1. For
G2,α(x) = 0 or G3,α(x) = 1 the proof of the second part of Theorem 1 is
obvious. �
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4. Examples and applications

Example 1.
(a) Let {Nj , j ≥ 1} be a sequence of independent random variables such
that Nj ∼ βj + γjPois(λj) (the uncentred and unnormalized Poisson’s law,

P [Nj = βj+kγj ] =
λkj
k! e
−λj , k = 0, 1, 2, . . . ) for some sequence of nonnegative

numbers {λj , γj , j ≥ 1} and a sequence of numbers {βj , j ≥ 1}. If

(22) βj + γjλj = O(j),

then (9) holds. On the other hand, if for some δo > 0, µ > 0, we have

(23)
(jδo − βj)(log j)µ

γj
√
λj

≤ C,

then (12) holds.
(b) Let {Nj , j ≥ 1} be a sequence of independent random variables such
that Nj ∼ βj + γjB(nj , pj) (the uncentred and unnormalized Bernouilly’s
law, P [Nj = βj + γjk] =

(nj
k

)
pkj (1 − pj)nj−k, k = 0, 1, 2, . . . , nj) for some

sequence of nonnegative numbers {nj , γj , j ≥ 1}, numbers {βj , j ≥ 1} and
numbers {pj , j ≥ 1} such that 0 ≤ pj ≤ 1, j ≥ 1. If

(24) βj + γjnjpj = O(j),

then (9) holds. On the other hand, if for some δo > 0, µ > 0, we have

(25)
(jδo − βj)(log j)µ

√
njpj(1− pj)

γj
≤ C,

then (12) holds.
(c) Let {Nj , j ≥ 1} be a sequence of independent random variables such
that Nj ∼ βj + γjU(nj) (the uncentred and unnormalized uniform law,
P [Nj = βj + γjk] = 1

nj
, k = 1, 2, . . . , nj) for some sequence of nonnegative

numbers {nj , γj , j ≥ 1} and sequence of numbers {βj , j ≥ 1}. If

(26) βj + γj
nj + 1

2
= O(j),

then (9) holds. On the other hand, if for some δo > 0, µ > 0, we have

(27)
(jδo − βj)(log j)µ

njγj
≤ C,

then (12) holds.

Proof of Example 1 (a). Under such defined sequence {Nj , j ≥ 1} we
have ENj = βj + γjλj , j ≥ 1, and

N∑
k=1

k−1∑
j=1

1

jk
E

(
Nj ∧Nk

k
∧ 1

)
≤

N∑
k=1

k−1∑
j=1

βj + γjλj
jk2

≤
N∑
k=1

1

k
= O

(
(logN)2−µ

)
.
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Furthermore, it is easy to check that for arbitrary λ > 0, we have

sup
k≥0

{
λk

k!
e−λ
}
≤ max

{
λ[λ]

[λ]!
e−λ,

λ[λ]+1

([λ] + 1)!
e−λ

}
,

and by Stirling formulae we have

sup
k≥0

{
λk

k!
e−λ
}
≤ C√

2πλ
.

Thus

P

[
Nn

n
< δ0

]
=

(δoj−βj)/γj∑
k=0

λkj
k!
e−λj ≤ C δoj − βj

γj
√
λj

, j ≥ 1,

which ends the proof of point (a). The proof of points (b)–(c) is similar and
will be omitted. �

The different constructions of stationary sequences nonidentically dis-
tributed random variables {Xn, n ≥ 1}, satisfying conditions αj(vj)→ 0 or
αj,h(vj , vh)→ 0 as j, h→∞ may be found in [11].
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