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Abstract. This paper is devoted to the study of families of so-called nonlin-
ear resolvents. Namely, we construct polynomial transformations which map
the closed unit polydisks onto the coefficient bodies for the resolvent fami-
lies. As immediate applications of our results we present a covering theorem
and a sharp estimate for the Schwarzian derivative at zero on the class of
resolvents.

1. Introduction

We denote the set of holomorphic functions on a domain D ⊂ C with values
in another domain D1 ⊂ C by Hol(D,D1). Also we denote Hol(D) :=
Hol(D,D), the set of all holomorphic self-mappings of D.

For any f ∈ Hol(D,C) and any z ∈ D, the initial value problem

(1.1)


du

dt
+ f(u(t)) = 0,

u(0) = z,

has the unique solution for t small enough. At the same time, if the deriv-
ative f ′(z) does not take real negative values, then the functional equation

(1.2) w + rf(w) = z

has the unique solution w = Jr(z) for r small enough.
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Surprisingly, the problems (1.1) and (1.2) are closely connected. Namely,
it was proved in [11] (see also [4, 15]) that
� if D is a bounded convex domain, then for every f ∈ Hol(D,C), the

following two assertions are equivalent:

• for every z ∈ D, the initial value problem (1.1) has the unique
solution (denoted by u(t, z)) on the positive half-axis t ≥ 0 and
u(t, ·) ∈ Hol(D);
• for every z ∈ D, the functional equation (1.2) has the unique solu-

tion w = Jr(z), which is well defined for all r ≥ 0 and Jr ∈ Hol(D).

If either of these conditions holds, then the family {u(t, ·)}t≥0 forms a
one-parameter semigroup on D. In this case, the function f is called the
(infinitesimal) generator of the semigroup {u(t, ·)}t≥0. The function Jr is
called the nonlinear resolvent of the generator f , and the family {Jr}r≥0 is
called the resolvent family of f .

In view of the above equivalence, nonlinear resolvents serve as an im-
portant tool in the study of semigroups of holomorphic mappings. Bearing
in mind this goal, various properties of a nonlinear resolvent were estab-
lished; among them resolvent identities, exponential formula, asymptotic
behaviour, etc. (see, for example, [15]).

At the same time, in general, nonlinear resolvents themselves are of inde-
pendent interest since they are solutions of an important class of functional
equations. From this point of view, the following question is principal:

• How to determine which functions appear to be resolvents?

To the best of our knowledge, only some necessary conditions are known.
To present one of them, notice that a point z0 ∈ D is the fixed point of the
resolvent family {Jr}r≥0 (that is, Jr(z0) = z0 for all r ≥ 0) if and only if
f(z0) = 0; see [15, 12] for details. Concerning resolvent families in the open
unit disk D = {z : |z| < 1}, the following properties were recently shown
in [5]:
� Let {Jr}r≥0 be the resolvent family of a generator f on D with f(0) = 0,

that is,

(1.3) Jr = (I + rf)−1 ∈ Hol(D), r ≥ 0.

Then for each r ≥ 0, the resolvent Jr is a hyperbolically convex function
(see, for example, [10]) and belongs to the Noshiro–Warschawski class (that
is, Re J ′r(z) > 0 for all z ∈ D). However, there are hyperbolically convex
functions of the Noshiro–Warschawski class that are not resolvents.

Being holomorphic functions in the open unit disk, resolvents can be
completely determined by their Taylor coefficients. The aim of this paper is
to describe the coefficient bodies for the set of nonlinear resolvents. For this
purpose we use the classical Faà di Bruno formula and Schur parameters on
the one hand, and very recent results obtained in [9], on the other hand.
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2. Preliminaries

2.1. Bell polynomials and Faà di Bruno formula. The following con-
struction is familiar in combinatorics and has various applications (see, for
example, [2, 13]).

Definition 2.1. Let k ≤ n. The exponential Bell polynomials are given by

Bn,k(x1, x2, . . . , xn−k+1) = n!
∑
j∈Ik

n−k+1∏
i=1

1

ji!

(xi
i!

)ji
,

likewise, the ordinary Bell polynomials are given by

(2.1) Bo
n,k(x1, x2, . . . , xn−k+1) = k!

∑
j∈Ik

n−k+1∏
i=1

xjii
ji!
,

where Ik consists of all multi-indexes j = (j1, . . . , jn−k+1) such that

(2.2) j1, . . . , jn−k+1 ≥ 0,
n−k+1∑
i=1

iji = n,
n−k+1∑
i=1

ji = k.

For instance, setting k = 1, we see that the only non-negative integers
which solve the system of equations 1 · j1 + 2 · j2 + . . . + n · jn = n and
j1 + . . .+jn = 1 are jn = 1 and j1 = . . . = jn−1 = 0. Thus, by Definition 2.1
we have

(2.3) Bo
n,1(x) = Bn,1(x) =

n!

1!
· xn
n!

= xn.

Similarly, setting k = n, we have j1 = n. Thus, Bo
n,n(x) = Bn,n(x) = xn1 .

One of the applications of Bell’s polynomials is a generalization of the
chain rule to higher-order derivatives. Namely, in the holomorphic case
the classical Faà di Bruno formula [6] (see also discussion in [7]) can be
formulated in the form:

Theorem 2.1. Let function g be holomorphic in a neighborhood of a point
z0, and function h be holomorphic in a neighborhood of w0 = g(z0). Then

dn

dzn
(h ◦ g) (z0) =

n∑
k=1

h(k)(w0)Bn,k

(
g′(z0), g

′′(z0), . . . , g
(n−k+1)(z0)

)
.

It turns out that an analog of Faà di Bruno’s formula holds for general
derivations of holomorphic mappings, see [8, Lemma 4.2].

As an immediate consequence of Theorem 2.1, we get the following:

Corollary 2.1. Let functions g ∈ Hol(D) and h ∈ Hol(D,C) have the Taylor

expansions g(z) =
∞∑
n=1

anz
n and h(z) =

∞∑
n=1

bnz
n, respectively.
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Denote h ◦ g(z) =
∞∑
n=1

cnz
n. Then

(2.4) cn =
n∑
k=1

bkB
o
n,k (a1, a2, . . . , an−k+1) .

Proof. Set z0 = 0 in Theorem 2.1. Since h(k) (g(0)) = h(k)(0) = k!bk, one
calculates

Bn,k

(
g′(0), g′′(0), . . . , g(n−k+1)(0)

)
= n!

∑
j∈Ik

n−k+1∏
i=1

1

ji!

(
g(i)(0)

i!

)ji

= n!
∑
j∈Ik

n−k+1∏
i=1

1

ji!
(ai)

ji =
n!

k!
Bo
n,k (a1, a2, . . . , an−k+1) .

Hence the assertion follows by Theorem 2.1. �

2.2. Schur parameters and coefficient bodies. Since every function
in Hol(D,C) can be identified with its Taylor coefficients, the following no-
tation is relevant. Let F be a subclass of Hol(D,C), denote by Xn(F) the
coefficient body of order n for F , that is,

(2.5) Xn(F) =

{
(a0, . . . , an) : ∃f ∈ F , f(z) =

n∑
k=0

akz
k +O(zn+1)

}
.

Definition 2.2 ([14], see also [16]). Let ψ ∈ Hol(D) be not a constant.
Denote by σ the mapping acting on Hol(D) and defined by

(σψ)(z) =
1

z
· ψ(z)− ψ(0)

1− ψ(0)ψ(z)
.

Consider the sequence ψn = σnψ. The numbers γn = ψn(0), n = 0, 1, 2, . . . ,
are called the Schur parameters, and the vector −→γ (ψ) = (γ0, γ1, . . .) is called
the Schur vector of ψ.

Consider the non-analytic polynomial transformation
−→
Fn(z) of Cn whose

coordinates are defined inductively by

(2.6)

F1(z1) = z1,

Fm(z1, z2, . . . , zm) = (1− |z1|2)Fm−1(z2, . . . , zm)

− z1
m−1∑
k=2

Fm−k(z2, . . . , zm−k+1)Fk(z1, . . . , zk) for m = 2, . . . , n.

Assume that ψ ∈ Hol(D) has the Schur vector −→γ (ψ) = (γ0, γ1, . . .) and
the Taylor expansion

(2.7) ψ(z) = c0 + c1z + c2z
2 + . . . .
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Lemma 2.2 in [9] states that (c0, . . . , cn−1) =
−→
Fn(γ0, . . . , γn−1).

The following assertion is a slightly reformulated Proposition 4.2 in [9]
and describes coefficient bodies for Hol(D).

Theorem 2.2. The coefficient body Xn−1(Hol(D)) ⊂ Cn is a convex com-
pact set. Moreover,

−→
Fn maps Dn continuously onto Xn−1(Hol(D)) and sat-

isfies
−→
Fn(Dn) = IntXn−1(Hol(D)) and

−→
Fn(∂(Dn)) = ∂[Xn−1(Hol(D))]. In

addition,
−→
Fn : Dn → IntXn−1(Hol(D)) is a real analytic diffeomorphism but

−→
Fn is not injective on ∂(Dn).

To proceed, we consider the following subclasses of Hol(D,C):
� P = {p ∈ Hol(D,Π) : p(0) = 1,Re p > 0} for the Carathéodory

class.
� G0 = {f ∈ Hol(D,C) : f(z) = zp(z), p ∈ P}.

It follows from the Berkson–Porta formula [1] (see [4, 15] for details) that
G0 consists of all generators on D which satisfy f(0) = 0 and f ′(0) = 1.

Let p ∈ P have the Taylor series

(2.8) p(z) = 1 + 2
∞∑
n=1

bnz
n.

In [9], the authors use the one-to-one correspondence

(2.9) p(z) =
1 + zψ(z)

1− zψ(z)
, z ∈ D,

between the classes P and Hol(D) to construct a polynomial transformation

(2.10)
−→
Tn(γ1, γ2, . . . , γn) = (T1(γ1), T2(γ1, γ2), . . . Tn(γ1, γ2, . . . , γn)) ,

such that bm = Tm(γ1, γ2, . . . , γm), where −→γ is the Schur vector of ψ. This
construction provides the proof of the following result.

Theorem 2.3 (Theorem 4.1 in [9]). Let n be a positive integer. The coef-
ficient body Xn(P) of order n for the Carathéodory class P is expressed as
{1}×2Vn, where Vn is a convex and compact body in Cn. Moreover, there ex-
ists a continuous mapping

−→
Tn of Dn onto Vn, which satisfies

−→
Tn(Dn) = IntVn

and
−→
Tn(∂Dn) = ∂Vn. In addition,

−→
Tn(Dn) is a real analytic diffeomorphism

but
−→
Tn is not injective on the boundary ∂Dn of Dn for n = 2, 3, . . ..

Thereby it enables us to describe the coefficient bodies for G0.

Corollary 2.2. For every n ≥ 2, the coefficient body Xn(G0) of order n for
the cone G0 is expressed as {(0, 1)} × Yn−1, where Yn−1 = 2Vn−1 and Vn is
defined in Theorem 2.3. Hence, for k = 1, 2, . . . , n− 1, we have

(i) Yk = 2
−→
Tk(Dk);

(ii) IntYk = 2
−→
Tk(Dk) and ∂Yk = 2

−→
Tk
(
∂(Dk)

)
;
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(iii) 2
−→
Tk(Dk) is a real analytic diffeomorphism;

(iv)
−→
T k is not injective on ∂Dk of Dk .

Proof. Indeed, let f ∈ G0. Then there exists p ∈ P, such that f(z) = zp(z).
Write f(z) =

∑∞
k=0 fkz

k, then by (2.8) and (2.10) we have

f0 = 0, f1 = 1 and fk+1 = 2Tk(γ1, γ2, . . . γk) for all k ≥ 1.

So, the set

Yn−1 =

{
(f2, . . . , fn) : ∃f ∈ G0, f(z) = z +

n∑
k=2

akz
k +O(zn+1)

}
coincides with Vn−1 from Theorem 2.3. Thus assertions (i)–(iv) hold. �

3. Main results

3.1. Recursive formulae for Taylor coefficients. Let f ∈ G0 and r > 0.
The resolvent w = Jr(z) =

∑∞
k=0 akz

k is the solution of the functional
equation (1.2), that is, w+ rf(w) = z. This implies a0 = 0. Differentiating,
one can also see that a1 = 1

1+r .
We now turn to searching for a general formula for ak. In view of formula

(2.9), it is natural to describe the Taylor coefficients of a nonlinear resolvent
in terms of the Taylor coefficients of a self-mapping.

Theorem 3.1. Let Jr be the nonlinear resolvent of the function f ∈ G0
having the form f(z) = z 1+zψ(z)1−zψ(z) for some ψ ∈ Hol(D) with the Taylor
expansion (2.7). Then the Taylor coefficients an, n ≥ 2, of Jr can be found
as follows: a2 = − 2r

(1+r)3
c0 and remaining by the recursive formula

an+1 = − 2r

(1 + r)2

n∑
k=1

ck−1B
o
n,k (a1, . . . , an−k+1)

−
n∑
k=2

(
1− r2

2r

)k−1
Bo
n,k (a2, . . . , an−k+2) ,(3.1)

where Bo
n,k are the ordinary Bell polynomials defined by (2.1).

Proof. According to our assumptions, we can rewrite the resolvent equation
(1.2) in the form

w(1− wψ(w)) + rw(1 + wψ(w)) = z(1− wψ(w)),

where w = Jr(z) =
∑∞

n=1 anz
n. Equivalently,

wψ(w) =
z − w(1 + r)

z − w(1− r)
.
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Define now w̃ := w
z −

1
1+r =

∑∞
n=1 an+1z

n. Substituting w = z
(
w̃ + 1

1+r

)
in the last displayed formula, we get

(3.2) wψ(w) = −(1 + r)2

2r
· w̃

1− 1−r2
2r w̃

.

Taking into account that both sides of (3.2) are compound functions of w
(or w̃), we can apply the Faà di Bruno formula in the form (2.4) twice and
compare the respective coefficients. This together with (2.3) leads us to the
equality

n∑
k=1

ck−1B
o
n,k(a1, . . . , an−k+1)

= −(1 + r)2

2r

n∑
k=1

(
1− r2

2r

)k−1
Bo
n,k(a2, . . . , an−k+2)

= −(1 + r)2

2r

[
an+1 +

n∑
k=2

(
1− r2

2r

)k−1
Bo
n,k(a2, . . . , an−k+2)

]
.

We now express an+1 explicitly and complete the proof. �

In the light of Theorem 2.3 and Corollary 2.2, it might be of independent
interest to express the Taylor coefficients of a resolvent in terms of the
coefficients of the corresponding generator.

Theorem 3.2. Let Jr be the nonlinear resolvent of the function f ∈ G0
having the Taylor expansion f(z) = z+

∑∞
k=2 fkz

k. The Taylor coefficients
an, n ≥ 2, of Jr can be calculated by the recursion:

(3.3) an = − r

1 + r

n∑
k=2

fkB
o
n,k (a1, a2, . . . , an−k+1) , n ≥ 2.

Proof. Denote u(z) = z + rf(z). Then u(0) = 0, u′(z) = 1 + rf ′(z) and
u(k)(z) = rf (k)(z) for all natural k ≥ 2. Hence

(3.4) u′(0) = 1 + r and u(k)(0) = rf (k)(0), for k ≥ 2.

Since w = Jr(z) is the solution of the functional equation

(3.5) u(Jr(z)) = z, we have u′(Jr(z))J
′
r(z) = 1.

To calculate the subsequent Taylor coefficients of Jr, we use Corollary 2.1
and the fact that Jr(0) = 0 = u(0) in the following way

1

n!
· d

n

dzn
u(Jr(z))

∣∣∣∣
z=0

=
n∑
k=1

u(k)(0)

k!
Bo
n,k (a1, a2, . . . , an−k+1) .
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Clearly, (3.5) implies that dn

dznu(Jr(z))
∣∣
z=0

= 0 for n ≥ 2, therefore

u′(0)Bo
n,1 (a1, a2, . . . , an) = −

n∑
k=2

u(k)(0)

k!
Bo
n,k (a1, a2, . . . , an−k+1) .

Using now formulae (3.4) and (2.3), we get (3.3). �

3.2. Polynomial mappings onto coefficient bodies. In this section
we turn to the main question of the paper: how to describe the coefficient
bodies for the class of all nonlinear resolvents associated to G0.

Given r > 0, denote by J 0
r the class of resolvents associated with G0 (that

is, the class of functions defined by (1.3) with f ∈ G0) and define

(3.6) J 0 :=
⋃
r>0

J 0
r .

Let n ∈ N. For any J ∈ J 0
r we have J(0) = 0 and J ′(0) = 1

1+r ; this
gives that X1(J 0

r ) is a singleton, namely, X1(J 0
r ) =

{(
0, 1

1+r

)}
and there is

a subset U rn ⊂ Cn such that Xn+1(J 0
r ) =

{(
0, 1

1+r

)}
× U rn. So the problem

is to determine the set U rn.
Consider a polynomial transformation of Cn

−→
Qrn(z)

(
=
−→
Qrn(z1, . . . , zn)

)
:= (Q1(z1), Q2(z1, z2), . . . , Qn(z1, . . . , zn))

with coordinates

(3.7)

Q1(z1) =
−2r

(1 + r)3
z1 and

Qm(z1, . . . , zm)

= − 2r

(1 + r)2

m∑
k=1

zkB
o
m,k

(
1

1 + r
,Q1(z1), . . . , Qm−k(z1, . . . , zm−k)

)

−
m∑
k=2

(
1− r2

2r

)k−1
Bo
m,k (Q1(z1), . . . , Qm−k+1(z1, . . . , zm−k+1))

for m = 2, . . . , n.

Lemma 3.1. Let
−→
Qrn be defined by (3.7), then

(i) for any ψ ∈ Hol(D), the Taylor coefficients of the nonlinear resolvent
of the function f(z) = z 1+zψ(z)1−zψ(z) satisfy

(3.8) am = Qm−1(c0, c1, . . . , cm−2),

where cm are the Taylor coefficients of ψ for all m = 2, . . . , n+ 1;
(ii) the mapping

−→
Qrn is an automorphism of Cnwhich maps Xn−1(Hol(D))

onto U rn.
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Proof. Assertion (i) follows from comparison of formula (3.1) in Theo-
rem 3.1 with the construction of the transformation

−→
Qrn given in (3.7).

To prove (ii), define additional polynomial transformation by the follow-
ing recursion:

(3.9)

R1(w1) =
−(1 + r)3

2r
w1 and

Rm(w1, . . . , wm) = −−(1 + r)m+2

2r
wm

− (1 + r)m
m−1∑
k=1

Rk(w1, . . . , wk)B
o
m,k

(
1

1 + r
, w1, . . . , wm−k

)

− (1 + r)m+1

1− r

m∑
k=2

(
1− r2

2r

)k
Bo
m,k (w1, . . . , wm−k+1) .

for m = 2, . . . , n. A direct calculation shows that for every point w ∈ Cn

the equality w =
−→
Qrn(z) is equivalent to z =

−→
Rn(w). So,

−→
Qrn and

−→
Rn are

polynomial automorphisms of Cn.
Let ψ ∈ Hol(D) have the Taylor coefficients (c0, . . . , cn−1) =: c. By

assertion (i), the vector
−→
Qrn(c) =: a = (a2, . . . , an+1) consists of Taylor

coefficients of the resolvent Jr; hence a ∈ U rn. On the other hand, if a ∈ U rn
then there is a function with the Taylor expansion

1

1 + r
z + a2z

2 + . . .+ an+1z
n+1 + o(zn+1),

which is a resolvent for some f ∈ G0 of the form f(z) = z 1+zψ(z)1−zψ(z) . Then the

image
−→
Rn(a) gives the Taylor coefficients of ψ. The proof is complete. �

Let the transformation
−→
Λrn be defined by

(3.10)
−→
Λrn(z) :=

−→
Qrn ◦

−→
Fn(z1, z2, . . . , zn),

where
−→
Fn is the real-analytic transformation defined in (2.6) (see also [9]).

Theorem 3.3. For any r > 0 the coefficient body Xn+1(J 0
r ) for J 0

r is{(
0, 1

1+r

)}
× U rn, where U rn =

−→
Λ n(Dn) is a compact set in Cn.

Moreover,
−→
Λ n is a continuous mapping of Dn onto U rn, which satisfies

−→
Λ n(Dn) = IntU rn and

−→
Λ n(∂(Dn)) = ∂U rn. In addition,

−→
Λ n is a real analytic

diffeomorphism on Dn but is not injective on the boundary of Dn.

Proof. We already noted that a0 = 0 and a1 = 1
1+r .
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By Theorem 2.2, we have
−→
Fn(Dn) = Xn−1(Hol(D)) and by assertion (ii) of

Lemma 3.1,
−→
Qrn(Xn−1(Hol(D))) = U rn. Therefore, the mapping

−→
Λrn defined

by (3.10) maps Dn onto U rn.
Similarly to the proof of Theorem 4.1 in [9], we conclude that the other

assertions follow from Theorem 2.2 because of the fact that the polynomial
mapping

−→
Qr defined by (3.7) is an automorphism of Cn by Lemma 3.1. �

Now we turn to the coefficient body Xn+1(J 0). Observe that formula
(3.6) implies that for any point a ∈ Xn+1(J 0) we have a0 = 0 and a1 ∈
(0, 1). Hence, Xn+1(J 0) has no interior points and is not a closed set.

On the other hand, given a ∈ (0, 1), consider a polynomial transformation
−→
Qan of Cn defined by

−→
Qan =

−→
Qrn with r = 1−a

a . The mapping
−→
Qan is an

automorphism of Cn and maps the set Xn−1(Hol(D)) onto the set U
1−a
a

n by
Lemma 3.1.

We now define one more transformation in Cn by the formula
−→
Γan =

−→
Qan ◦

−→
Fn.

This allows us to describe the coefficient body Xn(J 0) as follows.

Theorem 3.4. The coefficient body Xn+1(J 0) for J 0 is {0}×Υn+1, where
a = (a1, . . . , an+1) ∈ Υn+1 if and only if a1 ∈ (0, 1) and (a2, a3, . . . , an+1) ∈−→
Γ n(Dn).

Moreover, for every a ∈ (0, 1) we have

(i) {(a2, a3, . . . , an+1) : (a, a2, a3, . . . , an+1) ∈ Υn+1} = U
1
a
−1

n ;

(ii)
−→
Γan is a continuous mapping of Dn onto U

1
a
−1

n ;

(iii)
−→
Γan(Dn) = IntU

1
a
−1

n and
−→
Γan(∂(Dn)) = ∂U

1
a
−1

n ;
(iv)

−→
Γan is a real analytic diffeomorphism on Dn but is not injective on
the boundary of Dn.

This theorem follows immediately from Lemma 3.1 and Theorem 3.3 and
the construction of the transformation

−→
Γan.

The recursive formulas in the above theorems can work effectively and
lead to interesting consequences.

Corollary 3.1. X3(J 0) = {(0, a1, a2) : a1 ∈ (0, 1), a2 = 2a21(a1 −
1)γ1 for some γ1 ∈ D}. Consequently, |a2| ≤ 2a21(1− a1).

As we mentioned in Section 1, every element of the resolvent family is a
hyperbolically convex function. Without loss of generality, one assumes that
arg a1 = 0 for a hyperbolically convex function h, h(z) = a1z + a2z

2 + . . ..
It was shown by Ma and Minda in [10] that |a2| ≤ a1(1 − a21). Clearly,
2a21(1− a1) ≤ a1(1− a21), hence our estimate is better than the estimate for
all hyperbolically convex functions (see Fig. 1).
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Figure 1. Estimates for |a2| for hyperbolically convex func-
tions and for resolvents.

Corollary 3.2. X4(J 0) = {(0, a1, a2, a3) : (0, a1, a2) ∈ X3(J 0), a3 =
2a1(a1 − 1)

[
2a2γ1 + a21(γ

2
1 + (1− |γ1|2)γ2)

]
for some γ1, γ2 ∈ D}. Conse-

quently, a3 belongs to the disk with center at the point (4a1−3)a22
2a1(a1−1) and of radius

4a41(1−a1)2−|a2|2
2a1(1−a1) .

These assertions can be obtained by direct calculations based on Lem-
ma 3.1, Theorem 3.4 and the fact that the Schur parameters γ1 and γ2 lie
in the closed unit disk.

The following covering result for resolvents is of independent interest.

Corollary 3.3. Let J ∈ J 0. Then the image J(D) contains the disk cen-
tered at the origin of radius 1

2 ·
a

1+a(1−a) , where a = J ′(0).

Proof. Assume that w 6∈ J(D). Consider the function g : D → C defined
byg(z) = wJ(z)

a(w−J(z)) . Since J is a univalent holomorphic function, then g is.
Then g′(0) = 1, so |g′′(0)| ≤ 4 (by the Biberbach inequality). Differentiating
g twice and using Corollary 3.1, we get

2a

|w|
|1− 2wrγ1(a− 1)| ≤ 4,

which implies by the triangle inequality

1− 2|w|(1− a) ≤ 2|w|
a

.

So the result follows. �

Remark that this result is not sharp (it can be seen letting a → 1−).
In addition, Corollaries 3.1–3.2 imply a sharp estimation of the Schwarzian
derivative at zero SJ(0) on the class of resolvents J 0.
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Corollary 3.4. Let J ∈ J 0. Then |SJ(0)| ≤ 16
9 . This estimate is sharp and

is achieved for the resolvent J1/2 corresponding to the infinitesimal generator

f(z) = z 1+z
2

1−z2 .

Proof. It follows by Corollaries 3.1–3.2 that there are γ1, γ2 ∈ D and a ∈
(0, 1) such that

SJ(0) = 12a2(a− 1)
[
(2a− 1)γ21 + (1− |γ1|2)γ2

]
.

If (2a− 1)γ1 = 0, the last factor takes maximal module 1 when γ1 = 0 and
γ2 = 1. Otherwise, we can estimate it choosing arg γ2 = arg((2a−1)γ21) and
then

∣∣(2a− 1)γ21 + (1− |γ1|2)γ2
∣∣ ≤ |2a − 1||γ1|2 + 1 − |γ1|2 ≤ 1. Therefore

|SJ(0)| ≤ 12a2(1 − a). Maximizing the last expression with respect to
a ∈ (0, 1), we obtain the desired result. �

Notice that for functions of the Noshiro–Warschawski class (which con-
tains J 0; see [5]) the relevant estimate |Sf (0)| ≤ 3 is well known; for in-
stance, it follows from a result in [3].

4. Concluding remarks

1. While the above results relate to resolvents associated to the class G0,
they can be automatically extended to the class of generators normalized
by f(0) = 0 and f ′(0) > 0. Indeed, denote the nonlinear resolvent corre-
sponding to the infinitesimal generator f by Jr[f ]. Then Jr[tf ] = Jtr[f ] for
any t > 0. In general, generators vanishing at zero satisfy Re f ′(0) ≥ 0. The
study of this case needs a modified approach.

2. Another way to determine coefficient bodies for nonlinear resolvents
is to use the Bürmann–Lagrange formula. At first glance, this seems even
more natural. In fact, this leads to the same formulas as above, but requires
more computations. An additional advantage of our method is that it can be
slightly modified for the more general problem of finding coefficient bodies
for the case where generators do not vanish at zero. We are supposed to do
it somewhere else.

3. The above description of the coefficient bodiesXn+1(J 0
r ) andXn+1(J 0)

was based on Theorems 2.2 (see also [9]) and 3.1. Alternatively, we can
use Corollary 2.2 and Theorem 3.2. To this end, consider a polynomial
transformation

−→
Lrn(z) of Cn with coordinates L1(z1) = −r

(1+r)3
z1 and

Lm(z1, . . . , zm)

=
−r

1 + r

m+1∑
k=2

zk−1B
o
m+1,k

(
1

1 + r
, L1(z1), . . . , Lm−k+1(z1, . . . , zm−k+1)

)
for m = 2, . . . , n. It can be shown that the transformation

−→
Lrn ◦

(
2
−→
Tn

)
coincides with the transformation

−→
Λrn above.
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4. It seems that similarly to Corollary 3.4, estimates of generalized
Zalcman’s and Fekete–Szegö’s functionals can be treated.
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