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On the number of empty cells
in the allocation scheme
of indistinguishable particles

Abstract. The allocation scheme of n indistinguishable particles into N
different cells is studied. Let the random variable µ0(n,K,N) be the number
of empty cells among the first K cells. Let p = n

n+N
. It is proved that

µ0(n,K,N)−K(1−p)√
Kp(1−p)

converges in distribution to the Gaussian distribution with

expectation zero and variance one, when n,K,N → ∞ such that n
N

→ ∞
and n

NK
→ 0. If n,K,N → ∞ so that n

N
→ ∞ and NK

n
→ λ, where 0 <

λ <∞, then µ0(n,K,N) converges in distribution to the Poisson distribution
with parameter λ. Two applications of the results are given to mathematical
statistics. First, a method is offered to test the value of n. Then, an analogue
of the run-test is suggested with an application in signal processing.

1. Introduction and main results. The de Moivre–Laplace theorem and
the Poisson limit theorem are widely known classical results in probability
theory. For discrete probability models there are many other theorems for
normal and Poisson approximation, see [7, 8] and [1]. In this paper, we

1Corresponding author.
2010 Mathematics Subject Classification. 60C05, 60F05, 62G30.
Key words and phrases. Allocation scheme of indistinguishable particles into differ-

ent cells, Gaussian random variable, Berry–Esséen inequality, limit theorem, local limit
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offer new normal and Poisson approximation theorems for allocations of
indistinguishable particles into different cells.

Let n and N be integer numbers. The allocation scheme of n indistin-
guishable particles into N different cells can be described by the random
variables η1, . . . , ηN with joint distribution

(1.1) P{η1 = k1, . . . , ηN = kN} =
1(

n+N−1
N−1

) ,
where k1, k2, . . . , kN are non-negative integer numbers such that k1 + k2 +
· · ·+ kN = n.

Let K be an integer number such that 0 < K ≤ N . Let r be a non-
negative integer number. We will use the notation

µr(n,K,N) =

K∑
i=1

I{ηi=r},

where IA denotes the indicator of the set A. The random variable µr(n,K,N)
is the number of cells among the first K cells containing precisely r particles.

Let us introduce the notation which we need in our results and will be
used throughout the paper. d→ denotes convergence in distribution, γ is a
Gaussian random variable with expectation zero and variance one, and Φ is
the distribution function of γ. o(1) denotes a quantity converging to 0, and
O(1) denotes a bounded quantity.

The main results of this paper are the following theorems. First we
consider the asymptotic normality of the number of empty cells. We start
with a local limit theorem.

Theorem 1.1. Suppose that n,K,N →∞ such that n
N →∞ and n

NK → 0.

Let p = n
n+N and z = k−K(1−p)√

Kp(1−p)
. Then we have

(1.2) P(µ0(n,K,N) = k) =
1√

2πKp(1− p)
e−

z2

2 (1 + o(1))

uniformly for |z| < C, where C is an arbitrary fixed positive number.

The next global limit theorem follows from Theorem 1.1.

Corollary 1.1. Suppose that n,K,N →∞ such that n
N →∞ and n

NK → 0.
Let p = n

n+N . Then we have

(1.3) P

(
µ0(n,K,N)−K(1− p)√

Kp(1− p)
< t

)
→ Φ(t), t ∈ R.
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The following theorem contains the Poisson limit for the number of empty
cells:

Theorem 1.2. Suppose that n,K,N →∞ such that n
N →∞ and NK

n → λ,
where 0 ≤ λ <∞. Then we have

(1.4) P(µ0(n,K,N) = k) = e−λ
λk

k!
(1 + o(1)), k = 0, 1 . . . .

We mention that Theorem 1.1 of our paper contains a new result also
in the case K = N . Here we list some known results. For K = N , the
random variable µr(n,K,N) is denoted by µr(n,N). In Trunov [11] and
in Timashev [10], limit theorems are proved for µr(n,N) in the allocation
scheme of indistinguishable particles into different cells. In Theorem 2.1 of
[11], a Gaussian limit theorem is proved for µ0(n,N) in the case C1 < p < C2

for some 0 < C1 < C2 < 1. In Theorem 2.3 of [11], a Gaussian limit theorem
is proved for µ0(n,N) in the case p→ 0. However, Theorem 1.1 of our paper
concerns another case, that is the case of p→ 1.

In Chuprunov and Fazekas [2], Poisson limit theorems are proved for
µr(n,K,N) in the allocation scheme of indistinguishable particles into dif-
ferent cells and also for other schemes of discrete probability theory. Con-
cerning the case of distinguishable particles we mention the following. In
Khakimullin and Enatskaia [5], limit theorems are obtained for µ0(n,K,N)
in the allocation scheme of distinguishable particles into different cells.
Many papers deal with limit theorems for µr(n,N) in the allocation scheme
of distinguishable particles into different cells, see Kolchin, Sevast’yanov
and Chistyakov [8] and the references therein.

The method of the proofs. During the proofs we shall need the notion
of the generalized allocation scheme introduced by V. F. Kolchin in [6]. Let
ξ1, ξ2, . . . , ξN be independent identically distributed integer valued random
variables. The random variables η1, . . . , ηN are called a generalized allo-
cation scheme of n particles into N cells if their joint distribution has the
form

P{η1 = k1, . . . , ηN = kN} = P
{
ξ1 = k1, . . . , ξN = kN

∣∣∣∣ ∑N

i=1
ξi = n

}
,

where k1, k2, . . . , kN are non-negative integer numbers such that k1 + k2 +
· · ·+ kN = n.

Various models of discrete probability theory such as random forests, ran-
dom permutations, random allocations, urn schemes are particular cases of
the generalized allocation scheme. If ξ1, ξ2, . . . , ξN are independent identi-
cally distributed geometrically distributed random variables with parameter
0 < p < 1, then the generalized allocation scheme is an allocation scheme
of n indistinguishable particles into N different cells [7].
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In the proofs we will use the following formula which is true in any gen-
eralized allocation scheme. Let pr=P{ξi=r}, r = 0, 1, . . . . Then we have

(1.5) P{µr(n,K,N) = k} =

(
K

k

)
(pr)

k(1− pr)K−k
P{ζ{r}N−k = n− kr}

P{ζN = n}
,

where ζ{r}N−k = ξ
{r}
1 + · · ·+ ξ

{r}
K−k + ξK+1 + · · ·+ ξN , ζN = ξ1 + ξ2 + · · ·+ ξN ,

the random variables ξ{r}1 , . . . , ξ
{r}
K−k, ξK+1, . . . , ξN are independent, and the

random variables ξ{r}1 , ξ
{r}
2 , . . . have distribution

(1.6) P
{
ξ
{r}
i = j

}
= P{ξi = j | ξi 6= r}, j = 0, 1, 2 . . . .

We mention that formula (1.5) was obtained for K = N and for allocation
scheme of distinguishable particles into different cells in Lemma 1 on p. 50
of [11]. Its generalization for the case of any generalized allocation scheme
is given in Lemma 1.2.1 of [7]). The proof of (1.5) is similar to the proof of
the lemmas mentioned above.

The proofs of our theorems are based on approximations of the expres-
sions in (1.5). In order to estimate the binomial probability in (1.5), we
use a certain version of the de Moivre–Laplace theorem in the case of Theo-
rem 1.1 and the Poisson approximation theorem in the case of Theorem 1.2.
The main difficulty during the proofs is to find proper approximations for
the expressions P{ζN = n} and P

{
ζ
{0}
N = n

}
in the fractional in (1.5). In

order to handle these expressions we used new local limit theorems.
We will apply equation (1.5) in the case when ξ1, ξ2, . . . , ξN are indepen-

dent identically distributed random variables having geometric distribution
with parameter p. So let

(1.7) pk = P(ξi = k) = (1− p)pk, k = 0, 1, . . . ,

be the distribution of ξi, e(p) = Eξi the expectation of ξi, and σ2(p) = D2ξi

the variance of ξi. Moreover, e0(p) = Eξ{0}i is the expectation of ξ{0}i and

σ20(p) = D2ξ
{0}
i is the variance of ξ{0}i .

2. Applications.

Application to mathematical statistics. We will use Corollary 1.1 to
study some analogue of the empty box test. Let us consider the allocation
scheme of n indistinguishable particles into N different cells such that N is
a known number but n is unknown. We want to check the hypothesis

H0 : n = n0

against the alternative hypothesis

H1 : n = n1,

where n0 < n1.
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Our criterion is the following. Let k be the number of cells from the first
K cells which are empty. Fix the level 0 < α < 1 and choose the critical
value uα such that P(γ > uα) = 1− α. Let

p̃0 =
n0

N + n0
, p̃1 =

n1
N + n1

,

C0 = K(1− p̃0) + uα
√
Kp̃0(1− p̃0).

As n0 < n1, so p̃0 < p̃1.
Hypothesis H0 is accepted if k ≥ C0 and hypothesis H1 is accepted if

k < C0. As H0 is rejected if

k −K(1− p̃0)√
Kp̃0(1− p̃0)

< uα,

therefore the probability of type I error is

α(n0,K,N) = P

(
µ0(n,K,N)−K(1− p̃0)√

Kp̃0(1− p̃0)
< uα

)
.

So, by Corollary 1.1, as n0,K,N → ∞ such that n0
N → ∞, n0

NK → 0, then
we have

α(n0,K,N)→ α.

The probability of the type II error is

β(n1,K,N) = P

(
µ0(n,K,N)−K(1− p̃0)√

Kp̃0(1− p̃0)
≥ uα

)
,

but the probability should be calculated when hypothesis H1 is true. By
short calculation we can see that the event

µ0(n,K,N)−K(1− p̃0)√
Kp̃0(1− p̃0)

≥ uα

is the same as

µ0(n,K,N)−K(1− p̃1)√
Kp̃1(1− p̃1)

≥
√
KN

n1

n1 − n0
n0 +N

− uα
√
n0
n1

n1 +N

n0 +N
.

Consider the right hand side of this inequality. We can assume that α < 0.5,
so uα < 0, therefore the second term is positive. The first term converges
to ∞, if KN

n1
→ ∞ and n1

n0
≥ c0 > 1. Using Corollary 1.1, we can see that

the left hand side of the above equality is asymptotically standard normal if
n1,K,N →∞ such that n1

N →∞ and n1
NK → 0. Therefore the type II error

β(n1,K,N) converges to 0, if n1,K,N → ∞ such that n1
N → ∞, n1

NK → 0
and n1

n0
≥ c0 > 1.
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Application for runs. Runs play an important role in probability and
statistics. There are well-known limit theorems for runs (see, e.g. [4]), more-
over the Wald–Wolfowitz runs test is a famous non-parametric statistical
test that checks a randomness hypothesis (see, e.g. [3]).

A usual way to imagine the allocation of n indistinguishable balls into a
row of N distinct boxes is the following. Consider n + N − 1 digits, n of
them are zeroes (the balls), N − 1 of them are ones (the barriers between
two subsequent boxes). Fix an arrangement of the n zeroes (i.e. the balls),
then insert the N − 1 ones (i.e. the barriers) amongst the zeroes. It can be
made in

(
n+N−1
N−1

)
different ways. Then the number of balls in the first box

will be the number of zeroes before the first 1, the number of balls in the
second box will be the number of zeroes between the first and the second 1
digits, etc. More precisely, let δ = (δ1, δ2, . . . , δn+N−1) be a sequence of n
zero digits and N − 1 one digits. Let the probability of any δ be

(2.1) P(δ) =
1(

n+N−1
N−1

) .
Let

ν = (ν1, . . . , νN ),

be a vector with νN = N + n and νi be the serial number of the ith digit 1
in the sequence δ, 1 ≤ i ≤ N − 1. The vector η = (η1, . . . , ηN ), with
coordinates

ηi = νi − 1, for i = 1, ηi = νi − νi−1 − 1 for 2 ≤ i ≤ N
is our previously defined allocation scheme of n indistinguishable particles
into N different cells.

In a sequence δ = (δ1, δ2, . . . , δn+N−1), a part of consecutive zeroes bor-
dered by digits 1 is called a zero-run. Now, let 0 < K ≤ N . Let ξ be the
number of zero-runs before the Kth 1 digit. Then K − ξ = µ0(n,K,N).
Therefore, from Corollary 1.1 and Theorem 1.2 we obtain the following
corollaries.

Corollary 2.1. Let n,K,N → ∞ such that n
N → ∞ and n

NK → 0. Then
we have

P

(
Kp− ξ√
Kp(1− p)

< t

)
→ Φ(t), t ∈ R.

Corollary 2.2. Suppose that n,K,N →∞ such that n
N →∞ and NK

n → λ,
where 0 ≤ λ <∞. Then we have

P(K − ξ = k) = e−λ
λk

k!
(1 + o(1)), k = 0, 1 . . . .

Now we turn to a simple application to image processing. Consider a
digitalized black and white image of size S × T which contains a black
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“curve” on the white background. The black pixels are coded by 1 and
the white pixels are coded by 0. The above mentioned “curve” can be a
non-random signal (say a letter or a number which can be hand written or
typed), but it can be a random signal, too. We want to exclude the random
signals, so we shall check randomness. Therefore, let δ be the row-major
order of the S×T image. δ contains a lot of zeroes and only a few ones. So
n
N is large, therefore our main assumption is satisfied.

Using Corollary 2.1, we can check the hypothesis

H0 : the sequence of the ones and zeroes is random.

Fix 0 < α < 1 and let vα be a number so that P(|γ| < vα) = 1 − α. Then
we accept H0 if ∣∣∣∣∣ Kp− ξ√

Kp(1− p)

∣∣∣∣∣ < vα.

Now, the probability of the type I error is

α(n,K,N) = P

(∣∣∣∣∣ Kp− ξ√
Kp(1− p)

∣∣∣∣∣ < vα

)
,

where the probability is calculated assuming model (2.1). So, by Corol-
lary 2.1, as n,K,N →∞ such that n

N →∞, n
NK → 0, we have

α(n,K,N)→ α.

3. Auxiliary results and proofs. We will use the following version of
the well-known Berry–Esséen inequality.

Lemma 3.1. Suppose that ξ′i, 1 ≤ i ≤ N , are independent random vari-
ables, σ2i = D2ξ′i is the variance of ξ′i, 1 ≤ i ≤ N , and σ2 =

∑N
i=1 σ

2
i . Then

we have

sup
t∈R

∣∣∣∣∣P
(

1

σ

N∑
i=1

(ξ′i − Eξ′i) < t

)
− Φ(t)

∣∣∣∣∣ < 2c

(∑N
i=1 E(ξ′i − Eξ′i)4

σ4

) 1
2

,

where c is a constant.

We recall that ζN = ξ1 + ξ2 + · · · + ξN . Let e0(p) be the expectation of
ξ
{0}
i and let σ20(p) be the variance of ξ{0}i . Introduce notation:

(3.1) SKN = ξ
{0}
1 + · · ·+ ξ

{0}
K + ξK+1 + . . . ξN .

Then eKN (p) = Ke0(p) + (N − K)e(p) is the expectation of SKN and
σ2KN (p) = Kσ20(p) + (N −K)σ2(p) is the variance of SKN .

Next lemma offers a Gaussian approximation for SKN .
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Lemma 3.2. Let ξi be the geometrically distributed random variable defined
by (1.7) and let ξ{0}i be created from ξi by the rule (1.6). Let SKN be the
sum in (3.1). If p ≥ 1/2, then

(3.2) sup
t∈R

∣∣∣∣P(SKN − eKN (p)

σKN (p)
< t

)
− Φ(t)

∣∣∣∣ < 2c

(
38p2

N

) 1
2

and

(3.3) σ2KN (p) = Nσ2(p).

Proof. As ξi has geometric distribution, then its factorial moment is

Eξ[k]i = Eξi(ξi − 1) · · · (ξi − k + 1) = k!

(
p

1− p

)k
.

Therefore, we have

(3.4)

e(p) = Eξi = Eξ[1]i =
p

1− p
,

Eξ2i = Eξ[2]i + Eξ[1]i = 2

(
p

1− p

)2

+
p

1− p
,

Eξ3i = Eξ[3]i + 3Eξ[2]i + Eξ[1]i = 6

(
p

1− p

)3

+ 6

(
p

1− p

)2

+
p

1− p
,

Eξ4i = Eξ[4]i + 6Eξ[3]i + 7Eξ[2]i + Eξ[1]i

= 24

(
p

1− p

)4

+ 36

(
p

1− p

)3

+ 14

(
p

1− p

)2

+
p

1− p
.

Consequently, the variance of ξi is

(3.5) σ2(p) = Eξ[2]i + Eξ[1]i − (Eξ[1]i )2 =

(
p

1− p

)2

+
p

1− p
=

p

(1− p)2
.

Using (3.4), we obtain

(3.6)

E(ξi − Eξi)4 = Eξ4i − 4E(ξ3i )(Eξi) + 6(Eξ2i )(Eξi)2 − 3(Eξi)4

= 24

(
p

1− p

)4

+ 36

(
p

1− p

)3

+ 14

(
p

1− p

)2

+
p

1− p

− 4

(
6

(
p

1− p

)3

+ 6

(
p

1− p

)2

+
p

1− p

)(
p

1− p

)

+ 6

(
2

(
p

1− p

)2

+
p

1− p

)(
p

1− p

)2

− 3

(
p

1− p

)4

= 9

(
p

1− p

)4

+ 18

(
p

1− p

)3

+ 10

(
p

1− p

)2

+
p

1− p
.
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So we have

(3.7) E(ξi − Eξi)4 ≤ 38

(
p

1− p

)4

as
p

1− p
≥ 1.

We can see that the distribution of ξ{0}i is the same as that of ξi + 1.

Therefore, e0(p) = Eξ{0}i = Eξi+1 = 1
1−p . The central moments of ξ{0}i and

ξi are the same. Consequently, the variance of ξ{0}i is

(3.8) σ20(p) =
p

(1− p)2

and for the fourth central moment we have

(3.9) E(ξ
{0}
i − Eξ{0}i )4 ≤ 38

(
p

1− p

)4

.

Using (3.5), (3.7), (3.8), (3.9) and Lemma 3.1, we obtain (3.2). Equality
(3.3) follows from equalities (3.5) and (3.8). 2 �

Lemma 3.3. Let ξi be the geometrically distributed random variable defined
by (1.7) and let ξ{0}i be created from ξi by the rule (1.6). Let SKN be the
sum in (3.1). Let N →∞ and p ≥ C > 0. Then we have

(3.10) σKN (p)P{SKN = l} − 1√
2π
e
− (l−eKN (p))2

2σ2
KN

(p) → 0

uniformly for 0 ≤ K ≤ N and l = 0, 1, 2, . . . . The statement includes the
case of p→ 1.

Proof. We will use the following notation. φ(t) = 1−p
1−peit is the characteris-

tic function of ξi, φc(t) = φ(t)e−ite(p) is the characteristic function of ξi−Eξi,
φ0(t) = eit 1−p

1−peit is the characteristic function of ξ{0}i , φc0(t) = φ0(t)e
−ite0(p)

is the characteristic function of ξ{0}i −Eξ
{0}
i , and φKN (t) is the characteristic

function of SKN−eKN (p)
σKN (p) . We know that φc0(t) = φc(t).

Let

z =
l − eKN (p)

σKN (p)
.

The inversion formula for an integer valued random variable X is

P{X = k} =
1

2π

∫ π

−π
e−itkφX(t)dt,

where φX(t) is the characteristic function of X. Therefore, by short calcu-
lation:

P{SKN = l} =
1

2π

∫ π

−π
e−itσKN (p)zφKN (σKN (p)t)dt

=
1

2πσKN (p)

∫ σKN (p)π

−σKN (p)π
e−itzφKN (t)dt.
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Choose 0 < ε < 1 and B > 0. Using

1√
2π
e−

z2

2 =
1

2π

∫ ∞
−∞

e−ixze−
x2

2 dx,

we obtain

(3.11) RN = 2π

(√
Nσ(p)P{SKN = l} − 1√

2π
e−

z2

2

)
= I1 + I2 + I3 + I4,

where

I1 =

∫
|x|<B

e−ixzφKN (x)dx−
∫
|x|<B

e−ixze−
x2

2 dx,

I2 = −
∫
|x|>B

e−ixze−
x2

2 dx,

I3 =

∫
B<|x|≤ε

√
Nσ(p)

e−ixz
(
φc
(

x

σKN (p)

))N
dx

I4 =

∫
ε
√
Nσ(p)<|x|≤π

√
Nσ(p)

e−ixz
(
φc
(

x

σKN (p)

))N
dx.

Since, by Lemma 3.2,

SKN
d→ γ as N →∞,

so φKN (x)→ e−
x2

2 , therefore

(3.12) I1 → 0

for any fixed B > 0.
Since

|I2| ≤
∫
|x|>B

e−
x2

2 dx,

therefore

(3.13) |I2| → 0 as B →∞.

We need the following formula for the characteristic function:

|φ(t)| = |φc(t)| =
∣∣∣∣ 1− p
1− peit

∣∣∣∣ =
1− p√

(1− p cos(t))2 + p2 sin2(t)

=

√
(1− p)2

1− 2p cos(t) + p2
=

√
(1− p)2

(1− p)2 + 2p(1− cos(t))

=

√
1

1 + 2p(1−cos(t))
(1−p)2

.
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Therefore, we obtain

|I3| ≤
∫
B<|x|≤ε

√
Nσ(p)

∣∣∣∣∣e−ixz
(
φc
(

x√
Nσ(p)

))N ∣∣∣∣∣ dx
=

∫
B<|x|≤ε

√
Nσ(p)

 1

1 +
2p

(
1−cos

(
x√

Nσ(p)

))
(1−p)2


N/2

dx

=

∫
B<|x|≤ε

√
Nσ(p)

exp

−N
2

ln

1 +
2p
(

1− cos
(

x√
Nσ(p)

))
(1− p)2

 dx

=

∫
B<|x|≤ε

√
Nσ(p)

exp

−N
2

(1 + o(1))
2p
(

1− cos
(

x√
Nσ(p)

))
(1− p)2

 dx

=

∫
B<|x|≤ε

√
Nσ(p)

exp

−N
2

(1 + o(1))(1 + O(ε))
2p12

(
x√

Nσ(p)

)2
(1− p)2

 dx

=

∫
B<|x|≤ε

√
Nσ(α)

exp

(
−1

2
(1 + O(ε))

px2

(1− p)2σ2(p)

)
dx

=

∫
B<|x|≤ε

√
Nσ(p)

exp

(
−1

2
(1 + O(ε))x2

)
dx.

Consequently, we have

(3.14) |I3| → 0 as B →∞.

Since

|φ(x)| ≤
√

1

1 + 2p(1−cos(ε))
(1−p)2

, ε ≤ x ≤ π,

therefore, we have

|I4| ≤ 2π
√
Nσ(p)

 1

1 + 2p(1−cos(ε))
(1−p)2

N/2

≤ C
√
N

(
1 +

2p(1− cos(ε))

(1− p)2

)−N−1
2

.

Therefore,

(3.15) |I4| → 0.

Relations (3.12), (3.13), (3.14), (3.15), and (3.11) imply (3.10). �
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Lemma 3.4. Assume that the conditions of Theorem 1.1 or the conditions
of Theorem 1.2 are satisfied. Then we have

(3.16)
P(S(K−k)(N−k) = n)

P(SN = n)
= 1 + o(1).

In the case of Theorem 1.1, this convergence is uniform for |z| < C, where
z = k−K(1−p)√

Kp(1−p)
.

Proof. First we show that

(3.17) N − k = N(1 + o(1)).

When the conditions of Theorem 1.1 are valid, then n/N → ∞, so p =
n

n+N → 1. As z = k−K(1−p)√
Kp(1−p)

, therefore we have

N − k = N

(
1 +

K

N
(1− p) + z

√
Kp(1− p)
N

)
.

As |z| < C, K ≤ N , and p→ 1, we obtain (3.17). On the other hand, when
the conditions of Theorem 1.2 are satisfied, then k is a fixed number. So we
also have (3.17).

Now, using Lemma 3.3, equation (3.17) and the formula p = n
n+N , we

obtain

P(S(K−k)(N−k) = n)

P(SN = n)
(3.18)

=

1√
2π(N−k)σ(p)

exp

−
(
n−(N−K)

n
n+N

1− n
n+N

−(K−k)
n

n+N
1− n

n+N

1
n

n+N

)2

2(N−k)σ2(p)

+ o(1)


1√

2πNσ(p)

exp

−
(
n−N

n
n+N

1− n
n+N

)2

2Nσ2(p)

+ o(1)



=
N

N − k

exp

−
(
K

n
n+N

1− n
n+N

(
1− 1

n
n+N

)
+k

n
n+N

1− n
n+N

1
n

n+N

)2

2(N−k)σ2(p)

+ o(1)

exp
(
− 0

2Nσ2(p)

)
+ o(1)

= exp

−
(
K

n
n+N

1− n
n+N

(
1− 1

n
n+N

)
+ k

n
n+N

1− n
n+N

1
n

n+N

)2
2(N − k)σ2(p)

+ o(1)
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= exp

−
(
−K + kn+NN

)2
2(N − k)

n
n+N

(1− n
n+N )

2

+ o(1) = exp

(
−
(
−K + kn+NN

)2
2(N − k)n(N+n)

N2

)
+ o(1).

Now we prove (3.16) separately for Theorem 1.1 and Theorem 1.2. First,
let the conditions of Theorem 1.1 be valid. Then we have

(3.19) k = K(1−p)+z
√
Kp(1− p) = K

N

n+N
+z

√
K

nN

(n+N)2
, |z| < C.

Using equations (3.19) and (3.18), we obtain

(3.20)

P(S(K−k)(N−k) = n)

P(SN = n)

= exp

−
(
−K +

(
K N

n+N + z
√
K nN

(n+N)2

)
n+N
N

)2
2(N − k)n(n+N)

N2

+ o(1)

= exp

(
−

z2K n
N

2(N − k)n(n+N)
N2

)
+ o(1)

= exp

(
− z2KN

2(N − k)(n+N)

)
+ o(1)

= 1 + o(1).

In the last step we used the formula N−k
K · n+NN → ∞, which follows from

conditions n
N →∞ and |z| ≤ C.

Now, let the conditions of Theorem 1.2 be valid. Then we have(
−K + kn+NN

)2
2(N − k)n(N+n)

N2

≤ (K)2

(N − k)n(N+n)
N2

+

(
kn+NN

)2
(N − k)n(N+n)

N2

=
K

N − k
NK

n

N

N + n
+ k2

n+N

(N − k)n
= o(1).

Therefore, using (3.18), we obtain

(3.21)
P(S(K−k)(N−k) = n)

P(SN = n)
= exp (−o(1)) + o(1) = 1 + o(1).

We see that (3.20) and (3.21) imply (3.16). 2 �

We will use the following version of the de Moivre–Laplace theorem.

Lemma 3.5. Let AKi, 1 ≤ i ≤ K, K ∈ N, be an array of row-wise indepen-
dent events having the same probability within rows. Let s = s(K) = P(AKi)



28 A. Chuprunov and I. Fazekas

denote these probabilities. Let IKi denote the indicator of the event AKi.
Suppose K →∞ such that Ks(1− s)→∞. Then we have

(3.22)
√
Ks(1− s)P

(
K∑
i=1

IKi = k

)
− 1√

2π
e
− (k−Ks)2

2Ks(1−s) → 0

uniformly for those values of k = 0, 1, 2, . . . for which
∣∣∣∣ k−K(1−s)√

Ks(1−s)

∣∣∣∣ < C.

For the proof see e.g. [9].

Proof of Theorem 1.1. We can see that

Kp(1− p) = K
n

N + n

N

N + n
=
KN

n
(1 + o(1))→∞.

Therefore, we can apply Lemma 3.5 with s = 1−p. Consider the right hand
side of (1.5). There p0 = 1 − p. So, for the binomial probability in (1.5),
relation (3.22) implies(

K

k

)
(p0)

k(1− p0)K−k →
1√

2πKp(1− p)
e−

z2

2 ,

where z = k−K(1−p)√
Kp(1−p)

and this convergence is uniform for |z| < C. For the

other part of (1.5), by (3.16), we have

P
{
ζ
{r}
N−k = n− kr

}
P{ζN = n}

→ 1.

So we obtain (1.2). �

Proof of Theorem 1.2. Recall that in the right hand side of (1.5), p0 =
1− p. Observe that

K(1− p) = K
N

N + n
=
KN

n
(1 + o(1)) = λ(1 + o(1)).

Therefore, using the well-known Poisson limit theorem for the binomial
probability in (1.5), we obtain(

K

k

)
(p0)

k(1− p0)K−k → e−λ
λk

k!
.

For the other part of (1.5), by (3.16), we have

P
{
ζ
{r}
N−k = n− kr

}
P{ζN = n}

→ 1.

So we obtain (1.4). �
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