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On the complex q-Appell polynomials

Abstract. The purpose of this article is to generalize the ring of q-Appell
polynomials to the complex case. The formulas for q-Appell polynomials thus
appear again, with similar names, in a purely symmetric way. Since these
complex q-Appell polynomials are also q-complex analytic functions, we are
able to give a first example of the q-Cauchy–Riemann equations. Similarly,
in the spirit of Kim and Ryoo, we can define q-complex Bernoulli and Eu-
ler polynomials. Previously, in order to obtain the q-Appell polynomial, we
would make a q-addition of the corresponding q-Appell number with x. This
is now replaced by a q-addition of the corresponding q-Appell number with
two infinite function sequences Cν,q(x, y) and Sν,q(x, y) for the real and imag-
inary part of a new so-called q-complex number appearing in the generating
function. Finally, we can prove q-analogues of the Cauchy–Riemann equa-
tions.

This paper is organized as follows: in Section 1, we present the simplest
type of q-complex numbers, which we will later use as function arguments
in our new complex q-Appell polynomials. We remark that there are also
other types of q-complex numbers.

In Section 2, we define complex q-Appell polynomials, and show that
these polynomials obey quite similar rules as q-Appell polynomials, which
always appear in doublets.

In Section 3, we briefly discuss pseudo-q-complex Appell polynomials,
which have a slightly different generating function.
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In Section 4, we present the two simplest examples of q-complex Appell
polynomials. We remark that many other such polynomials could easily be
defined, like in the other papers of the author. The special formulas, which
appear in Section 2, are not repeated, for the sake of brevity.

In Section 5, we make a brief conclusion.

1. Definition of the q-complex numbers C⊕q .

Definition 1. We define the q-complex numbers C⊕q as the set

{z = x⊕q iy}, x, y ∈ R.

The numbers x and y are called the q-real and the q-imaginary parts of z,
denoted by Req z and Imq z. A q-real number is a q-complex number with
q-imaginary part 0. A q-imaginary number is a q-complex number with
q-real part 0.

Definition 2. The absolute value of z ∈ C⊕q is given by

|z| ≡
√
x2 + y2.

The conjugate of z ∈ C⊕q is given by

z ≡ x	q iy.

For each z ∈ C⊕q , a ∈ R, we define a scalar multiplication az:

az ≡ ax⊕q iay.

We will now define the corresponding operators of +,−,�,÷ by consid-
ering the set (C⊕q ,⊕,�q). The two operations ⊕ and �q are defined with
the help of the following operator h.

Definition 3. The bijection h : C −→ C⊕q maps the complex number x+iy
to x⊕q iy ∈ C⊕q .

In the following we will use the notation

zj = xj ⊕q iyj , zj ∈ C⊕q .
α = α1 ⊕q iα2, β = β1 ⊕q iβ2, γ = γ1 ⊕q iγ2, α, β, γ,∈ C⊕q .

Definition 4. The four binary operations are defined as follows: An addi-
tion ⊕ : C⊕q × C⊕q −→ C⊕q by

z1 ⊕ z2 ≡ h(h−1z1 + h−1z2).

A subtraction 	 : C⊕q × C⊕q −→ C⊕q :

z1 	 z2 ≡ z1 ⊕ (−z2).
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A multiplication � : C⊕q × C⊕q −→ C⊕q :

z1 � z2 ≡ h(h−1z1 · h−1z2).

A division � : C⊕q × C⊕q −→ C⊕q :

z1 � z2 ≡ h
(
h−1z1
h−1z2

)
.

The multiplication and division are also given by

z1 � z2 = (x1x2 − y1y2)⊕q i(x1y2 + x2y1),

z1 � z2 =
1

x22 + y22
((x1x2 + y1y2)⊕q i(x2y1 − x1y2)) .

Then
(z1 � z2)� z2 = z1.

We decide to have the same priority for these operations as usual, i.e.,
products are computed before sums (additions) etc. We also agree to some-
times abbreviate the � by juxtaposition.

For purposes which will soon become evident, we limit ourselves to formal
power series.

Definition 5. We define the complex q-derivative as

D⊕f(z) ≡ lim
δz−→0⊕q

f(z ⊕ δz)− f(z)

(δz)1
, f ∈ C[[z]].

Powers of D⊕ are denoted by Dm
⊕ .

The function f(z) is called q-holomorphic if and only if the complex q-
derivative D⊕f(z) exists.

Theorem 1.1. Formula for the complex q-derivative for functions of q-
complex numbers.

D⊕
∞∑
k=0

akz
k =

∞∑
k=1

ak{k}qzk−1.

Proof. We denote the fact that h is an isomorphism by ?. Put f(z) =∑∞
k=0 akz

k. Then

f(z ⊕ δz)− f(z)

(δz)1
=
f((x⊕q iy)⊕ (δx⊕q iδy))− f(x⊕q iy)

(δz)1

by?
=

f((x+ δx)⊕q i(y + δy))− f(x⊕q iy)

(δz)1

=

∑∞
k=0 ak((x+ δx)⊕q i(y + δy))k −

∑∞
k=0 ak(x⊕q iy)k

(δz)1
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=

∑∞
k=0 ak

∑k
m=0

(
k
m

)
q
(i(y + δy))k−m(x+ δx)m

(δz)1

−
∑∞

k=0 ak
∑k

m=0

(
k
m

)
q
(iy)k−mxm

(δz)1

=
1

(δz)1

[ ∞∑
k=0

ak

k∑
m=1

(
k

m

)
q

m∑
l=0

(
m

l

)
xm−lδxlik−m

k−m∑
n=0

(
k −m
n

)
δynyk−m−n

]

=
1

(δz)1

∞∑
k=0

ak

k∑
m=1

(
k

m

)
q

zk−m(δz)m.

The result now follows by letting limδz−→0⊕q . �

Theorem 1.2.

D⊕f(z) = Dq,xu(x, y) + iDq,xv(x, y).

Proof.

Dq,xu(x, y) + iDq,xv(x, y) = Dq,x

∞∑
k=0

ak

k∑
l=0

(
k

l

)
q

xl(iy)k−l

=

∞∑
k=0

ak

k∑
l=1

(
k

l

)
q

{l}qxl−1(iy)k−l = D⊕f(z). �

2. Extension of q-Appell polynomials to complex q-Appell polyno-
mials. We will now define the complex q-Appell polynomials. Throughout,
we assume that z = x⊕q iy, where we can use both of the previously defined
q-complex numbers. In the beginning, we use the numbers C⊕q . For the
notation, we refer to [4].

Definition 6 (A q-analogue of [5, (3)]). For every power series fn(t), with
fn(0) 6= 0, the cosine-q-Appell polynomials A

(c,n)
ν,q (x, y) have the following

generating function:

(1) fn(t)Eq(xt) Cosq(yt) =
∞∑
ν=0

tν

{ν}q!
A(c,n)
ν,q (x, y).

The sine-q-Appell polynomials Aq(s, n) of degree ν and order n have the
following generating function:

(2) fn(t)Eq(xt) Sinq(yt) =

∞∑
ν=0

tν

{ν}q!
A(s,n)
ν,q (x, y).

By putting x = y = 0, we have again (see [2, 4.105])

fn(t) =

∞∑
ν=0

tν

{ν}q!
Φ(n)
ν,q ,
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where Φ
(n)
ν,q are the q-Appell numbers. In the following, when a formula

with A
(c,n)
ν,q (x) is given, without a similar formula with A

(s,n)
ν,q (x), we always

assume that c ≡ c ∨ s.
It will be convenient to fix the value for n = 0 and n = 1:

A(c,1)
ν,q (x) ≡ A(c)

ν,q(x); A(c,0)
ν,q ≡ Φ(0)

ν,q ≡ 0.

The following formula is the same as [2, 4.107]:

DqA
(c,n)
ν,q (x) = {ν}qA(c,n)

ν−1,q(x).

A q-analogue of [5, (3)] expresses the q-Appell polynomial of z as the sum
of the cosine and sine-q-Appell polynomials.

(3) Φ(n)
ν,q (z) = A(c,n)

ν,q (x, y) + iA(s,n)
ν,q (x, y).

Then we have generating functions for q-Appell polynomial of z and z:

fn(t)Eq(zt) =
∞∑
ν=0

tν

{ν}q!
Φ(n)
ν,q (z) = fn(t)Eq(xt)(Cosq(yt) + iSinq(yt)),(4)

fn(t)Eq(zt) =

∞∑
ν=0

tν

{ν}q!
Φ(n)
ν,q (z) = fn(t)Eq(xt)(Cosq(yt)− i Sinq(yt)).(5)

Addition and subtraction of formulas (4) and (5) give a q-analogue of
[5, p. 3]:

fn(t)Eq(xt) Cosq(yt) =
∞∑
ν=0

tν

{ν}q!
Φ
(n)
ν,q (z) + Φ

(n)
ν,q (z)

2
,

fn(t)Eq(xt) Sinq(yt) =
∞∑
ν=0

tν

{ν}q!
Φ
(n)
ν,q (z)− Φ

(n)
ν,q (z)

2i
,

A(c,n)
ν,q (x, y) =

Φ
(n)
ν,q (z) + Φ

(n)
ν,q (z)

2
,

A(s,n)
ν,q (x, y) =

Φ
(n)
ν,q (z)− Φ

(n)
ν,q (z)

2i
.

We obtain the two q-Taylor formulas, a q-analogue of [5, (ii), p. 3].

Theorem 2.1.

Φ(n)
ν,q (x⊕q iy) =

ν∑
k=0

(
ν

k

)
q

Φ
(n)
ν−k,q(x)(iy)k,

Φ(n)
ν,q (x�q iy) =

ν∑
k=0

(
ν

k

)
q

q(
k
2)Φ

(n)
ν−k,q(x)(iy)k.

The first formula implies the symbolic equality:
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Theorem 2.2.
Φ(n)
ν,q (z)=̈(Φ(n)

q (x)⊕q iy)ν .

We collect some obvious facts about the q-complex Appell polynomials
in a theorem.

Theorem 2.3 (A q-analogue of [5, p. 3]).

Φ(n)
ν,q (z) = Φ

(n)
ν,q (z).

A
(c,n)
ν,q (x, y) is an even function of y. A

(s,n)
ν,q (x, y) is an odd function of y.

(6) Φ(n)
ν,q (z)Φ(n)

ν,q (z) =
(
A(c,n)
ν,q (x, y)

)2
+
(
A(s,n)
ν,q (x, y)

)2
.

Φ(n)
ν,q (z)Φ(n)

µ,q(z) =
(
A(c,n)
ν,q (x, y)A(c,n)

µ,q (x, y) + A(s,n)
ν,q (x, y)A(s,n)

µ,q (x, y)
)

+ i
(
A(s,n)
ν,q (x, y)A(c,n)

µ,q (x, y)−A(c,n)
ν,q (x, y)A(s,n)

µ,q (x, y)
)
.

(7)

Proof. To prove (6), use (3). �

Lemma 2.4 (A q-analogue of [5, (4) and (5)]). The cosine-q-Appell poly-
nomials and the sine-q-Appell polynomials can be expressed as sums of the
corresponding q-Appell polynomials with coefficients powers of y.

A(c,n)
ν,q (x, y) =

[
ν
2 ]∑

k=0

(
ν

2k

)
q

(−1)ky2kΦ
(n)
ν−2k,q(x),(8)

A(s,n)
ν,q (x, y) =

[
ν−1
2 ]∑

k=0

(
ν

2k + 1

)
q

(−1)ky2k+1Φ
(n)
ν−2k−1,q(x).(9)

Proof. To prove (8), use generating function (1) together with the q-Euler
formula and change summation index. �

Lemma 2.5 (A q-analogue of [5, Lemma 2, p. 4]). Formulas for sums of
products of q-Appell polynomials with mixed function arguments z and z.

ν∑
k=0

(
ν

k

)
q

Φ
(n)
k,q (z)Φ

(n)
ν−k,q(z) =

ν∑
k=0

(
ν

k

)
q

Φ
(n)
k,q (x)Φ

(n)
ν−k,q(x),(10)

ν∑
k=0

(
ν

k

)
q

Φ
(n)
k,q (z)Φ

(n)
ν−k,q(−z) =

ν∑
k=0

(
ν

k

)
q

Φ
(n)
k,q (iy)Φ

(n)
ν−k,q(iy).(11)

Proof. To prove (10), use generating function (1). �

The following two functions Cν,q(x, y) and Sν,q(x, y) replace q-addition of
x with q-Appell numbers.
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Definition 7 (A q-analogue of [5, p. 5]).

Eq(xt) Cosq(yt) =
∞∑
ν=0

tν

{ν}q!
Cν,q(x, y),(12)

Eq(xt) Sinq(yt) =

∞∑
ν=0

tν

{ν}q!
Sν,q(x, y).(13)

We find that (compare with [5, (9), (10)])

A(c,n)
ν,q (x, y) = (Φ(n)

ν,q ⊕q Cν,q(x, y))ν ,

A(s,n)
ν,q (x, y) = (Φ(n)

ν,q ⊕q Sν,q(x, y))ν .

A q-analogue of [5, p. 5]; explicit expressions for Cν,q(x, y) and Sν,q(x, y):

Cν,q(z) ≡ Cν,q(x, y) =

[
ν
2 ]∑

k=0

(
ν

2k

)
q

(−1)ky2kxν−2k,

Sν,q(z) ≡ Sν,q(x, y) =

[
ν−1
2 ]∑

k=0

(
ν

2k + 1

)
q

(−1)ky2k+1xν−2k−1.

Theorem 2.6 (A q-analogue of [5, p. 5]). Addition formulas for Cν,q(z) and
Sν,q(z). Let ⊕q denote ⊕q ∨ 	q, corresponding to the two ±. Then

Cn,q(z1 ⊕q z2)=
n∑
k=0

(
n

k

)
q

(Cn−k,q(z1)Ck,q(±z2)− Sn−k,q(z1)Sk,q(±z2)),(14)

Sn,q(z1 ⊕q z2)=
n∑
k=0

(
n

k

)
q

(Sn−k,q(z1)Ck,q(±z2) + Cn−k,q(z1)Sk,q(±z2)).(15)

Proof. We find that

Eq((x1 ⊕q x2)t) Cosq((y1 ⊕q y2)t) =
∞∑
ν=0

tν

{ν}q!
Cν,q(z1 ⊕q z2),

Eq((x1 ⊕q x2)t) Sinq((y1 ⊕q y2)t) =

∞∑
ν=0

tν

{ν}q!
Sν,q(z1 ⊕q z2).

On the other hand, we have

Eq((x1 ⊕q x2)t) Cosq((y1 ⊕q y2)t)
= Eq((x1 ⊕q x2)t) (Cosq(y1t) Cosq(y2t)∓ Sinq(y1t) Sinq(y2t))

= Eq((x1t) Cosq(y1t)Eq((±x2t) Cosq(y2t)

∓ Eq((x1t) Sinq(y1t)Eq((±x2t) Sinq(y2t)

= Eq((x1t) Cosq(y1t)Eq((±x2t) Cosq(±y2t)
− Eq((x1t) Sinq(y1t)Eq((±x2t) Sinq(±y2t)
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by (12), (13)
=

( ∞∑
ν=0

tν

{ν}q!
Cν,q(z1)

)( ∞∑
ν=0

tν

{ν}q!
Cν,q(±z2)

)

−

( ∞∑
ν=0

tν

{ν}q!
Sν,q(z1)

)( ∞∑
ν=0

tν

{ν}q!
Sν,q(±z2)

)

=
∞∑
ν=0

((Cq(z1)⊕q Cq(z2))ν − (Sq(z1)⊕q Sq(z2))ν)
tν

{ν}q!
,

which proves (14). Formula (15) is proved in a similar way. �

We can now prove q-analogues of the Cauchy–Riemann equations for q-
complex Appell polynomials.

Lemma 2.7 (A q-analogue of [5, p. 6]).

Dq,xA
(c,n)
ν,q (x, y) = {ν}qA(c,n)

ν−1,q(x, y).(16)

Dq,xA
(s,n)
ν,q (x, y) = {ν}qA(s,n)

ν−1,q(x, y).(17)

Dq,yA
(c,n)
ν,q (x, y) = −{ν}qA(s,n)

ν−1,q(x, y).(18)

Dq,yA
(s,n)
ν,q (x, y) = {ν}qA(c,n)

ν−1,q(x, y).(19)

Proof. Use the generating function. �

Theorem 2.8 (q-analogues of the Cauchy–Riemann equations [1, p. 54]).
for q-complex Appell polynomials. Let our q-complex function be Φ

(n)
ν,q , with

q-real and q-imaginary parts given by (3). Then

Dq,xA
(c,n)
ν,q (z) = Dq,yA

(s,n)
ν,q (z),

Dq,yA
(c,n)
ν,q (z) = −Dq,xA

(s,n)
ν,q (z).

Proof. Equate formulas (16), (19), and formulas (17), (18), respectively.
�

3. Pseudo-q-complex Appell polynomials.

Definition 8. For every power series fn(t) given by (1) and (2), the pseudo-
cosine and pseudosine-q-Appell polynomials A

(q,c,n)
ν and A

(q,s,n)
ν of degree ν

and order n have the following generating functions:

fn(t)E 1
q
(xt) Cosq(yt) =

∞∑
ν=0

tν

{ν}q!
A(q,c,n)
ν (x, y),

fn(t)E 1
q
(xt) Sinq(yt) =

∞∑
ν=0

tν

{ν}q!
A(q,s,n)
ν (x, y).
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Now, for convenience, we fix the value for n = 1:

A(q,c)
ν (x, y) ≡ A(q,c,1)

ν (x, y),

A(q,s)
ν (x, y) ≡ A(q,s,1)

ν (x, y).

We have

Theorem 3.1.

DqA
(q,c,n)
ν (x) = {ν}qA(q,c,n)

ν−1 (qx).(20)

DqA
(q,s,n)
ν (x) = {ν}qA(q,s,n)

ν−1 (qx).(21)

We get the following two q-Taylor formulas:

Theorem 3.2.

A(n;q)
ν (x⊕q y) =

ν∑
k=0

(
ν

k

)
q

q(
k
2)A(n;q)

ν (qkx)yk,

A(n;q)
ν (x�q y) =

ν∑
k=0

(
ν

k

)
q

q2(
k
2)A(n;q)

ν (qkx)yk.

Proof. Use formula (20). �

As a prerequisite of the next section, we extend the following formulas
from [2]. The two operators 4NWA,q and ∇NWA,q always refer to the vari-
able x.

Theorem 3.3.

(Eq(t)− 1)fn(t)Eq(xt) Cosq(yt) =

∞∑
ν=0

tν

{ν}q!
4NWA,qA(c,n)

ν,q (x, y),

(Eq(t)− 1)fn(t)Eq(xt) Sinq(yt) =
∞∑
ν=0

tν

{ν}q!
4NWA,qA(s,n)

ν,q (x, y).

Theorem 3.4.

(Eq(t) + 1)

2
fn(t)Eq(xt) Cosq(yt) =

∞∑
ν=0

tν

{ν}q!
∇NWA,qA(c,n)

ν,q (x, y),

(Eq(t) + 1)

2
fn(t)Eq(xt) Sinq(yt) =

∞∑
ν=0

tν

{ν}q!
∇NWA,qA(s,n)

ν,q (x, y).

Theorem 3.5.

(E 1
q
(t)− 1)fn(t)Eq(xt) Cosq(yt) =

∞∑
ν=0

tν

{ν}q!
4JHC,qA(c,n)

ν,q (x, y),(22)

(E 1
q
(t)− 1)fn(t)Eq(xt) Sinq(yt) =

∞∑
ν=0

tν

{ν}q!
4JHC,qA(s,n)

ν,q (x, y).(23)
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Theorem 3.6.
(E 1

q
(t) + 1)

2
fn(t)Eq(xt) Cosq(yt) =

∞∑
ν=0

tν

{ν}q!
∇JHC,qA(c,n)

ν,q (x, y),(24)

(E 1
q
(t) + 1)

2
fn(t)Eq(xt) Sinq(yt) =

∞∑
ν=0

tν

{ν}q!
∇JHC,qA(s,n)

ν,q (x, y).(25)

4. Special complex q-Appell polynomials. A special case of the Aq

polynomials are the two complex βq-polynomials of degree ν and order n,
which are obtained by putting fn(t) = tng(t)

(Eq(t)−1)n in (1) and (2):

Definition 9.

tng(t)

(Eq(t)− 1)n
Eq(xt) Cosq(yt) ≡

∞∑
ν=0

tνβ
(c,n)
ν,q (x, y)

{ν}q!
,

tng(t)

(Eq(t)− 1)n
Eq(xt) Sinq(yt) ≡

∞∑
ν=0

tνβ
(s,n)
ν,q (x, y)

{ν}q!
.

Similar to [2, 4.119], we find that

Theorem 4.1 (A q-analogue of [4, p. 10]).

4NWA,qβ(c,n)ν,q (x, y) = {ν}qβ(c,n−1)ν−1,q (x, y) = Dq,xβ
(c,n−1)
ν,q (x, y),

4NWA,qβ(s,n)ν,q (x, y) = {ν}qβ(s,n−1)ν−1,q (x, y) = Dq,xβ
(s,n−1)
ν,q (x, y).

Definition 10 (A q-analogue of [4, (32), (33)]). The generating functions
for B(c,n)

NWA,ν,q(x, y) and B(s,n)
NWA,ν,q(x, y):

tn

(Eq(t)− 1)n
Eq(xt) Cosq(yt) =

∞∑
ν=0

tνB(c,n)
NWA,ν,q(x, y)

{ν}q!
, |t| < 2π.

tn

(Eq(t)− 1)n
Eq(xt) Sinq(yt) =

∞∑
ν=0

tνB(s,n)
NWA,ν,q(x, y)

{ν}q!
, |t| < 2π.

The Ward q-Bernoulli numbers from [2, p. 118] are used here as well to
form the new q-Bernoulli polynomials.

A special case of complex Aq polynomials are the two complex γq-poly-
nomials of degree ν and order n, which are obtained by putting fn(t) =

tng(t)
(E 1

q
(t)−1)n in (1) and (2):

Definition 11.

tng(t)

(E 1
q
(t)− 1)n

Eq(xt) Cosq(yt) ≡
∞∑
ν=0

tνγ
(c,n)
ν,q (x, y)

{ν}q!
,
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tng(t)

(E 1
q
(t)− 1)n

Eq(xt) Sinq(yt) ≡
∞∑
ν=0

tνγ
(s,n)
ν,q (x, y)

{ν}q!
.

Similar to [2, 4.159], we find that

Theorem 4.2.

4JHC,qγ(c,n)ν,q (x, y) = {ν}qγ(c,n−1)ν−1,q (x, y) = Dq,xγ
(c,n−1)
ν,q (x, y).

Proof. Use (22). �

A special case of complex γq polynomials are the second generalized com-

plex q-Bernoulli polynomials B(c,n)
JHC,ν,q(x, y) of degree ν and order n.

Definition 12 (Another q-analogue of [4, (32), (33)]). The generating func-
tions for B(c,n)

JHC,ν,q(x) and B(s,n)
JHC,ν,q(x) are

tn

(E 1
q
(t)− 1)n

Eq(xt) Cosq(yt) =

∞∑
ν=0

tνB(c,n)
JHC,ν,q(x, y)

{ν}q!
, |t| < 2π,

tn

(E 1
q
(t)− 1)n

Eq(xt) Sinq(yt) =
∞∑
ν=0

tνB(s,n)
JHC,ν,q(x, y)

{ν}q!
, |t| < 2π.

We will now define q-Appell polynomials with a similar character as the
previous ones. A special case of the Aq polynomials are the ηq polynomials
of order n, which are obtained by putting fn(t) = g(t)2n

(Eq(t)+1)n in (1) and (2).

Definition 13.

2n

(Eq(t) + 1)n
g(t)Eq(xt) Cosq(yt) =

∞∑
ν=0

tνη
(c,n)
ν,q (x, y)

{ν}q!
,

2n

(Eq(t) + 1)n
g(t)Eq(xt) Sinq(yt) =

∞∑
ν=0

tνη
(s,n)
ν,q (x, y)

{ν}q!
.

We get
∇NWA,qη(c,n)ν,q (x, y) = η(c,n−1)ν,q (x, y).

We will now define the first q-Euler polynomials, a special case of the ηq
polynomials.

Definition 14 (A q-analogue of [4, (12), (13)]). The generating function
for the first q-Euler polynomials of degree ν and order n, F(c,n)

NWA,ν,q(x, y) is

2nEq(xt)
(Eq(t) + 1)n

Cosq(yt) =

∞∑
ν=0

tν

{ν}q!
F(c,n)
NWA,ν,q(x, y), |t| < π,

2nEq(xt)
(Eq(t) + 1)n

Sinq(yt) =

∞∑
ν=0

tν

{ν}q!
F(s,n)
NWA,ν,q(x, y), |t| < π.
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Theorem 4.3 (A q-analogue of [4, (22)]).
ν∑
k=0

(
ν

k

)
q

F(c,n)
NWA,ν−k,q(x, y) + F(c,n)

NWA,ν,q(x, y) = 2F(c,n−1)
NWA,ν,q(x, y).

A special case of Aq polynomials are the θq polynomials of order n, which
are obtained by putting fn(t) = g(t)2n

(E 1
q
(t)+1)n in (1) and (2).

Definition 15.

2n

(E 1
q
(t) + 1)n

g(t)Eq(xt) Cosq(yt) =
∞∑
ν=0

tνθ
(c,n)
ν,q (x, y)

{ν}q!
,

2n

(E 1
q
(t) + 1)n

g(t)Eq(xt) Sinq(yt) =
∞∑
ν=0

tνθ
(s,n)
ν,q (x, y)

{ν}q!
.

By (24) we obtain

∇JHC,qθ(n)ν,q (x, y) = θ(n−1)ν,q (x, y).

We will now define the second q-Euler polynomials, a special case of the θq
polynomials.

Definition 16 (Another q-analogue of [4, (12), (13)]). The generating func-
tion for the second q-Euler polynomials of degree ν and order n, F(c,n)

JHC,ν,q(x, y)
is

2nEq(xt)
(E 1

q
(t) + 1)n

Cosq(yt) =
∞∑
ν=0

tν

{ν}q!
F(c,n)
JHC,ν,q(x, y), |t| < π,

2nEq(xt)
(E 1

q
(t) + 1)n

Sinq(yt) =
∞∑
ν=0

tν

{ν}q!
F(s,n)
JHC,ν,q(x, y), |t| < π.

The proofs of the following four complementary argument formulas are
made with the generating function.

Theorem 4.4 (A q-analogue of [5, p. 9]).

B(c)
JHC,ν,q(x, y) = (−1)νB(c)

NWA,ν,q(1	q x, y).

Theorem 4.5 (A q-analogue of [5, p. 5]).

F(c)
JHC,ν,q(x, y) = (−1)νF(c)

NWA,ν,q(1	q x, y).

5. Conclusion. We have introduced a basis for a further investigation of
q-complex numbers, which will appear in another paper. These numbers are
used as function arguments in formal power series of one or many variables,
not just polynomials. Our proof of the q-Cauchy–Riemann equations follows
[1, p. 54]. It is not unlikely that the q-Cauchy–Riemann equations can be
extended to higher dimensions, like in [6].
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