ANNALES
 UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA
 LUBLIN - POLONIA

On naturality of some construction of connections

Dedicated to Professor Ivan Kolár on the occasion of his 85-th birthday.

Abstract

Let F be a bundle functor on the category of all fibred manifolds and fibred maps. Let Γ be a general connection in a fibred manifold pr : Y \rightarrow M and ∇ be a classical linear connection on M. We prove that the well-known general connection $\mathcal{F}(\Gamma, \nabla)$ in $F Y \rightarrow M$ is canonical with respect to fibred maps and with respect to natural transformations of bundle functors.

Introduction. We assume that any manifold considered in the paper is Hausdorff, second countable, finite dimensional, without boundary and smooth (i.e. of class C^{∞}). All maps between manifolds are assumed to be smooth (of class C^{∞}). A general connection in a fibred manifold pr : $Y \rightarrow M$ is a map

$$
\Gamma: T M \times_{M} Y \rightarrow T Y
$$

such that

$$
\Gamma(-, y): T_{x} M \rightarrow T_{y} Y \text { is linear and } T_{y} \operatorname{pr} \circ \Gamma(-, y)=\operatorname{id}_{T_{x} M}
$$

for any $y \in Y_{x}$ and $x \in M$.
General connections Γ and Γ_{1} in fibred manifolds pr : $Y \rightarrow M$ and $\mathrm{pr}_{1}: Y_{1} \rightarrow M_{1}$ (respectively) are called to be f-related with respect to

[^0]a fibred map $f: Y \rightarrow Y_{1}$ with the base map $\underline{f}: M \rightarrow M_{1}$ if
$$
T f \circ \Gamma(v, y)=\Gamma_{1}(T \underline{f}(v), f(y))
$$
for any $v \in T_{x} M, y \in Y_{x}$ and $x \in M$.
A classical linear connection on a manifold M is a general connection ∇ in the tangent bundle $T M \rightarrow M$ of M such that ∇ and ∇ are a_{t}-related for any $t \in \mathbf{R}_{+}$, where $a_{t}: T M \rightarrow T M$ is the fiber multiplication by t. It is well known that such ∇ defines a linear connection
$$
\nabla: \mathcal{X}(M) \times \mathcal{X}(M) \rightarrow \mathcal{X}(M)
$$
in the usual sense of [1] (and vice versa). One can see that if classical linear connections ∇ on M and ∇^{1} on M_{1} are f-related (i.e. $T f$-related) for a map $f: M \rightarrow M_{1}$, then $\nabla_{X} Z$ and $\nabla_{X_{1}}^{1} Z_{1}$ are f-related if X and X_{1} are and Z and Z_{1} are.

We have the well-known canonical constructions on connections.
Example 0.1. Let ∇ be a classical linear connection on a manifold M and let $v \in T_{x_{o}} M$ be a vector tangent to M at a point $x_{o} \in M$. Denote by \hat{v} the constant vector field on $T_{x_{o}} M$ determined by v, i.e. $\hat{v}(w):=\frac{d}{d \tau \mid 0}(w+\tau v)$, $w \in T_{x_{o}} M$. Then on some neighborhood of x_{o} we have the vector field

$$
\begin{equation*}
v^{\left[\nabla, x_{o}\right]}:=\left(\mathcal{E} x p_{\nabla, x_{o}}\right)_{*} \hat{v} \tag{1}
\end{equation*}
$$

the image of \hat{v} by the geodesic exponent $\mathcal{E} x p_{\nabla, x_{o}}:\left(T_{x_{o}} M, 0\right) \rightarrow\left(M, x_{o}\right)$ of ∇ at x_{o}.

Example 0.2. Let Γ be a general connection in a fibred manifold pr : $Y \rightarrow$ M and ∇ be a classical linear connection on M. Let $y_{o} \in Y_{x_{o}}, x_{o} \in M$. Let $v \in T_{x_{o}} M$. Then on some neighborhood of y_{o} we have the projectable vector field

$$
\begin{equation*}
v^{\left[\Gamma, \nabla, y_{o}\right]}:=\left(v^{\left[\nabla, x_{o}\right]}\right)^{\Gamma} \tag{2}
\end{equation*}
$$

where $X^{\Gamma}=\Gamma(X,-)$ is the Γ-horizontal lift of a vector field X on M to Y.
Example 0.3. Let $F: \mathcal{F} \mathcal{M}_{m, n} \rightarrow \mathcal{F} \mathcal{M}$ be a bundle functor on the category $\mathcal{F} \mathcal{M}_{m, n}$ of fibred manifolds with n-dimensional fibres and m-dimensional bases and (locally defined) fibred diffeomorphisms. Let $\Gamma: T M \times_{M} Y \rightarrow T Y$ be a general connection in a $\mathcal{F} \mathcal{M}_{m, n}$-object pr : $Y \rightarrow M$ and ∇ be a classical linear connection on M. Then we have a $\operatorname{map} \mathcal{F}(\Gamma, \nabla): T M \times{ }_{M} F Y \rightarrow T F Y$ defined by
$\mathcal{F}(\Gamma, \nabla)(v, z):=\mathcal{F} v^{\left[\Gamma, \nabla, y_{o}\right]}(z), \quad z \in F_{y_{o}} Y, v \in T_{x_{o}} M, y_{o} \in Y_{x_{o}}, x_{o} \in M$, where $\mathcal{F} X$ denotes the flow lift of a projectable vector field X in $Y \rightarrow M$ to $F Y$ by means of F. Then $\mathcal{F}(\Gamma, \nabla)$ is a general connection in $F Y \rightarrow M$. One can see that it is the composition of $\mathcal{F}(\Gamma, \Lambda)$ from Item 45.4 in [2] with exponential extension of ∇ into r-th order linear connection $\Lambda(\nabla)$.

Clearly, the construction of $\mathcal{F}(\Gamma, \nabla)$ is $\mathcal{F} \mathcal{M}_{m, n}$-canonical, i.e. we have the corresponding $\mathcal{F} \mathcal{M}_{m, n}$-natural operator in the sense of [2]. More precisely, we have:

Proposition 0.4. Let $F: \mathcal{F} \mathcal{M}_{m, n} \rightarrow \mathcal{F M}$ be a bundle functor. Let pr : $Y \rightarrow M$ and $\operatorname{pr}_{1}: Y_{1} \rightarrow M_{1}$ be $\mathcal{F} \mathcal{M}_{m, n}$-objects. Let $f: Y \rightarrow Y_{1}$ be a (locally defined) fibred diffeomorphism with the base map $\underline{f}: M \rightarrow M_{1}$. Let $\bar{\nabla}$ be a classical linear connection on M and $\breve{\nabla}$ be a classical linear connection on M_{1}. Assume that $\check{\nabla}$ and $\breve{\nabla}$ are \underline{f}-related. Let $\check{\Gamma}$ be a general connection in $\mathrm{pr}: Y \rightarrow M$ and $\bar{\Gamma}$ be a general connection in $\operatorname{pr}_{1}: Y_{1} \rightarrow M_{1}$. Assume that connections $\check{\Gamma}$ and $\check{\Gamma}$ are f-related. Then the general connections $\mathcal{F}(\check{\Gamma}, \check{\nabla})$ and $\mathcal{F}(\breve{\Gamma}, \breve{\nabla})$ are $F f$-related.

The purpose of the note is to prove that given a bundle functor F : $\mathcal{F M} \rightarrow \mathcal{F M}$ on the category $\mathcal{F M}$ of all fibred manifolds and fibred maps, the construction of $\mathcal{F}(\Gamma, \nabla)$ is $\mathcal{F} \mathcal{M}$-canonical. More precisely, we will prove:

Theorem 0.5. Let $F: \mathcal{F M} \rightarrow \mathcal{F M}$ be a bundle functor. Let $\mathrm{pr}: Y \rightarrow M$ and $\mathrm{pr}_{1}: Y_{1} \rightarrow M_{1}$ be fibred manifolds. Let $f: Y \rightarrow Y_{1}$ be a fibred map with the base map $f: M \rightarrow M_{1}$. Let $\check{\nabla}$ be a classical linear connection on M and $\breve{\nabla}$ be a classical linear connection on M_{1}. Assume that $\check{\nabla}$ and $\breve{\nabla}$ are \underline{f}-related. Let $\check{\Gamma}$ be a general connection in $\mathrm{pr}: Y \rightarrow M$ and $\breve{\Gamma}$ be a general connection in $\mathrm{pr}_{1}: Y_{1} \rightarrow M_{1}$. Assume that connections $\check{\Gamma}$ and $\breve{\Gamma}$ are f-related. Then the general connections $\mathcal{F}(\check{\Gamma}, \check{\nabla})$ and $\mathcal{F}(\breve{\Gamma}, \breve{\nabla})$ are Ff-related.

We also deduce that the construction of $\mathcal{F}(\Gamma, \nabla)$ is canonical with respect to F. More precisely, we will prove:

Theorem 0.6. Let $F, F_{1}: \mathcal{F} \mathcal{M}_{m, n} \rightarrow \mathcal{F M}$ be bundle functors and $\mu: F \rightarrow$ F_{1} be a $\mathcal{F M}_{m, n}$-natural transformation. Let $\mathrm{pr}: Y \rightarrow M$ be a $\mathcal{F} \mathcal{M}_{m, n^{-}}$ object. Let $\check{\nabla}$ be a classical linear connection on M. Let $\check{\Gamma}$ be a general connection in pr : $Y \rightarrow M$. Then the general connections $\mathcal{F}(\check{\Gamma}, \nabla)$ and $\mathcal{F}_{1}(\check{\Gamma}, \check{\nabla})$ are μ_{Y}-related.

1. Some preparatory lemmas.

Lemma 1.1. Let m, m_{1} be non-negative integers and p be an integer such that $0 \leq p \leq \min \left\{m, m_{1}\right\}$. Let $v=\left(v^{1}, \ldots, v^{m}\right) \in T_{0} \mathbf{R}^{m}=\mathbf{R}^{m}$ be a vector. Let $\iota: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m_{1}}$ be given by $\iota\left(x^{1}, \ldots, x^{m}\right)=\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)$. Let $\check{\nabla}$ be a classical linear connection on \mathbf{R}^{m} and $\vec{\nabla}$ be a classical linear connection on $\mathbf{R}^{m_{1}}$. Assume that $\check{\nabla}$ and $\breve{\nabla}$ are ι-related. Suppose $\gamma=\left(\gamma^{1}, \ldots, \gamma^{m}\right)$ is the $\check{\nabla}$-geodesic such that $\gamma(0)=0$ and $\gamma^{\prime}(0)=v=\left(v^{1}, \ldots, v^{m}\right)$. Then $\breve{\gamma}:=\iota \gamma=\left(\gamma^{1}, \ldots, \gamma^{p}, 0, \ldots, 0\right)$ is the $\breve{\nabla}$-geodesic such that $\breve{\gamma}(0)=\iota(0)$ and $\breve{\gamma}^{\prime}(0)=T \iota(v)=\left(v^{1}, \ldots, v^{p}, 0, \ldots, 0\right)$.

Proof. If $m=0$ or $m_{1}=0$ or $p=0$, then $\iota=0$. Then $\breve{\gamma}=0$, and then it is $\breve{\nabla}$-geodesic. So, we may additionally assume that m, m_{1}, p are positive integers. Let $\check{\Gamma}_{\alpha \beta}^{\rho}$ be the Christofell symbols of $\check{\nabla}$ with respect to the usual coordinates on \mathbf{R}^{m} and $\breve{\Gamma}_{q r}^{s}$ be the Christofell symbols of $\breve{\nabla}$ with respect to the usual coordinates on $\mathbf{R}^{m_{1}}$. Since $\check{\nabla}$ and $\breve{\nabla}$ are ι-related, then:

$$
\begin{align*}
& \breve{\Gamma}_{i j}^{s}\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)=0 \text { for } i, j=1, \ldots, p \text { and } s=p+1, \ldots, m_{1} \\
& \check{\Gamma}_{i j}^{k}\left(x^{1}, \ldots, x^{m}\right)=\breve{\Gamma}_{i j}^{k}\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right) \text { for } i, j, k=1, \ldots, p \tag{3}\\
& \check{\Gamma}_{q r}^{k}\left(x^{1}, \ldots, x^{m}\right)=0 \text { for } k=1, \ldots, p, q=p+1, \ldots, m, r=1, \ldots, m \\
& \check{\Gamma}_{q r}^{k}\left(x^{1}, \ldots, x^{m}\right)=0 \text { for } k=1, \ldots, p, q=1, \ldots, m, r=p+1, \ldots, m
\end{align*}
$$

Indeed, we can see that $T \iota \circ \partial \rho=\partial_{\rho} \circ \iota$ for $\rho=1, \ldots, p$ and $=0$ for $\rho=p+1, \ldots, m$. Then

$$
T \iota\left(\left(\check{\nabla}_{\partial_{\alpha}} \partial_{\beta}\right)_{\mid\left(x^{1}, \ldots, x^{m}\right)}\right)=\sum_{\rho=1}^{p} \check{\Gamma}_{\alpha \beta}^{\rho}\left(x^{1}, \ldots, x^{m}\right) \partial_{\rho \mid\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)}
$$

and (since $\check{\nabla}$ and $\breve{\nabla}$ are ι-related)

$$
\begin{aligned}
T \iota\left(\left(\check{\nabla}_{\partial_{\alpha}} \partial_{\beta}\right)_{\mid\left(x^{1}, \ldots, x^{m}\right)}\right) & =\breve{\nabla}_{\partial_{\alpha}} \partial_{\beta \mid\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)} \\
& =\sum_{\rho=1}^{m_{1}} \breve{\Gamma}_{\alpha \beta}^{\rho}\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right) \partial_{\rho \mid\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)}
\end{aligned}
$$

if $\alpha, \beta=1, \ldots, p$ and $T \iota\left(\left(\check{\nabla}_{\partial_{\alpha}} \partial_{\beta}\right)_{\mid\left(x^{1}, \ldots, x^{m}\right)}\right)=0$ for other $\alpha, \beta=1, \ldots, m$. Then considering the coefficients on $\partial_{\rho\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)}$, we get (3).

Since γ is a $\breve{\nabla}$-geodesic, then

$$
\frac{d^{2} \gamma^{\rho}}{d t^{2}}=-\sum_{\alpha, \beta=1}^{m} \check{\Gamma}_{\alpha_{\beta}}^{\rho}(\gamma) \frac{d \gamma^{\alpha}}{d t} \frac{d \gamma^{\beta}}{d t}, \quad \rho=1, \ldots, m
$$

Consequently, denoting $\breve{\gamma}=\left(\breve{\gamma}^{1}, \ldots, \breve{\gamma}^{m_{1}}\right)$, we get

$$
\frac{d^{2} \breve{\gamma}^{s}}{d t^{2}}=-\sum_{q, r=1}^{m_{1}} \breve{\Gamma}_{q r}^{s}(\breve{\gamma}) \frac{d \breve{\gamma}^{q}}{d t} \frac{d \breve{\gamma}^{r}}{d t} \text { for } s=1, \ldots, m_{1}
$$

Indeed, if $s=p+1, \ldots, m_{1}$, then both sides of the above equations are equal to 0 , and if $s=1, \ldots, p$, then

$$
\begin{aligned}
\frac{d^{2} \breve{\gamma}^{s}}{d t^{2}} & =\frac{d^{2} \gamma^{s}}{d t^{2}}=-\sum_{\alpha, \beta=1}^{m} \check{\Gamma}_{\alpha_{\beta}}^{s}(\gamma) \frac{d \gamma^{\alpha}}{d t} \frac{d \gamma^{\beta}}{d t}=-\sum_{q, r=1}^{p} \check{\Gamma}_{q r}^{s}(\gamma) \frac{d \gamma^{q}}{d t} \frac{d \gamma^{r}}{d t} \\
& =-\sum_{q, r=1}^{p} \breve{\Gamma}_{q r}^{s}(\breve{\gamma}) \frac{d \breve{\gamma}^{q}}{d t} \frac{d \breve{\gamma}^{r}}{d t}=-\sum_{q, r=1}^{m_{1}} \breve{\Gamma}_{q r}^{s}(\breve{\gamma}) \frac{d \breve{\gamma}^{q}}{d t} \frac{d \breve{\gamma}^{r}}{d t}
\end{aligned}
$$

as well. The lemma is complete.

Lemma 1.2. Let m, m_{1} be non-negative integers and p be an integer such that $0 \leq p \leq \min \left\{m, m_{1}\right\}$. Let $v=\left(v^{1}, \ldots, v^{m}\right) \in T_{0} \mathbf{R}^{m}=\mathbf{R}^{m}$ be a vector. Let $\iota: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m_{1}}$ be given by $\iota\left(x^{1}, \ldots, x^{m}\right)=\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)$. Let $\check{\nabla}$ be a classical linear connection on \mathbf{R}^{m} and $\bar{\nabla}$ be a classical linear connection on $\mathbf{R}^{m_{1}}$. Assume that $\check{\nabla}$ and $\breve{\nabla}$ are ८ related. Then the vector fields $v^{[\nabla, 0]}$ and $(T \iota(v))^{[\nabla / \iota(0)]}$ are ι-related.

Proof. Similarly as in Lemma 1.1, we may additionally assume that m, m_{1}, p are positive integers.

Consider a point $x \in \mathbf{R}^{m}$ near 0 . Then $x=\mathcal{E} x p_{\bar{\nabla}, 0}(w)$, where $w \in T_{0} \mathbf{R}^{m}$ is the point. Then

$$
v_{\mid x}^{[\check{\nabla \check{,}}, 0]}=\frac{d}{d \tau}{ }_{\mid \tau=0} \gamma_{\tau}(1),
$$

where γ_{τ} is the $\check{\nabla}$-geodesic such that $\gamma_{\tau}(0)=0$ and $\gamma_{\tau}^{\prime}(0)=w+\tau v$ for any small $\tau \in \mathbf{R}$. Then (by Lemma 1.1) $\breve{\gamma}_{\tau}:=\iota \circ \gamma_{\tau}$ is the $\breve{\nabla}$-geodesic such that $\breve{\gamma}_{\tau}(0)=\iota(0)$ and $\breve{\gamma}_{\tau}^{\prime}(0)=T \iota(w+\tau v)=T \iota(w)+\tau T \iota(v)$. Hence

$$
T \iota\left(v_{\mid x}^{[\check{\nabla}, 0]}\right)=T \iota\left(\frac{d}{d \tau \mid \tau=0} \gamma_{\tau}(1)\right)=\frac{d}{d \tau \mid \tau=0} \breve{\gamma}_{\tau}(1)=(T \iota(v))_{\mid \iota(x)}^{[\breve{,}, \iota(0)]}
$$

for any small τ. The lemma is complete.
Lemma 1.3. Let m, m_{1}, n, n_{1} be non-negative integers and p, q be integers such that $0 \leq p \leq \min \left\{m, m_{1}\right\}$ and $0 \leq q \leq \min \left\{n, n_{1}\right\}$. Let $v=$ $\left(v^{1}, \ldots, v^{m}\right) \in T_{0} \mathbf{R}^{m}=\mathbf{R}^{m}$ and $y_{o}=(0,0) \in\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right)_{0}=\mathbf{R}^{n}$. Let $\iota: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m_{1}}$ be given by $\iota\left(x^{1}, \ldots, x^{m}\right)=\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)$ and κ : $\mathbf{R}^{n} \rightarrow \mathbf{R}^{n_{1}}$ be given by $\kappa\left(y^{1}, \ldots, y^{n}\right)=\left(y^{1}, \ldots, y^{q}, 0, \ldots, 0\right)$. Let $\check{\nabla}$ be a classical linear connection on \mathbf{R}^{m} and ∇ be a classical linear connection on $\mathbf{R}^{m_{1}}$. Assume that $\check{\nabla}$ and $\breve{\nabla}$ are ι related. Let $\check{\Gamma}$ be a general connection in the trivial bundle $\operatorname{pr}: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $\breve{\Gamma}$ be a general connection in the trivial bundle $\mathrm{pr}_{1}: \mathbf{R}^{m_{1}} \times \mathbf{R}^{n_{1}} \rightarrow \mathbf{R}^{m_{1}}$. Assume that connections $\check{\Gamma}$ and $\check{\Gamma}$ are $(\iota \times \kappa, \iota)$-related. Then the vector fields $v^{\left[\check{\Gamma}, \check{\nabla}, y_{o}\right]}$ and $(T \iota(v))^{\left[\check{\Gamma}, \check{\nabla}, \iota \times \kappa\left(y_{o}\right)\right]}$ are $\iota \times \kappa$-related.
Proof. Let $(x, y) \in \mathbf{R}^{m} \times \mathbf{R}^{n}$. Then $v_{\mid(x, y)}^{\left[\check{\Gamma}, \check{V}_{j}, y_{0}\right]} \in \check{\Gamma}_{(x, y)}$. Then (since $\check{\Gamma}$ and $\breve{\Gamma}$ are ($\iota \times \kappa, \iota)$-related)

$$
T_{(x, y)}(\iota \times \kappa)\left(v_{\mid(x, y)}^{\left[\check{\Gamma}, \check{\sigma}^{\prime}, y_{o}\right]}\right) \in \breve{\Gamma}_{(\iota(x), \kappa(y))} .
$$

Moreover, using Lemma 1.2 and the property defining the $\check{\Gamma}$-horizontal lift, we get

$$
\begin{aligned}
T \operatorname{pr}_{1} \circ T_{(x, y)}(\iota \times \kappa)\left(v_{\mid(x, y)}^{\left[\check{\Gamma}, \check{\nabla}_{2}, y_{j}\right]}\right) & =T \iota \circ T \operatorname{pr}\left(v_{\mid(x, y)}^{\left[\check{\Gamma}, \check{\nabla}^{\prime}, y_{o}\right]}\right) \\
& =T \iota\left(v_{\mid x}^{[\check{\nabla}, 0]}\right)=\left.(T \iota(v))\right|_{\iota \iota(x)} ^{[\breve{J}, \iota(0)]} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
T(\iota \times \kappa) \circ v_{\mid(x, y)}^{\left[\check{\Gamma}, \check{\nabla}^{\prime}, y_{0}\right]} & =\left((T \iota(v))^{[\check{\nabla}, \iota(0)]}\right) \Gamma_{\mid \iota(x), \kappa(y))}^{\check{\Gamma}} \\
& =(T \iota(v))^{\left.\left[\breve{\Gamma}, \breve{\nabla}, \iota \times \kappa\left(y_{\circ}\right)\right]\right]} \circ(\iota \times \kappa)(x, y) .
\end{aligned}
$$

The lemma is complete.
Lemma 1.4. Let m, m_{1} be non-negative integers and p be an integer such that $0 \leq p \leq \min \left\{m, m_{1}\right\}$. Let $\iota: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m_{1}}$ be given by $\iota\left(x^{1}, \ldots, x^{m}\right)=$ $\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)$. Let $X=\sum_{i=1}^{m} X^{i} \partial_{i}$ be a vector field on \mathbf{R}^{m} and $X_{1}=\sum_{j=1}^{m_{1}} X_{1}^{j} \partial_{j}$ be a vector field on $\mathbf{R}^{m_{1}}$. Assume that X and X_{1} are ι-related. Let $\left\{\varphi_{t}\right\}$ be the flow of X and $\left\{\psi_{t}\right\}$ be the flow of X_{1}. Then $\iota \varphi_{t}=\psi_{t} \circ \iota$ for all sufficiently small t.
Proof. We know that:

$$
\frac{d}{d t}\left(\varphi_{t}^{i}\left(x^{1}, \ldots, x^{m}\right)\right)=X^{i}\left(\varphi_{t}\left(x^{1}, \ldots, x^{m}\right)\right) \text { and } \varphi_{0}^{i}\left(x^{1}, \ldots, x^{m}\right)=x^{i}
$$

for $i=1, \ldots, m$;

$$
\frac{d}{d t}\left(\psi_{t}^{j}\left(x^{1}, \ldots, x^{m_{1}}\right)\right)=X_{1}^{j}\left(\psi_{t}\left(x^{1}, \ldots, x^{m_{1}}\right)\right) \text { and } \psi_{0}^{j}\left(x^{1}, \ldots, x^{m_{1}}\right)=x^{j}
$$

for $j=1, \ldots, m_{1}$.
By the assumption that X and X_{1} are ι-related, we have:

$$
\begin{aligned}
& X^{i}\left(x^{1}, \ldots, x^{m}\right)=X_{1}^{i}\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right) \text { for } i=1, \ldots, p \\
& X_{1}^{j}\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)=0 \text { for } j=p+1, \ldots, m_{1}
\end{aligned}
$$

Then (because of the well-known uniqueness result of systems of ordinary differential equations) we derive:

$$
\varphi_{t}^{k}\left(x^{1}, \ldots, x^{m}\right)=\varphi_{t}^{k}\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)=\psi_{t}^{k}\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)
$$

for $k=1, \ldots, p$;

$$
\psi_{t}^{k}\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)=0 \text { for } k=p+1, \ldots, m_{1} .
$$

The lemma is complete.
Lemma 1.5. Let m, m_{1}, n, n_{1} be non-negative integers and p, q be integers such that $0 \leq p \leq \min \left\{m, m_{1}\right\}$ and $0 \leq q \leq \min \left\{n, n_{1}\right\}$. Let $\iota: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m_{1}}$ be given by $\iota\left(x^{1}, \ldots, x^{m}\right)=\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)$ and $\kappa: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n_{1}}$ be given by $\kappa\left(y^{1}, \ldots, y^{n}\right)=\left(y^{1}, \ldots, y^{q}, 0, \ldots, 0\right)$. Let X be a vector field on $\mathbf{R}^{m} \times \mathbf{R}^{n}$ and X_{1} be a vector field on $\mathbf{R}^{m_{1}} \times \mathbf{R}^{n_{1}}$. Assume that X and X_{1} are $\iota \times \kappa$-related. Let $\left\{\varphi_{t}\right\}$ be the flow of X and $\left\{\psi_{t}\right\}$ be the flow of X_{1}. Then $(\iota \times \kappa) \circ \varphi_{t}=\psi_{t} \circ(\iota \times \kappa)$ for all sufficiently small t.
Proof. This lemma is the obvious modification of Lemma 1.4 for ($m+$ $n, m_{1}+n_{1}, p+q$) playing the role of (m, m_{1}, p). The lemma is complete.

Lemma 1.6. Let $F: \mathcal{F M} \rightarrow \mathcal{F M}$ be a bundle functor. Let m, m_{1}, n, n_{1} be non-negative integers and p, q be integers such that $0 \leq p \leq \min \left\{m, m_{1}\right\}$ and $0 \leq q \leq \min \left\{n, n_{1}\right\}$. Let $\iota: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m_{1}}$ be given by $\iota\left(x^{1}, \ldots, x^{m}\right)=$ $\left(x^{1}, \ldots, x^{p}, 0, \ldots, 0\right)$ and $\kappa: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n_{1}}$ be given by $\kappa\left(y^{1}, \ldots, y^{n}\right)=$ $\left(y^{1}, \ldots, y^{q}, 0, \ldots, 0\right)$. Let $\check{\nabla}$ be a classical linear connection on \mathbf{R}^{m} and $\breve{\nabla}$ be a classical linear connection on $\mathbf{R}^{m_{1}}$. Assume that $\check{\nabla}$ and $\breve{\nabla}$ are ι-related. Let $\check{\Gamma}$ be a general connection in the trivial bundle $\mathrm{pr}: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $\breve{\Gamma}$ be a general connection in the trivial bundle $\mathrm{pr}_{1}: \mathbf{R}^{m_{1}} \times \mathbf{R}^{n_{1}} \rightarrow \mathbf{R}^{m_{1}}$. Assume that connections $\check{\Gamma}$ and $\breve{\Gamma}$ are $\iota \times \kappa$-related. Let $y_{o}=(0,0) \in \mathbf{R}^{m} \times \mathbf{R}^{n}$. Let $v \in T_{0} \mathbf{R}^{m}$ and $z \in F_{y_{o}}\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right)$. Then

$$
T F(\iota \times \kappa)(\mathcal{F}(\check{\Gamma}, \check{\nabla})(v, z))=\mathcal{F}(\breve{\Gamma}, \breve{\nabla})(T \iota(v), F(\iota \times \kappa)(z))
$$

Proof. By Lemma 1.3, vector fields $v^{\left[\check{\Gamma}, \check{\nabla}, y_{o}\right]}$ and $(T \iota(v))^{\left[\check{\Gamma}, \breve{\nabla}, \iota \times \kappa\left(y_{o}\right)\right]}$ are $\iota \times \kappa$-related. Let $\left\{\varphi_{t}\right\}$ be the flow of $v^{\left[\check{\Gamma}, \nabla, y_{o}\right]}$ and $\left\{\psi_{t}\right\}$ be the flow of $(T \iota(v))^{\left[\breve{\Gamma}, \breve{\nabla}, \iota \times \kappa\left(y_{o}\right)\right]}$. By Lemma 1.5, $(\iota \times \kappa) \circ \varphi_{t}=\psi_{t} \circ(\iota \times \kappa)$ for all sufficiently small reals t. Then

$$
\begin{aligned}
T F(\iota \times \kappa)(\mathcal{F}(\check{\Gamma}, \check{\nabla})(v, z)) & =T F(\iota \times \kappa)\left(\left.\frac{d}{d t} \right\rvert\, t=0\right. \\
& =\frac{d}{d t} \varphi_{t=0} F\left((\iota \times \kappa) \circ \varphi_{t}\right)(z) \\
& =\left.\frac{d}{d t}\right|_{t=0} F\left(\psi_{t} \circ(\iota \times \kappa)\right)(z) \\
& =\frac{d}{d t} F\left(\psi_{t}\right)(F(\iota \times \kappa)(z)) \\
& =\mathcal{F}(\breve{\Gamma}, \breve{\nabla})(T \iota(v), F(\iota \times \kappa)(z))
\end{aligned}
$$

The lemma is complete.
Lemma 1.7. Let $F: \mathcal{F} \mathcal{M} \rightarrow \mathcal{F} \mathcal{M}$ be a bundle functor. Let $\mathrm{pr}: Y \rightarrow M$ and $\mathrm{pr}_{1}: Y_{1} \rightarrow M_{1}$ be fibred manifolds. Let $f: Y \rightarrow Y_{1}$ be a fibred map with the base map $\underline{f}: M \rightarrow M_{1}$. Assume that f and \underline{f} are of constant rank. Let $\check{\nabla}$ be a classical linear connection on M and $\breve{\nabla}$ be a classical linear connection on M_{1}. Assume that $\check{\nabla}$ and $\breve{\nabla}$ are \underline{f}-related. Let $\check{\Gamma}$ be a general connection in pr : $Y \rightarrow M$ and $\breve{\Gamma}$ be a general connection in $\mathrm{pr}_{1}: Y_{1} \rightarrow M_{1}$. Assume that connections $\check{\Gamma}$ and $\breve{\Gamma}$ are f-related. Let $v \in T_{x_{o}} M$ and $z \in F_{y_{o}} Y, y_{o} \in Y_{x_{o}}$, $x_{o} \in M$. Then

$$
T F f(\mathcal{F}(\check{\Gamma}, \check{\nabla})(v, z))=\mathcal{F}(\breve{\Gamma}, \breve{\nabla})(T \underline{f}(v), F f(z))
$$

Proof. The lemma is clear if f is a (locally defined) fibred diffeomorphism, see Proposition 0.4. Then (by the rank theorem) we can additionally assume that pr : $Y=\mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow M=\mathbf{R}^{m}, \mathrm{pr}_{1}: Y_{1}=\mathbf{R}^{m_{1}} \times \mathbf{R}^{n_{1}} \rightarrow M_{1}=\mathbf{R}^{m_{1}}$
are the trivial bundles, $y_{o}=(0,0) \in \mathbf{R}^{m} \times \mathbf{R}^{n}, x_{o}=0 \in \mathbf{R}^{m}$ and $f=\iota \times \kappa$. Then the lemma immediately follows from Lemma 1.6.
2. The construction of $\mathcal{F}(\Gamma, \nabla)$ is canonical with respect to $\mathcal{F} \mathcal{M}$. We have the following theorem corresponding to Theorem 0.5.

Theorem 2.1. Let $F: \mathcal{F M} \rightarrow \mathcal{F M}$ be a bundle functor. Let $\mathrm{pr}: Y \rightarrow M$ and $\mathrm{pr}_{1}: Y_{1} \rightarrow M_{1}$ be fibred manifolds. Let $f: Y \rightarrow Y_{1}$ be a fibred map with the base map $\underline{f}: M \rightarrow M_{1}$. Let $\check{\nabla}$ be a classical linear connection on M and $\breve{\nabla}$ be a classical linear connection on M_{1}. Assume that $\check{\nabla}$ and $\breve{\nabla}$ are f-related. Let $\check{\Gamma}$ be a general connection in $\mathrm{pr}: Y \rightarrow M$ and $\breve{\Gamma}$ be a general connection in $\mathrm{pr}_{1}: Y_{1} \rightarrow M_{1}$. Assume that connections $\check{\Gamma}$ and $\breve{\Gamma}$ are f-related. Then the general connections $\mathcal{F}(\check{\Gamma}, \check{\nabla})$ and $\mathcal{F}(\breve{\Gamma}, \breve{\nabla})$ are Ff-related.
Proof. Let $v \in T_{x_{o}} M$ and $z \in F_{y_{o}} Y, y_{o} \in Y_{x_{o}}, x_{o} \in M$. There is a sequence $y_{n} \in Y_{x_{n}}$ with $x_{n} \in M$ such that $y_{n} \rightarrow y_{o}$ if $n \rightarrow \infty, x_{n} \rightarrow x_{o}$ if $n \rightarrow \infty, f$ is of constant rank on some neighborhood of y_{n} and \underline{f} is of constant rank on some neighborhood of x_{n} for $n=1,2, \ldots$. (We can define y_{n} as follows. Let $V_{1}, \ldots, V_{n}, \ldots$ be open neighborhoods of y_{o} such that $V_{1} \supset V_{2} \supset \ldots$ and $\bigcap V_{n}=\left\{y_{o}\right\}$. Let $\operatorname{rank}_{y}(f)$ denote the rank of $T_{y} f$. Let $\tilde{y}_{n} \in V_{n}$ be a point such that $\operatorname{rank}_{\tilde{y}_{n}}(f) \geq \operatorname{rank}_{y}(f)$ for all $y \in V_{n}$. Let $U_{n} \subset V_{n}$ be an open neighborhood of \tilde{y}_{n} such that $f_{\mid U_{n}}$ is of constant rank $\operatorname{rank}_{\tilde{y}_{n}}(f)$. Let $x_{n} \in \operatorname{pr}\left(U_{n}\right)$ be such that $\operatorname{rank}_{x_{n}}(\underline{f}) \geq \operatorname{rank}_{x}(\underline{f})$ for all $x \in \operatorname{pr}\left(U_{n}\right)$. Then choose an arbitrary point $y_{n} \in Y_{x_{n}}^{-} \cap U_{n}$.) Moreover, there is a sequence $z_{n} \in F_{y_{n}} Y$ such that $z_{n} \rightarrow z$ and there is a sequence $v_{n} \in T_{x_{n}} M$ such that $v_{n} \rightarrow v$. By Lemma 1.7,

$$
T F f\left(\mathcal{F}(\check{\Gamma}, \check{\nabla})\left(v_{n}, z_{n}\right)\right)=\mathcal{F}(\breve{\Gamma}, \breve{\nabla})\left(T \underline{f}\left(v_{n}\right), F f\left(z_{n}\right)\right) .
$$

Putting $n \rightarrow \infty$, we get

$$
T F f(\mathcal{F}(\check{\Gamma}, \check{\nabla})(v, z))=\mathcal{F}(\breve{\Gamma}, \breve{\nabla})(T \underline{f}(v), F f(z)) .
$$

The theorem is complete.
3. The construction of $\mathcal{F}(\Gamma, \nabla)$ is canonical with respect to \boldsymbol{F}. We have the following theorem corresponding to Theorem 0.6.

Theorem 3.1. Let $F, F_{1}: \mathcal{F} \mathcal{M}_{m, n} \rightarrow \mathcal{F M}$ be bundle functors and $\mu: F \rightarrow$ F_{1} be a $\mathcal{F M}_{m, n}$-natural transformation. Let pr : $Y \rightarrow M$ be a $\mathcal{F} \mathcal{M}_{m, n^{-}}$ object. Let $\check{\nabla}$ be a classical linear connection on M. Let $\check{\Gamma}$ be a general connection in pr : $Y \rightarrow M$. Then the general connections $\mathcal{F}(\check{\Gamma}, \bar{\nabla})$ and $\mathcal{F}_{1}(\check{\Gamma}, \check{\nabla})$ are μ_{Y}-related.
Proof. Let $v \in T_{x_{o}} M$ and $z \in F_{y_{o}} Y, y_{o} \in Y_{x_{o}}, x_{o} \in M$.
Let $\left\{\varphi_{t}\right\}$ be the flow of $v^{\left[\check{\Gamma}, \stackrel{\nabla}{\nabla}, y_{o}\right]}$. Since μ is a natural transformation, then

$$
\mu_{Y} \circ F \varphi_{t}=F_{1} \varphi_{t} \circ \mu_{Y} .
$$

That is why $T \mu_{Y} \circ \mathcal{F}(\check{\Gamma}, \breve{\nabla})(v, z)=\mathcal{F}_{1}(\check{\Gamma}, \bar{\nabla})\left(v, \mu_{Y}(z)\right)$. The theorem is complete.

References

[1] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, Interscience Publishers, New York-London, 1963.
[2] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

Jan Kurek
Institute of Mathematics
Maria Curie-Skłodowska University
Pl. Marii Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: kurek@hektor.umcs.lublin.pl
Włodzimierz M. Mikulski
Faculty of Mathematics and Computer Science
Jagiellonian University
ul. Łojasiewicza 6
30-348 Cracow
Poland
e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl
Received September 30, 2019

[^0]: 2010 Mathematics Subject Classification. 58A05, 58A32.
 Key words and phrases. General connection, classical linear connection, fibred manifold, bundle functor, natural operator.

