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Reverse and improved inequalities
for operator monotone functions

Abstract. In this paper we provide several refinements and reverse operator
inequalities for operator monotone functions in Hilbert spaces. We also obtain
refinements and a reverse of Löwner–Heinz celebrated inequality that holds
in the case of power function.

1. Introduction. Consider a complex Hilbert space (H, 〈·, ·〉). An opera-
tor T is said to be positive (denoted by T ≥ 0) if 〈Tx, x〉 ≥ 0 for all x ∈ H
and also an operator T is said to be strictly positive (denoted by T > 0) if T
is positive and invertible. A real valued continuous function f(t) on [0,∞)
is said to be operator monotone if f(A) ≥ f(B) holds for any A ≥ B ≥ 0,
which is defined as A−B ≥ 0.

In 1934, K. Löwner [6] had given a definitive characterization of operator
monotone functions as follows, see for instance [1, p. 144–145]:

Theorem 1. A function f : [0,∞) → R is operator monotone in [0,∞) if
and only if it has the representation

(1.1) f (t) = f(0) + bt+

∫ ∞
0

ts

t+ s
dm (s)
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where b ≥ 0 and m is a positive measure on [0,∞) such that∫ ∞
0

s

1 + s
dm (s) <∞.

We recall the important fact proved by Löwner and Heinz which states
that the power function f : [0,∞)→ R, f (t) = tα is an operator monotone
function for any α ∈ [0, 1], see [5].

Let f : (0,∞) → (0,∞) be a continuous function. It is known that f(t)
is operator monotone if and only if g(t) = t/f(t) =: f∗(t) is also operator
monotone, see for instance [3] or [7].

Consider the family of functions defined on (0,∞) by

fp (t) :=
p− 1

p

(
tp − 1

tp−1 − 1

)
if p ∈ [−1, 2] \ {0, 1} and

f0 (t) :=
t

1− t
ln t,

f1 (t) :=
t− 1

ln t
(logarithmic mean).

We also have the functions of interest:

f−1 (t) =
2t

1 + t
(harmonic mean), f1/2 (t) =

√
t (geometric mean).

In [2], the authors showed that fp is operator monotone for 1 ≤ p ≤ 2.
In the same category, we observe that the function

gp (t) :=
t− 1

tp − 1

is an operator monotone function for p ∈ (0, 1], see [3].
It is well known that the logarithmic function ln is operator monotone

and in [3], the author proved that the functions

f (t) = t (1 + t) ln

(
1 +

1

t

)
, g (t) =

1

(1 + t) ln
(
1 + 1

t

)
on (0,∞) are also operator monotone.

Let A and B be strictly positive operators on a Hilbert space H such that
B −A ≥ m1H > 0. In 2015, T. Furuta [4] obtained the following result for
any non-constant operator monotone function f on [0,∞):

(1.2) f (B)−f (A) ≥ f (‖A‖+m)−f (‖A‖) ≥ f (‖B‖)−f (‖B‖ −m) > 0.
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If B > A > 0, then

(1.3)

f(B)− f(A) ≥ f

(
‖A‖+ 1∥∥(B −A)−1∥∥

)
− f(‖A‖)

≥ f(‖B‖)− f

(
‖B‖ − 1∥∥(B −A)−1∥∥

)
> 0.

The inequality between the first and third term in (1.3) was obtained
earlier by H. Zuo and G. Duan in [9].

By taking f (t) = tr, r ∈ (0, 1] in (1.3), Furuta obtained the following
refinement of the celebrated Löwner–Heinz inequality

(1.4)

Br −Ar ≥

(
‖A‖+ 1∥∥(B −A)−1∥∥

)r
− ‖A‖r

≥ ‖B‖r −

(
‖B‖ − 1∥∥(B −A)−1∥∥

)r
> 0

provided B > A > 0.
With the same assumptions for A and B, we have the logarithmic in-

equality [4]:

(1.5)

lnB − lnA ≥ ln

(
‖A‖+ 1∥∥(B −A)−1∥∥

)
− ln (‖A‖)

≥ ln (‖B‖)− ln

(
‖B‖ − 1∥∥(B −A)−1∥∥

)
> 0.

Notice that the inequalities between the first and third terms in (1.4) and
(1.5) were obtained earlier by M. S. Moslehian and H. Najafi in [8].

Motivated by the above results, we show in this paper that if f : [0,∞)→
R is operator monotone on [0,∞) and there exist positive numbers d > c > 0
such that the condition d1H ≥ B −A ≥ c1H > 0 is satisfied, then

(1.6) d
f (c)− f (0)

c
1H ≥ f (B)− f (A) ≥ c f (d+ ‖A‖)− f (‖A‖)

d
1H ≥ 0.

Some examples of interest, including a refinement and a reverse of the
Löwner–Heinz inequality, are also provided.

2. Main Results. We have:

Theorem 2. Assume that f : [0,∞) → R is operator monotone on [0,∞)
given by representation (1.1). Let A ≥ 0 and assume that there exist positive
numbers d > c > 0 such that

(2.1) d1H ≥ B −A ≥ c1H > 0.
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Then

(2.2)
d

(
f (c)− f (0)

c
− b
)
1H ≥ f (B)− f (A)− b (B −A)

≥ c
(
f (d+ ‖A‖)− f (‖A‖)

d
− b
)
1H ≥ 0.

Proof. Since the function f : [0,∞) → R is operator monotone in [0,∞),
then f can be written as in the equation (1.1) and for A, B ≥ 0 we have
the representation

(2.3)
f (B)− f (A)

= b (B −A) +
∫ ∞
0

s
[
B (B + s1H)

−1 −A (A+ s1H)
−1
]
dm (s) .

Observe that for s > 0,

B (B + s1H)
−1 −A (A+ s1H)

−1

= (B + s1H − s1H) (B + s1H)
−1 − (A+ s1H − s1H) (A+ s1H)

−1

= (B + s1H) (B + s1H)
−1 − s1H (B + s1H)

−1

− (A+ s1H) (A+ s1H)
−1 + s1H (A+ s1H)

−1

= 1H − s1H (B + s1H)
−1 − 1H + s1H (A+ s1H)

−1

= s
[
(A+ s1H)

−1 − (B + s1H)
−1
]
.

Therefore, (2.3) becomes (see also [4])

(2.4)
f (B)− f (A)

= b (B −A) +
∫ ∞
0

s2
[
(A+ s1H)

−1 − (B + s1H)
−1
]
dm (s) .

The function g (t) = −t−1 is operator monotone on (0,∞), operator Gâteaux
differentiable and the Gâteaux derivative is given by

(2.5) ∇gT (S) := lim
t→0

[
g (T + tS)− g (T )

t

]
= T−1ST−1

for T, S > 0.
Consider the continuous function g defined on an interval I for which the

corresponding operator function is Gâteaux differentiable and for selfadjoint
operators C, D with spectra in I we consider the auxiliary function defined
on [0, 1] by

gC,D (t) = g ((1− t)C + tD) , t ∈ [0, 1] .

If gC,D is Gâteaux differentiable on the segment

[C,D] := {(1− t)C + tD, t ∈ [0, 1]} ,
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then, by the properties of the Bochner integral, we have

(2.6) g (D)− g (C) =
∫ 1

0

d

dt
(gC,D (t)) dt =

∫ 1

0
∇g(1−t)C+tD (D − C) dt.

If we write this equality for the function g (t) = −t−1 and C, D > 0, then
we get the representation

(2.7) C−1 −D−1 =
∫ 1

0
((1− t)C + tD)−1 (D − C) ((1− t)C + tD)−1 dt.

Now, if we replace in (2.7): C = A+ s1H and D = B + s1H for s > 0, then
we get

(2.8)
(A+ s1H)

−1 − (B + s1H)
−1

=

∫ 1

0
((1−t)A+ tB + s1H)

−1 (B −A) ((1−t)A+ tB + s1H)
−1 dt.

By the representation (2.4), we derive the following identity of interest

(2.9)

f (B)− f (A) = b (B −A)

+

∫ ∞
0

s2
[ ∫ 1

0
((1− t)A+ tB + s1H)

−1

× (B −A) ((1− t)A+ tB + s1H)
−1 dt

]
dm (s)

for A, B ≥ 0.
From the representation (2.9) we get

f (x)− f (0)− bx =

∫ ∞
0

s2
(∫ 1

0
(tx+ s)−1 x (tx+ s)−1 dt

)
dm (s)

for B = x1H , A = 0, which for x > 0 gives

(2.10)
f (x)− f (0)

x
− b =

∫ ∞
0

s2
(∫ 1

0
(tx+ s)−2 dt

)
dm (s) .

Since 0 < c1H ≤ B −A ≤ d1H , we have

c ((1− t)A+ tB + s1H)
−2

≤ ((1− t)A+ tB + s1H)
−1 (B −A) ((1− t)A+ tB + s1H)

−1

≤ d ((1− t)A+ tB + s1H)
−2

for t ∈ [0, 1], s > 0 and by (2.9), we get

(2.11)

c

∫ ∞
0

s2
(∫ 1

0
((1− t)A+ tB + s1H)

−2 dt

)
dm (s)

≤ f (B)− f (A)− b (B −A)

≤ d
∫ ∞
0

s2
(∫ 1

0
((1− t)A+ tB + s1H)

−2 dt

)
dm (s) .
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Observe that for t ∈ [0, 1] and s > 0 we have

(1− t)A+ tB + s1H = A+ t (B −A) + s1H

≥ 0 + tc1H + s1H = (tc+ s) 1H .

This implies that

((1− t)A+ tB + s1H)
−1 ≤ (tc+ s)−1 1H .

Therefore ∫ ∞
0

s2
(∫ 1

0
((1− t)A+ tB + s1H)

−2 dt

)
dm (s)

≤
∫ ∞
0

s2
(∫ 1

0
(tc+ s)−2 dt

)
dm (s) 1H

=

(
f (c)− f (0)

c
− b
)
1H (by (2.10))

and by (2.11), we get

(2.12) f (B)− f (A)− b (B −A) ≤ d
(
f (c)− f (0)

c
− b
)
1H .

We also have

(1− t)A+ tB + s1H = A+ t (B −A) + s1H ≤ A+ td1H + s1H

= (1− t)A+ t (d1H +A) + s1H .

Since A ≤ ‖A‖ 1H , then

(1− t)A+ t (d1H +A) + s1H ≤ ((1− t) ‖A‖+ t (d+ ‖A‖) + s) 1H ,

which implies that

(1− t)A+ tB + s1H ≤ ((1− t) ‖A‖+ t (d+ ‖A‖) + s) 1H

for t ∈ [0, 1] and s > 0.
This implies that

((1− t)A+ tB + s1H)
−1 ≥ ((1− t) ‖A‖+ t (d+ ‖A‖) + s)−1 1H

and

((1− t)A+ tB + s1H)
−2 ≥ ((1− t) ‖A‖+ t (d+ ‖A‖) + s)−2 1H

for t ∈ [0, 1] and s > 0.
Therefore∫ ∞
0

s2
(∫ 1

0
((1− t)A+ tB + s1H)

−2 dt

)
dm (s)

≥
∫ ∞
0

s2
(∫ 1

0
((1− t) ‖A‖+ t (d+ ‖A‖) + s)−2 dt

)
dm (s) 1H (≥ 0)
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=
1

d

∫ ∞
0

s2
(∫ 1

0
((1− t) ‖A‖+ t (d+ ‖A‖) + s)−1 (d+ ‖A‖ − ‖A‖)

× ((1− t) ‖A‖+ t (d+ ‖A‖) + s)−1 dt
)
dm (s) 1H

=
1

d
[(f (d+ ‖A‖)− f (‖A‖)− bd)] 1H

(by identity (2.9) for d+ ‖A‖ and ‖A‖ )

=

(
f (d+ ‖A‖)− f (‖A‖)

d
− b
)
1H ≥ 0.

By (2.11), we get

(2.13)

f (B)− f (A)− b (B −A)

≥ c
∫ ∞
0

s2
(∫ 1

0
((1− t)A+ tB + s1H)

−2 dt

)
dm (s)

≥ c
(
f (d+ ‖A‖)− f (‖A‖)

d
− b
)
1H ≥ 0.

The inequalities (2.12) and (2.13) imply (2.2). �

From the first inequality in (2.2) we get

d
f (c)− f (0)

c
1H − b [d1H − (B −A)] ≥ f (B)− f (A)

and since d1H − (B −A) ≥ 0 and b ≥ 0,

d
f (c)− f (0)

c
1H ≥ d

f (c)− f (0)
c

1H − b [d1H − (B −A)] .

From the second inequality in (2.2) we have

f (B)− f (A) ≥ b [(B −A)− c] + c
f (d+ ‖A‖)− f (‖A‖)

d
1H

≥ cf (d+ ‖A‖)− f (‖A‖)
d

1H ≥ 0

since b [(B −A)− c1H ] ≥ 0.
Therefore we have the following result which does not contain the value b:

Corollary 1. Assume that f : [0,∞)→ R is operator monotone on [0,∞),
A ≥ 0 and that there exist positive numbers d > c > 0 such that the condition
(2.1) is satisfied. Then

(2.14) d
f (c)− f (0)

c
1H ≥ f (B)− f (A) ≥ cf (d+ ‖A‖)− f (‖A‖)

d
1H ≥ 0.

Remark 1. If we take f (t) = tr, r ∈ (0, 1], in (2.14), then we get

(2.15) dcr−11H ≥ Br −Ar ≥ c(d+ ‖A‖)
r − ‖A‖r

d
1H ≥ 0,
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provided that the condition (2.1) is satisfied and A ≥ 0.
Let ε > 0. Consider the function fε : [0,∞) → R, fε (t) = ln (ε+ t).

This function is operator monotone on [0,∞) and by the second inequality
in (2.14), we get

(2.16)
ln (B + ε1H)− ln (A+ ε1H)

≥ c ln (d+ ‖A‖+ ε)− ln (‖A‖+ ε)

d
1H > 0.

By taking the limit over ε→ 0+ in (2.16), we get

(2.17) ln (B)− ln (A) ≥ c ln (d+ ‖A‖)− ln (‖A‖)
d

1H > 0

for d1H ≥ B −A ≥ c1H > 0 and A > 0.

It is well known that if P ≥ 0, then

|〈Px, y〉|2 ≤ 〈Px, x〉 〈Py, y〉
for all x, y ∈ H.

Therefore, if T > 0, then

0 ≤ 〈x, x〉2 =
〈
T−1Tx, x

〉2
=
〈
Tx, T−1x

〉2
≤ 〈Tx, x〉

〈
TT−1x, T−1x

〉
= 〈Tx, x〉

〈
x, T−1x

〉
for all x ∈ H.

If x ∈ H, ‖x‖ = 1, then

1 ≤ 〈Tx, x〉
〈
x, T−1x

〉
≤ 〈Tx, x〉 sup

‖x‖=1

〈
x, T−1x

〉
= 〈Tx, x〉

∥∥T−1∥∥ ,
which implies the following operator inequality

(2.18)
1

‖T−1‖
1H ≤ T.

Corollary 2. Assume that f : [0,∞)→ R is operator monotone on [0,∞)
and B > A ≥ 0, then

(2.19)

‖B −A‖
∥∥(B −A)−1∥∥ [f (∥∥(B −A)−1∥∥−1)− f (0)] 1H

≥ f (B)− f (A)

≥ f (‖B −A‖+ ‖A‖)− f (‖A‖)∥∥(B −A)−1∥∥ ‖B −A‖ 1H

≥ f (‖B‖)− f (‖A‖)∥∥(B −A)−1∥∥ ‖B −A‖1H ≥ 0.

Proof. Since B −A > 0, by (2.18) we get

1∥∥(B −A)−1∥∥1H ≤ B −A ≤ ‖B −A‖ 1H .
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So, if we write the inequality (2.14) for c = 1
‖(B−A)−1‖ and d = ‖B −A‖ ,

then we get

(2.20)

‖B −A‖
∥∥(B −A)−1∥∥ [f (∥∥(B −A)−1∥∥−1)− f (0) 1H]

≥ f (B)− f (A)

≥ f (‖B −A‖+ ‖A‖)− f (‖A‖)∥∥(B −A)−1∥∥ ‖B −A‖ 1H ≥ 0.

Also, we have ‖B −A‖+ ‖A‖ ≥ ‖B‖ and since f is nondecreasing, then

(2.21) f (‖B −A‖+ ‖A‖)− f (‖A‖) ≥ f (‖B‖)− f (‖A‖) ≥ 0.

By (2.20) and (2.21) we derive (2.19). �

Remark 2. By making use of a similar argument as in Remark 1, we can
also derive the logarithmic inequality

ln (B)− ln (A) ≥ ln (‖B −A‖+ ‖A‖)− ln (‖A‖)∥∥(B −A)−1∥∥ ‖B −A‖ 1H

≥ ln (‖B‖)− ln (‖A‖)∥∥(B −A)−1∥∥ ‖B −A‖1H > 0

for A > 0 and B −A > 0.

3. Some Examples. Assume that B > A ≥ 0 and r ∈ (0, 1]. Then by
(2.19) we have, for the operator monotone function f (t) = tr on [0,∞), the
following refinement and reverse of Löwner–Heinz inequality

(3.1)

‖B −A‖
∥∥(B −A)−1∥∥1−r1H ≥ Br −Ar

≥ (‖B −A‖+ ‖A‖)r − ‖A‖r∥∥(B −A)−1∥∥ ‖B −A‖ 1H

≥ ‖B‖r − ‖A‖r∥∥(B −A)−1∥∥ ‖B −A‖1H > 0.

Consider the function

f0 (t) :=

{
t

1−t ln t for t > 0,

0 for t = 0,

which is operator monotone on [0,∞). By (2.19), we then have

(3.2)

‖B −A‖∥∥(B −A)−1∥∥−1 − 1
ln
∥∥(B −A)−1∥∥1H

≥ B (1H −B)−1 lnB −A (1H −A)−1 lnA

≥
‖B‖

1−‖B‖ ln ‖B‖ −
‖A‖

1−‖A‖ ln ‖A‖∥∥(B −A)−1∥∥ ‖B −A‖ 1H > 0
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for B > A > 0 and ‖A‖, ‖B‖,
∥∥(B −A)−1∥∥ 6= 1.

The function f (t) = ln (t+ 1) is also operator monotone on [0,∞), so by
(2.19) we have

(3.3)

‖B −A‖
∥∥(B −A)−1∥∥ ln(∥∥(B −A)−1∥∥−1 + 1

)
1H

≥ ln (B + 1H)− ln (A+ 1H)

≥ ln (‖B −A‖+ ‖A‖+ 1)− ln (‖A‖+ 1)∥∥(B −A)−1∥∥ ‖B −A‖ 1H

≥ ln (‖B‖+ 1)− ln (‖A‖+ 1)∥∥(B −A)−1∥∥ ‖B −A‖ 1H > 0

for B > A ≥ 0.
Consider the function f−1 (t) =

2t
1+t , t ∈ [0,∞), which is operator mono-

tone, then by (2.19) we derive

(3.4)

‖B −A‖
1 +

∥∥(B −A)−1∥∥−1 1H
≥ B (1H +B)−1 −A (1H +A)−1

≥ ‖B‖ − ‖A‖∥∥(B −A)−1∥∥ ‖B −A‖ (1 + ‖B‖) (1 + ‖A‖)1H > 0

for B > A ≥ 0.
The interested reader may state other similar inequalities by employing

the operator monotone functions presented in Introduction. We omit the
details.
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