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A note on the Banach—Mazur distances
between cy and other £;-preduals

ABSTRACT. We prove that if X is an £;-predual isomorphic to the space co of
sequences converging to zero, then for any isomorphism 7" : X — ¢p we have
|T| |7~ > 142r*(X), where 7*(X) is the smallest radius of the closed ball
of the dual space X™ containing all the weak™ cluster points of the set of all
extreme points of the closed unit ball of X*.

1. Introduction. Let X be a real infinite-dimensional Banach space X
and let us denote by By its closed unit ball. If A C X, then ext A stands
for the set of all extreme points of A. The dual of X is denoted by X*. If
A C X*, then A" denotes the weak* closure of A and A’ stands for the set
of all weak* cluster points of A:

A':{x*eX*:x*em*}.

If f € X*, then ker f denotes the kernel of f, ie., kerf = {z € X :
f(z) = 0}. For any Banach spaces X and Y, X = Y means that X is
isometrically isomorphic to Y. A Banach space X is called an Li-predual
(or a Lindenstrauss space) if X* = Lq(u) for some measure p. In particular,
X is named an /;-predual if X* = ¢;. For a given ¢1-predual X we put

r*(X) =inf{r > 0 : (ext BX*)/ C rBx+} = sup{||e*|| : e* € (ext Bx«)'}.
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For Banach spaces X and Y, a linear operator 1" : X — Y is called an
isomorphic embedding if there exist a,b > 0 such that for every x € X

allzll < |[T(x)| < bllz]-

The distortion of an isomorphic embedding 7" : X — Y is the number
|T|| || T, where T—! denotes the inverse map to an isomorphism 7" of X
onto its image T'(X). Moreover, for isomorphic Banach spaces X and Y,
d(X,Y) denotes the Banach—-Mazur distance between them, defined as

d(X,Y) = inf {HT” |7~ : T is an isomorphism from X onto Y} .

This notion appeared for the first time in the celebrated 1932’ book by
Stefan Banach [3]. The reader interested in the current state of knowledge
regarding the Banach—Mazur distance between Li-preduals is referred to
the paper [8] and the papers cited in it. One of the most important clas-
sical result is the Cambern result [4], which states that the Banach-Mazur
distance between the space ¢ of convergent sequences and its subspace ¢y of
sequences converging to zero equals 3, both spaces are furnished with the
supremum norm. This result answered to the question posed by Banach in
[3]. In the present paper, we prove that the Banach—Mazur distance between
¢ and an ¢;-predual X isomorphic to cg is greater or equal to 1+2r*(X). It
is worth emphasizing that this estimate is optimal (see Remark 2.8). This
result is a generalization of Theorem 3.7 in [6], where some ¢;-preduals X
isomorphic to ¢, for which r*(X) = 1, are considered. Moreover, this result
complements Theorem 2.1 in [8] and Theorem 4.1 in [8].

We recall that ¢* can be isometrically identified with ¢; in the following
way. For every z* € ¢* there exists a unique f = (f(1), f(2),...) € £1 such
that

w*(x) = Y f(i+1)z(i) = f(x)
=0

with z = (z(1),2(2),...) € ¢ and z(0) = lim; o (7). In our paper, ¢;-
predual hyperplanes in ¢ play an important role.
For every e* = (e*(1),e*(2),...) € {1 we define a hyperplane W~ in ¢ by

Wes = {a: = (z(1),2(2),...) € c: lim z(i) = Ze*(z)m(z)} .

i—00

Theorem 1.1 ([5]).
(1) W& = £y if and only if one of the following conditions holds:
e c* € B[l,
e [le*]| > 1 and |e*(i)| > (1 + [le*||) for some i € N (in this case,
Wex =c).
(13) Let e* € By,. Then Wex = c if and only if |e*(i)| = 1 for some i € N.
Moreover, We« = ¢ if and only if e* = (0,0,0,...).
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(7i1) For every e* € By, we have W = {1 with a duality map ¢ : {1 — W
defined by

with g = (g(1),9(2),...) € {1 and z = (x(1),2(2),...) € Wex. More-
over, if (e}) denotes the standard basis in {1, then

g fl,W}
6;); ( e ) e*’

where o(X*, X) denotes the weak* topology on X* induced by X .
() If X is an £1-predual such that (e}) is (€1, X)-convergent to e*, then
X = Wes.

Note that in the present paper we use a slight modification of the notation
for a hyperplane in ¢ introduced in [5]. Indeed, here we have

We*:Wf:kerf:{xec:f( hm:c +Zfz+1 },

where

f:< _ e e <>>€S
Lt fle*]|” T4 le]|” 1+ [le]| L+ [|e]|

2. Main result. We begin by stating the main result of the paper.
Theorem 2.1. If X is an £1-predual isomorphic to cy, then
d(X,co) > 1+ 2r*(X).
In order to prove the theorem we need some auxiliary results.

Theorem 2.2 (see, e.g., [10]). Let T : X — Y be a bounded linear map
from a Banach space X onto a Banach space Y. Then there exists a linear
map T : X/kerT — Y such that

1) T is isomorphism,

2) T =Tm, where 7 : X — X/ker T denotes the quotient map and ker T =
{r e X :T(x) =0},

3) IT) = IIF.

Theorem 2.3 ([1]). Let X be a quotient of co. Then for every e > 0, there
is a subspace Y of ¢y such that d(X,Y) < 1+e¢.

Lemma 2.4 (Lemma 1 in [2]). Let X be a Banach space with separable
dual X* and let Y be a subspace of X* with a normalized basis (y;) which

is isomorphic to £1. If {y% :n € N}* CY, then'Y is weak® closed in X*.
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Lemma 2.5 (Lemma 2 in [2]). Suppose that X andY are separable Banach
spaces and that (z}) and (y)) are normalized sequences in X* and Y™,
respectively, which are equivalent to the standard basis of {1 and for which
lin{z} :n € N} = lin{z} :n € N} and lin{y; : n € N} = lin{y; : n € N}.
Suppose that the basis to basis map ¢ oflin{x} : n € N} ontolin{y} : n € N},
i.e.,

0 0o
o) (Z an%ﬁ) = Zany;;
n=1 n=1

is a weak® homeomorphism of {x¥ :n € N} onto {y% :n € N} . Then ¢ is
a weak* continuous isomorphism of lin{x}, : n € N} onto lin{y} : n € N}.

Lemma 2.6 (Lemma 3.2 in [6]). Let T : X — Y be a bounded linear
operator, where Y # {0}. Then

sup{é > 0:0By CT(Bx)} = HfﬁlH_l,
where T is defined as in Theorem 2.2.

Theorem 2.7 (Theorem 4.1 in [8]). Let €* € By, and let X be an infinite-
dimensional L1 -predual such that (ext Bx+)" C rBx+ for some0 < r < ||e*||.
Then for every isomorphic embedding T from We« into X we have

1+2]|e*]| —r

I = —— n
T

We are now in position to prove the main theorem of this paper.

Proof of Theorem 2.1. Observe that, if 7*(X) = 0, then X = ¢y (see [7]).
Therefore, assume that »*(X) > 0. Let € € (0,r*(X)) be arbitrarily chosen.
There exist e* € (ext Bx+)" and a subsequence (e}, )ren of the standard basis
in £1 such that [[e*|| > r*(X) — 5, e, X, e and lle*| > > rey le*(nk)|.
Put

e — e’ — 22021 e*(nk)e:k

" el = 22 ler (i)
It is easy to see that [le; || = 1 and the sequence (e}, )renufo} is equiv-

alent to the standard basis in ¢;. Let Y = lin{e} ,e ,ef ,...}. Since

{en, €t €hyr-- ) ={eh en eh,... }U{e"} C Y, Lemma 2.4 guarantees

that Y =Y. Thus Y = (X/-Y)*. Let

y = (He*H = lef(m)l € (m), " (na), e*(n3), .. > :
k=1
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o4 ,W *
Since y* € By, by Theorem 1.1, Wj. = {; and e, M) y*. Let

¢ Y — Wy be defined as follows:
P(arey, + azey,, +azey, +age,, +...) = Z agey,.

Then ¢ is an “onto” linear isometry. Moreover,
(e.9] oo
p(e") = ¢ <<Ile*! -> !e*(nk)l) €ny T Ze*(nk)€2k>
k=1 k=1
o0 [e.e]
= (11 S ) Yo
k=1 k=1
[ee]
- (ile*il —Z|e*<nk>|,e*<n1>,e*<n2>,e*<n3>,...> =y
k=1

Consequently, ¢ is a weak® continuous homeomorphism from

*

{620762176227"‘} _{6110’ mny? TL27' }U{e}

onto

{et,es, .} ={eh,eb,.. Y U{y*}.
In view of Lemma 2.5, ¢ is a weak® continuous isometry from Y onto ¢; =
Wy.. This implies that W~ is isometric to X/ Ly,

Now, assume that T" : X — ¢y is an isomorphism. Without loss of
generality we may assume that ||77!|| = 1. Let us consider the map 77! :
co — X/1Y = Wy, where m: X — X/1Y is the quotient map. Obviously
7T~ ' is an “onto” map. By Theorem 2.2, there exists an isomorphism

771 co/ kermT~1 — Wy such that H;i:_/lH = [[#T71||. Observe that
7T 1 (Be,) 2 ||T||+nBW . for every n > 0. Hence, by applying Lemma 2.6,

—_~—

-1
we obtain ||T']| > H(ﬂ'T_1> H Since | 7T~!|| < 1, we have H’H‘T_ <1

Now observe that, by Theorem 2.3, there exist a subspace Z of ¢y and an
isomorphism K : ¢p/ker 7T~1 — Z such that ||K||||[K~ ! < 1+ e. Hence,
applying Theorem 4.1 in [9], we obtain

2ty < [f R e ()|

< 1 e 1 | (777) | < )i

142)e*]| o 142r* (X)— .
Therefore ||T|| > lﬂg I T14£s) . Letting e — 0, we get

ITIT=H = 1+ 20 (X).
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Remark 2.8. From the proof of Proposition 3.8 in [6] we have d(We~, ¢p) <
1 4+ 2|le*||]. Applying Theorem 2.1 or Theorem 2.7, we conclude that
d(Wex,co) = 1+ 2||e*|| for every e* € By, .
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