AGNIESZKA GERGONT

A note on the Banach-Mazur distances between c_{0} and other ℓ_{1}-preduals

Abstract

We prove that if X is an ℓ_{1}-predual isomorphic to the space c_{0} of sequences converging to zero, then for any isomorphism $T: X \rightarrow c_{0}$ we have $\|T\|\left\|T^{-1}\right\| \geq 1+2 r^{*}(X)$, where $r^{*}(X)$ is the smallest radius of the closed ball of the dual space X^{*} containing all the weak ${ }^{*}$ cluster points of the set of all extreme points of the closed unit ball of X^{*}.

1. Introduction. Let X be a real infinite-dimensional Banach space X and let us denote by B_{X} its closed unit ball. If $A \subset X$, then ext A stands for the set of all extreme points of A. The dual of X is denoted by X^{*}. If $A \subset X^{*}$, then \bar{A}^{*} denotes the weak* closure of A and A^{\prime} stands for the set of all weak ${ }^{*}$ cluster points of A :

$$
A^{\prime}=\left\{x^{*} \in X^{*}: x^{*} \in{\overline{\left(A \backslash\left\{x^{*}\right\}\right.}}^{*}\right\}
$$

If $f \in X^{*}$, then $\operatorname{ker} f$ denotes the kernel of f, i.e., $\operatorname{ker} f=\{x \in X$: $f(x)=0\}$. For any Banach spaces X and $Y, X=Y$ means that X is isometrically isomorphic to Y. A Banach space X is called an L_{1}-predual (or a Lindenstrauss space) if $X^{*}=L_{1}(\mu)$ for some measure μ. In particular, X is named an ℓ_{1}-predual if $X^{*}=\ell_{1}$. For a given ℓ_{1}-predual X we put

$$
r^{*}(X)=\inf \left\{r>0:\left(\operatorname{ext} B_{X^{*}}\right)^{\prime} \subset r B_{X^{*}}\right\}=\sup \left\{\left\|e^{*}\right\|: e^{*} \in\left(\operatorname{ext} B_{X^{*}}\right)^{\prime}\right\}
$$

2010 Mathematics Subject Classification. 46B03, 46B25, 46B45.
Key words and phrases. ℓ_{1}-preduals, Banach-Mazur distance, c_{0} space.

For Banach spaces X and Y, a linear operator $T: X \rightarrow Y$ is called an isomorphic embedding if there exist $a, b>0$ such that for every $x \in X$

$$
a\|x\| \leq\|T(x)\| \leq b\|x\|
$$

The distortion of an isomorphic embedding $T: X \rightarrow Y$ is the number $\|T\|\left\|T^{-1}\right\|$, where T^{-1} denotes the inverse map to an isomorphism T of X onto its image $T(X)$. Moreover, for isomorphic Banach spaces X and Y, $d(X, Y)$ denotes the Banach-Mazur distance between them, defined as

$$
d(X, Y)=\inf \left\{\|T\|\left\|T^{-1}\right\|: T \text { is an isomorphism from } X \text { onto } Y\right\}
$$

This notion appeared for the first time in the celebrated 1932' book by Stefan Banach [3]. The reader interested in the current state of knowledge regarding the Banach-Mazur distance between L_{1}-preduals is referred to the paper [8] and the papers cited in it. One of the most important classical result is the Cambern result [4], which states that the Banach-Mazur distance between the space c of convergent sequences and its subspace c_{0} of sequences converging to zero equals 3 , both spaces are furnished with the supremum norm. This result answered to the question posed by Banach in [3]. In the present paper, we prove that the Banach-Mazur distance between c_{0} and an ℓ_{1}-predual X isomorphic to c_{0} is greater or equal to $1+2 r^{*}(X)$. It is worth emphasizing that this estimate is optimal (see Remark 2.8). This result is a generalization of Theorem 3.7 in [6], where some ℓ_{1}-preduals X isomorphic to c_{0}, for which $r^{*}(X)=1$, are considered. Moreover, this result complements Theorem 2.1 in [8] and Theorem 4.1 in [8].

We recall that c^{*} can be isometrically identified with ℓ_{1} in the following way. For every $x^{*} \in c^{*}$ there exists a unique $f=(f(1), f(2), \ldots) \in \ell_{1}$ such that

$$
x^{*}(x)=\sum_{i=0}^{\infty} f(i+1) x(i)=f(x)
$$

with $x=(x(1), x(2), \ldots) \in c$ and $x(0)=\lim _{i \rightarrow \infty} x(i)$. In our paper, ℓ_{1-} predual hyperplanes in c play an important role.

For every $e^{*}=\left(e^{*}(1), e^{*}(2), \ldots\right) \in \ell_{1}$ we define a hyperplane $W_{e^{*}}$ in c by

$$
W_{e^{*}}=\left\{x=(x(1), x(2), \ldots) \in c: \lim _{i \rightarrow \infty} x(i)=\sum_{i=1}^{\infty} e^{*}(i) x(i)\right\}
$$

Theorem 1.1 ([5]).
(i) $W_{e^{*}}^{*}=\ell_{1}$ if and only if one of the following conditions holds:

- $e^{*} \in B_{\ell_{1}}$,
- $\left\|e^{*}\right\|>1$ and $\left|e^{*}(i)\right| \geq \frac{1}{2}\left(1+\left\|e^{*}\right\|\right)$ for some $i \in \mathbb{N}$ (in this case, $\left.W_{e^{*}}=c\right)$.
(ii) Let $e^{*} \in B_{\ell_{1}}$. Then $W_{e^{*}}=c$ if and only if $\left|e^{*}(i)\right|=1$ for some $i \in \mathbb{N}$. Moreover, $W_{e^{*}}=c_{0}$ if and only if $e^{*}=(0,0,0, \ldots)$.
(iii) For every $e^{*} \in B_{\ell_{1}}$ we have $W_{e^{*}}^{*}=\ell_{1}$ with a duality map $\phi: \ell_{1} \rightarrow W_{e^{*}}^{*}$ defined by

$$
\phi(g)(x)=\sum_{i=1}^{\infty} x(i) g(i)
$$

with $g=(g(1), g(2), \ldots) \in \ell_{1}$ and $x=(x(1), x(2), \ldots) \in W_{e^{*}}$. Moreover, if $\left(e_{n}^{*}\right)$ denotes the standard basis in ℓ_{1}, then

$$
e_{n}^{*} \xrightarrow{\sigma\left(\ell_{1}, W_{e^{*}}\right)} e^{*},
$$

where $\sigma\left(X^{*}, X\right)$ denotes the weak* topology on X^{*} induced by X.
(iv) If X is an ℓ_{1}-predual such that $\left(e_{n}^{*}\right)$ is $\sigma\left(\ell_{1}, X\right)$-convergent to e^{*}, then $X=W_{e^{*}}$.

Note that in the present paper we use a slight modification of the notation for a hyperplane in c introduced in [5]. Indeed, here we have

$$
W_{e^{*}}=W_{f}=\operatorname{ker} f=\left\{x \in c: f(1) \lim _{i \rightarrow \infty} x(i)+\sum_{i=1}^{\infty} f(i+1) x(i)=0\right\}
$$

where

$$
f=\left(\frac{1}{1+\left\|e^{*}\right\|},-\frac{e^{*}(1)}{1+\left\|e^{*}\right\|},-\frac{e^{*}(2)}{1+\left\|e^{*}\right\|}, \ldots,-\frac{e^{*}(i)}{1+\left\|e^{*}\right\|}, \ldots\right) \in S_{c^{*}}
$$

2. Main result. We begin by stating the main result of the paper.

Theorem 2.1. If X is an ℓ_{1}-predual isomorphic to c_{0}, then

$$
d\left(X, c_{0}\right) \geq 1+2 r^{*}(X)
$$

In order to prove the theorem we need some auxiliary results.
Theorem 2.2 (see, e.g., [10]). Let $T: X \rightarrow Y$ be a bounded linear map from a Banach space X onto a Banach space Y. Then there exists a linear map $\widetilde{T}: X / \operatorname{ker} T \rightarrow Y$ such that

1) \widetilde{T} is isomorphism,
2) $T=\widetilde{T} \pi$, where $\pi: X \rightarrow X / \operatorname{ker} T$ denotes the quotient map and $\operatorname{ker} T=$ $\{x \in X: T(x)=0\}$,
3) $\|T\|=\|\widetilde{T}\|$.

Theorem 2.3 ([1]). Let X be a quotient of c_{0}. Then for every $\varepsilon>0$, there is a subspace Y of c_{0} such that $d(X, Y)<1+\varepsilon$.

Lemma 2.4 (Lemma 1 in [2]). Let X be a Banach space with separable dual X^{*} and let Y be a subspace of X^{*} with a normalized basis $\left(y_{n}^{*}\right)$ which

Lemma 2.5 (Lemma 2 in [2]). Suppose that X and Y are separable Banach spaces and that $\left(x_{n}^{*}\right)$ and $\left(y_{n}^{*}\right)$ are normalized sequences in X^{*} and Y^{*}, respectively, which are equivalent to the standard basis of ℓ_{1} and for which
 Suppose that the basis to basis map ϕ of $\overline{\operatorname{lin}\left\{x_{n}^{*}: n \in \mathbb{N}\right\}}$ onto $\overline{\operatorname{lin}\left\{y_{n}^{*}: n \in \mathbb{N}\right\}}$, i.e.,

$$
\phi\left(\sum_{n=1}^{\infty} a_{n} x_{n}^{*}\right)=\sum_{n=1}^{\infty} a_{n} y_{n}^{*}
$$

is a weak ${ }^{*}$ homeomorphism of $\overline{\left\{x_{n}^{*}: n \in \mathbb{N}\right\}}{ }^{*}$ onto ${\overline{\left\{y_{n}^{*}: n \in \mathbb{N}\right\}}}^{*}$. Then ϕ is a weak* continuous isomorphism of $\overline{\operatorname{lin}\left\{x_{n}^{*}: n \in \mathbb{N}\right\}}$ onto $\overline{\operatorname{lin}\left\{y_{n}^{*}: n \in \mathbb{N}\right\}}$.

Lemma 2.6 (Lemma 3.2 in [6]). Let $T: X \rightarrow Y$ be a bounded linear operator, where $Y \neq\{0\}$. Then

$$
\sup \left\{\delta>0: \delta B_{Y} \subseteq T\left(B_{X}\right)\right\}=\left\|\widetilde{T}^{-1}\right\|^{-1}
$$

where \widetilde{T} is defined as in Theorem 2.2.
Theorem 2.7 (Theorem 4.1 in [8]). Let $e^{*} \in B_{\ell_{1}}$ and let X be an infinitedimensional L_{1}-predual such that $\left(\operatorname{ext} B_{X^{*}}\right)^{\prime} \subset r B_{X^{*}}$ for some $0 \leq r<\left\|e^{*}\right\|$. Then for every isomorphic embedding T from $W_{e^{*}}$ into X we have

$$
\|T\|\left\|T^{-1}\right\| \geq \frac{1+2\left\|e^{*}\right\|-r}{1+r} .
$$

We are now in position to prove the main theorem of this paper.
Proof of Theorem 2.1. Observe that, if $r^{*}(X)=0$, then $X=c_{0}($ see $[7])$. Therefore, assume that $r^{*}(X)>0$. Let $\varepsilon \in\left(0, r^{*}(X)\right)$ be arbitrarily chosen. There exist $e^{*} \in\left(\operatorname{ext} B_{X^{*}}\right)^{\prime}$ and a subsequence $\left(e_{n_{k}}^{*}\right)_{k \in \mathbb{N}}$ of the standard basis in ℓ_{1} such that $\left\|e^{*}\right\|>r^{*}(X)-\frac{\varepsilon}{2}, e_{n_{k}}^{*} \xrightarrow{\sigma\left(\ell_{1}, X\right)} e^{*}$ and $\left\|e^{*}\right\|>\sum_{k=1}^{\infty}\left|e^{*}\left(n_{k}\right)\right|$. Put

$$
e_{n_{0}}^{*}=\frac{e^{*}-\sum_{k=1}^{\infty} e^{*}\left(n_{k}\right) e_{n_{k}}^{*}}{\left\|e^{*}\right\|-\sum_{k=1}^{\infty}\left|e^{*}\left(n_{k}\right)\right|} .
$$

It is easy to see that $\left\|e_{n_{0}}^{*}\right\|=1$ and the sequence $\left(e_{n_{k}}^{*}\right)_{k \in \mathbb{N} \cup\{0\}}$ is equivalent to the standard basis in ℓ_{1}. Let $Y=\overline{\operatorname{lin}\left\{e_{n_{0}}^{*}, e_{n_{1}}^{*}, e_{n_{2}}^{*}, \ldots\right\} \text {. Since }}$ $\left\{e_{n_{0}}^{*}, e_{n_{1}}^{*}, e_{n_{2}}^{*}, \ldots\right\}^{*}=\left\{e_{n_{0}}^{*}, e_{n_{1}}^{*}, e_{n_{2}}^{*}, \ldots\right\} \cup\left\{e^{*}\right\} \subset Y$, Lemma 2.4 guarantees that $\bar{Y}^{*}=Y$. Thus $Y=\left(X /{ }^{\perp} Y\right)^{*}$. Let

$$
y^{*}=\left(\left\|e^{*}\right\|-\sum_{k=1}^{\infty}\left|e^{*}\left(n_{k}\right)\right|, e^{*}\left(n_{1}\right), e^{*}\left(n_{2}\right), e^{*}\left(n_{3}\right), \ldots\right) .
$$

Since $y^{*} \in B_{\ell_{1}}$, by Theorem 1.1, $W_{y^{*}}^{*}=\ell_{1}$ and $e_{n}^{*} \xrightarrow{\sigma\left(\ell_{1}, W_{y^{*}}\right)} y^{*}$. Let $\phi: Y \rightarrow W_{y^{*}}^{*}$ be defined as follows:

$$
\phi\left(a_{1} e_{n_{0}}^{*}+a_{2} e_{n_{1}}^{*}+a_{3} e_{n_{2}}^{*}+a_{4} e_{n_{3}}^{*}+\ldots\right)=\sum_{k=1}^{\infty} a_{k} e_{k}^{*}
$$

Then ϕ is an "onto" linear isometry. Moreover,

$$
\begin{aligned}
\phi\left(e^{*}\right) & =\phi\left(\left(\left\|e^{*}\right\|-\sum_{k=1}^{\infty}\left|e^{*}\left(n_{k}\right)\right|\right) e_{n_{0}}^{*}+\sum_{k=1}^{\infty} e^{*}\left(n_{k}\right) e_{n_{k}}^{*}\right) \\
& =\left(\left\|e^{*}\right\|-\sum_{k=1}^{\infty}\left|e^{*}\left(n_{k}\right)\right|\right) e_{1}^{*}+\sum_{k=1}^{\infty} e^{*}\left(n_{k}\right) e_{k+1}^{*} \\
& =\left(\left\|e^{*}\right\|-\sum_{k=1}^{\infty}\left|e^{*}\left(n_{k}\right)\right|, e^{*}\left(n_{1}\right), e^{*}\left(n_{2}\right), e^{*}\left(n_{3}\right), \ldots\right)=y^{*}
\end{aligned}
$$

Consequently, ϕ is a weak* continuous homeomorphism from
onto

In view of Lemma 2.5, ϕ is a weak ${ }^{*}$ continuous isometry from Y onto $\ell_{1}=$ $W_{y^{*}}^{*}$. This implies that $W_{y^{*}}$ is isometric to $X /{ }^{\perp} Y$.

Now, assume that $T: X \rightarrow c_{0}$ is an isomorphism. Without loss of generality we may assume that $\left\|T^{-1}\right\|=1$. Let us consider the map πT^{-1} : $c_{0} \rightarrow X /{ }^{\perp} Y=W_{y^{*}}$, where $\pi: X \rightarrow X /{ }^{\perp} Y$ is the quotient map. Obviously πT^{-1} is an "onto" map. By Theorem 2.2, there exists an isomorphism $\widetilde{\pi T^{-1}}: c_{0} / \operatorname{ker} \pi T^{-1} \rightarrow W_{y^{*}}$ such that $\left\|\widehat{\pi T^{-1}}\right\|=\left\|\pi T^{-1}\right\|$. Observe that $\pi T^{-1}\left(B_{c_{0}}\right) \supseteq \frac{1}{\|T\|+\eta} B_{W_{y^{*}}}$ for every $\eta>0$. Hence, by applying Lemma 2.6, we obtain $\|T\| \geq\left\|\left(\widetilde{\pi T^{-1}}\right)^{-1}\right\|$. Since $\left\|\pi T^{-1}\right\| \leq 1$, we have $\left\|\widetilde{\pi T^{-1}}\right\| \leq 1$.

Now observe that, by Theorem 2.3, there exist a subspace Z of c_{0} and an isomorphism $K: c_{0} / \operatorname{ker} \pi T^{-1} \rightarrow Z$ such that $\|K\|\left\|K^{-1}\right\|<1+\varepsilon$. Hence, applying Theorem 4.1 in [9], we obtain

$$
\begin{aligned}
1+2\left\|y^{*}\right\| & \leq\left\|\widetilde{\pi T^{-1}} K^{-1}\right\|\left\|K\left(\widetilde{\pi T^{-1}}\right)^{-1}\right\| \\
& \leq\left\|K^{-1}\right\|\left\|\widetilde{\pi T^{-1}}\right\|\|K\|\left\|\left(\widetilde{\pi T^{-1}}\right)^{-1}\right\| \leq(1+\varepsilon)\|T\|
\end{aligned}
$$

Therefore $\|T\| \geq \frac{1+2\left\|e^{*}\right\|}{1+\varepsilon}>\frac{1+2 r^{*}(X)-\varepsilon}{1+\varepsilon}$. Letting $\varepsilon \rightarrow 0$, we get

$$
\|T\|\left\|T^{-1}\right\| \geq 1+2 r^{*}(X)
$$

Remark 2.8. From the proof of Proposition 3.8 in [6] we have $d\left(W_{e^{*}}, c_{0}\right) \leq$ $1+2\left\|e^{*}\right\|$. Applying Theorem 2.1 or Theorem 2.7, we conclude that $d\left(W_{e^{*}}, c_{0}\right)=1+2\left\|e^{*}\right\|$ for every $e^{*} \in B_{\ell_{1}}$.

Acknowledgments. The author would like to thank dr hab. Łukasz Piasecki for helpful conversations and valuable suggestions.

References

[1] Alspach, D. E., Quotients of c_{0} are almost isometric to subspaces of c_{0}, Proc. Amer. Math. Soc. 79 (1979), 285-288.
[2] Alspach, D. E., A ℓ_{1}-predual which is not isometric to a quotient of $C(\alpha)$, arXiv:math/9204215v1 (1992).
[3] Banach, S., Théorie des opérations linéaires, Warszawa, 1932.
[4] Cambern, M., On mappings of sequence spaces, Studia Math. 30 (1968), 73-77.
[5] Casini, E., Miglierina, E., Piasecki, Ł, Hyperplanes in the space of convergent sequences and preduals of ℓ_{1}, Canad. Math. Bull. 58 (2015), 459-470.
[6] Casini, E., Miglierina, E., Piasecki, Ł, Popescu, R., Stability constants of the weak* fixed point property in the space ℓ_{1}, J. Math. Anal. Appl. 452(1) (2017), 673-684.
[7] Durier, R., Papini, P. L., Polyhedral norms in an infinite dimensional space, Rocky Mountain J. Math. 23 (1993), 863-875.
[8] Gergont, A., Piasecki, Ł, On isomorphic embeddings of c into L_{1}-preduals and some applications, J. Math. Anal. Appl. 492(1) (2020), 124431, 11 pp.
[9] Gergont, A., Piasecki, Ł, Some topological and metric properties of the space of ℓ_{1} predual hyperplanes in c, Colloq. Math. 168(2) (2022), 229-247.
[10] Megginson, R. E., An Introduction to Banach Space Theory, Springer-Verlag, New York, 1998.

Agnieszka Gergont
Institute of Mathematics
Maria Curie-Skłodowska University
Pl. Marii Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: agnieszka.gergont@poczta.umcs.lublin.pl

Received July 7, 2022

