doi: 10.17951/a.2022.76.1.25-30

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXXVI, NO. 1, 2022	SECTIO A	25 - 30
-------------------------	----------	---------

AGNIESZKA GERGONT

A note on the Banach–Mazur distances between c_0 and other ℓ_1 -preduals

ABSTRACT. We prove that if X is an ℓ_1 -predual isomorphic to the space c_0 of sequences converging to zero, then for any isomorphism $T: X \to c_0$ we have $||T|| ||T^{-1}|| \ge 1 + 2r^*(X)$, where $r^*(X)$ is the smallest radius of the closed ball of the dual space X^* containing all the weak^{*} cluster points of the set of all extreme points of the closed unit ball of X^* .

1. Introduction. Let X be a real infinite-dimensional Banach space X and let us denote by B_X its closed unit ball. If $A \subset X$, then ext A stands for the set of all extreme points of A. The dual of X is denoted by X^* . If $A \subset X^*$, then \overline{A}^* denotes the weak^{*} closure of A and A' stands for the set of all weak^{*} cluster points of A:

$$A' = \left\{ x^* \in X^* : x^* \in \overline{(A \setminus \{x^*\})}^* \right\}.$$

If $f \in X^*$, then ker f denotes the kernel of f, i.e., ker $f = \{x \in X : f(x) = 0\}$. For any Banach spaces X and Y, X = Y means that X is isometrically isomorphic to Y. A Banach space X is called an L_1 -predual (or a Lindenstrauss space) if $X^* = L_1(\mu)$ for some measure μ . In particular, X is named an ℓ_1 -predual if $X^* = \ell_1$. For a given ℓ_1 -predual X we put

 $r^*(X) = \inf\{r > 0 : (\operatorname{ext} B_{X^*})' \subset rB_{X^*}\} = \sup\{\|e^*\| : e^* \in (\operatorname{ext} B_{X^*})'\}.$

²⁰¹⁰ Mathematics Subject Classification. 46B03, 46B25, 46B45.

Key words and phrases. ℓ_1 -preduals, Banach-Mazur distance, c_0 space.

A. Gergont

For Banach spaces X and Y, a linear operator $T: X \to Y$ is called an isomorphic embedding if there exist a, b > 0 such that for every $x \in X$

$$a ||x|| \le ||T(x)|| \le b ||x||.$$

The distortion of an isomorphic embedding $T : X \to Y$ is the number $||T|| ||T^{-1}||$, where T^{-1} denotes the inverse map to an isomorphism T of X onto its image T(X). Moreover, for isomorphic Banach spaces X and Y, d(X,Y) denotes the Banach–Mazur distance between them, defined as

 $d(X,Y) = \inf \left\{ \|T\| \| \|T^{-1}\| : T \text{ is an isomorphism from } X \text{ onto } Y \right\}.$

This notion appeared for the first time in the celebrated 1932' book by Stefan Banach [3]. The reader interested in the current state of knowledge regarding the Banach-Mazur distance between L_1 -preduals is referred to the paper [8] and the papers cited in it. One of the most important classical result is the Cambern result [4], which states that the Banach-Mazur distance between the space c of convergent sequences and its subspace c_0 of sequences converging to zero equals 3, both spaces are furnished with the supremum norm. This result answered to the question posed by Banach in [3]. In the present paper, we prove that the Banach-Mazur distance between c_0 and an ℓ_1 -predual X isomorphic to c_0 is greater or equal to $1+2r^*(X)$. It is worth emphasizing that this estimate is optimal (see Remark 2.8). This result is a generalization of Theorem 3.7 in [6], where some ℓ_1 -preduals X isomorphic to c_0 , for which $r^*(X) = 1$, are considered. Moreover, this result complements Theorem 2.1 in [8] and Theorem 4.1 in [8].

We recall that c^* can be isometrically identified with ℓ_1 in the following way. For every $x^* \in c^*$ there exists a unique $f = (f(1), f(2), ...) \in \ell_1$ such that

$$x^*(x) = \sum_{i=0}^{\infty} f(i+1)x(i) = f(x)$$

with $x = (x(1), x(2), ...) \in c$ and $x(0) = \lim_{i \to \infty} x(i)$. In our paper, ℓ_1 -predual hyperplanes in c play an important role.

For every $e^* = (e^*(1), e^*(2), \dots) \in \ell_1$ we define a hyperplane W_{e^*} in c by

$$W_{e^*} = \left\{ x = (x(1), x(2), \dots) \in c : \lim_{i \to \infty} x(i) = \sum_{i=1}^{\infty} e^*(i)x(i) \right\}.$$

Theorem 1.1 ([5]).

- (i) $W_{e^*}^* = \ell_1$ if and only if one of the following conditions holds: • $e^* \in B_{\ell_1}$,
 - $||e^*|| > 1$ and $|e^*(i)| \ge \frac{1}{2}(1 + ||e^*||)$ for some $i \in \mathbb{N}$ (in this case, $W_{e^*} = c$).
- (ii) Let $e^* \in B_{\ell_1}$. Then $W_{e^*} = c$ if and only if $|e^*(i)| = 1$ for some $i \in \mathbb{N}$. Moreover, $W_{e^*} = c_0$ if and only if $e^* = (0, 0, 0, ...)$.

(iii) For every $e^* \in B_{\ell_1}$ we have $W^*_{e^*} = \ell_1$ with a duality map $\phi : \ell_1 \to W^*_{e^*}$ defined by

$$\phi(g)(x) = \sum_{i=1}^{\infty} x(i)g(i)$$

with $g = (g(1), g(2), \dots) \in \ell_1$ and $x = (x(1), x(2), \dots) \in W_{e^*}$. Moreover, if (e_n^*) denotes the standard basis in ℓ_1 , then

$$e_n^* \xrightarrow{\sigma(\ell_1, W_{e^*})} e^*,$$

where $\sigma(X^*, X)$ denotes the weak^{*} topology on X^* induced by X. (iv) If X is an ℓ_1 -predual such that (e_n^*) is $\sigma(\ell_1, X)$ -convergent to e^* , then $X = W_{e^*}$.

Note that in the present paper we use a slight modification of the notation for a hyperplane in c introduced in [5]. Indeed, here we have

$$W_{e^*} = W_f = \ker f = \left\{ x \in c : f(1) \lim_{i \to \infty} x(i) + \sum_{i=1}^{\infty} f(i+1)x(i) = 0 \right\},$$

where

$$f = \left(\frac{1}{1+\|e^*\|}, -\frac{e^*(1)}{1+\|e^*\|}, -\frac{e^*(2)}{1+\|e^*\|}, \dots, -\frac{e^*(i)}{1+\|e^*\|}, \dots\right) \in S_{c^*}.$$

2. Main result. We begin by stating the main result of the paper.

Theorem 2.1. If X is an ℓ_1 -predual isomorphic to c_0 , then

$$d(X, c_0) \ge 1 + 2r^*(X).$$

In order to prove the theorem we need some auxiliary results.

Theorem 2.2 (see, e.g., [10]). Let $T : X \to Y$ be a bounded linear map from a Banach space X onto a Banach space Y. Then there exists a linear map $\widetilde{T} : X / \ker T \to Y$ such that

- 1) \widetilde{T} is isomorphism,
- 2) $T = \widetilde{T}\pi$, where $\pi : X \to X/\ker T$ denotes the quotient map and $\ker T = \{x \in X : T(x) = 0\},\$
- 3) ||T|| = ||T||.

Theorem 2.3 ([1]). Let X be a quotient of c_0 . Then for every $\varepsilon > 0$, there is a subspace Y of c_0 such that $d(X, Y) < 1 + \varepsilon$.

Lemma 2.4 (Lemma 1 in [2]). Let X be a Banach space with separable dual X^* and let Y be a subspace of X^* with a normalized basis (y_n^*) which is isomorphic to ℓ_1 . If $\overline{\{y_n^* : n \in \mathbb{N}\}}^* \subset Y$, then Y is weak* closed in X^* .

A. Gergont

Lemma 2.5 (Lemma 2 in [2]). Suppose that X and Y are separable Banach spaces and that (x_n^*) and (y_n^*) are normalized sequences in X^* and Y^* , respectively, which are equivalent to the standard basis of ℓ_1 and for which $\overline{\ln\{x_n^*:n\in\mathbb{N}\}}^* = \overline{\ln\{x_n^*:n\in\mathbb{N}\}}$ and $\overline{\ln\{y_n^*:n\in\mathbb{N}\}}^* = \overline{\ln\{y_n^*:n\in\mathbb{N}\}}$. Suppose that the basis to basis map ϕ of $\overline{\ln\{x_n^*:n\in\mathbb{N}\}}$ onto $\overline{\ln\{y_n^*:n\in\mathbb{N}\}}$, *i.e.*,

$$\phi\left(\sum_{n=1}^{\infty}a_nx_n^*\right) = \sum_{n=1}^{\infty}a_ny_n^*$$

is a weak^{*} homeomorphism of $\overline{\{x_n^* : n \in \mathbb{N}\}^*}$ onto $\overline{\{y_n^* : n \in \mathbb{N}\}^*}$. Then ϕ is a weak^{*} continuous isomorphism of $\overline{\lim\{x_n^* : n \in \mathbb{N}\}}$ onto $\overline{\lim\{y_n^* : n \in \mathbb{N}\}}$.

Lemma 2.6 (Lemma 3.2 in [6]). Let $T : X \to Y$ be a bounded linear operator, where $Y \neq \{0\}$. Then

$$\sup\{\delta > 0 : \delta B_Y \subseteq T(B_X)\} = \|\widetilde{T}^{-1}\|^{-1},$$

where T is defined as in Theorem 2.2.

Theorem 2.7 (Theorem 4.1 in [8]). Let $e^* \in B_{\ell_1}$ and let X be an infinitedimensional L_1 -predual such that $(\operatorname{ext} B_{X^*})' \subset rB_{X^*}$ for some $0 \leq r < ||e^*||$. Then for every isomorphic embedding T from W_{e^*} into X we have

$$||T|| ||T^{-1}|| \ge \frac{1+2 ||e^*|| - r}{1+r}$$

We are now in position to prove the main theorem of this paper.

Proof of Theorem 2.1. Observe that, if $r^*(X) = 0$, then $X = c_0$ (see [7]). Therefore, assume that $r^*(X) > 0$. Let $\varepsilon \in (0, r^*(X))$ be arbitrarily chosen. There exist $e^* \in (\operatorname{ext} B_{X^*})'$ and a subsequence $(e^*_{n_k})_{k \in \mathbb{N}}$ of the standard basis in ℓ_1 such that $||e^*|| > r^*(X) - \frac{\varepsilon}{2}$, $e^*_{n_k} \xrightarrow{\sigma(\ell_1, X)} e^*$ and $||e^*|| > \sum_{k=1}^{\infty} |e^*(n_k)|$. Put

$$e_{n_0}^* = \frac{e^* - \sum_{k=1}^{\infty} e^*(n_k) e_{n_k}^*}{\|e^*\| - \sum_{k=1}^{\infty} |e^*(n_k)|}.$$

It is easy to see that $||e_{n_0}^*|| = 1$ and the sequence $(e_{n_k}^*)_{k \in \mathbb{N} \cup \{0\}}$ is equivalent to the standard basis in ℓ_1 . Let $Y = \overline{\lim\{e_{n_0}^*, e_{n_1}^*, e_{n_2}^*, \dots\}}$. Since $\overline{\{e_{n_0}^*, e_{n_1}^*, e_{n_2}^*, \dots\}}^* = \{e_{n_0}^*, e_{n_1}^*, e_{n_2}^*, \dots\} \cup \{e^*\} \subset Y$, Lemma 2.4 guarantees that $\overline{Y}^* = Y$. Thus $Y = (X/^{\perp}Y)^*$. Let

$$y^* = \left(\left\| e^* \right\| - \sum_{k=1}^{\infty} \left| e^*(n_k) \right|, e^*(n_1), e^*(n_2), e^*(n_3), \dots \right)$$

Since $y^* \in B_{\ell_1}$, by Theorem 1.1, $W^*_{y^*} = \ell_1$ and $e^*_n \xrightarrow{\sigma(\ell_1, W_{y^*})} y^*$. Let $\phi: Y \to W^*_{y^*}$ be defined as follows:

$$\phi(a_1e_{n_0}^* + a_2e_{n_1}^* + a_3e_{n_2}^* + a_4e_{n_3}^* + \dots) = \sum_{k=1}^{\infty} a_ke_k^*.$$

Then ϕ is an "onto" linear isometry. Moreover,

$$\phi(e^*) = \phi\left(\left(\|e^*\| - \sum_{k=1}^{\infty} |e^*(n_k)|\right) e^*_{n_0} + \sum_{k=1}^{\infty} e^*(n_k) e^*_{n_k}\right)$$
$$= \left(\|e^*\| - \sum_{k=1}^{\infty} |e^*(n_k)|\right) e^*_1 + \sum_{k=1}^{\infty} e^*(n_k) e^*_{k+1}$$
$$= \left(\|e^*\| - \sum_{k=1}^{\infty} |e^*(n_k)|, e^*(n_1), e^*(n_2), e^*(n_3), \dots\right) = y^*.$$

Consequently, ϕ is a weak^{*} continuous homeomorphism from

$$\overline{\{e_{n_0}^*, e_{n_1}^*, e_{n_2}^*, \dots\}}^* = \{e_{n_0}^*, e_{n_1}^*, e_{n_2}^*, \dots\} \cup \{e^*\}$$

onto

ł

$$\overline{\{e_1^*, e_2^*, \dots\}}^* = \{e_1^*, e_2^*, \dots\} \cup \{y^*\}.$$

In view of Lemma 2.5, ϕ is a weak^{*} continuous isometry from Y onto $\ell_1 = W_{y^*}^*$. This implies that W_{y^*} is isometric to $X/{}^{\perp}Y$.

Now, assume that $T : X \to c_0$ is an isomorphism. Without loss of generality we may assume that $||T^{-1}|| = 1$. Let us consider the map πT^{-1} : $c_0 \to X/^{\perp}Y = W_{y^*}$, where $\pi : X \to X/^{\perp}Y$ is the quotient map. Obviously πT^{-1} is an "onto" map. By Theorem 2.2, there exists an isomorphism $\widetilde{\pi T^{-1}} : c_0/\ker \pi T^{-1} \to W_{y^*}$ such that $\left\|\widetilde{\pi T^{-1}}\right\| = \left\|\pi T^{-1}\right\|$. Observe that $\pi T^{-1}(B_{c_0}) \supseteq \frac{1}{||T|| + \eta} B_{W_{y^*}}$ for every $\eta > 0$. Hence, by applying Lemma 2.6, we obtain $||T|| \ge \left\|\left(\widetilde{\pi T^{-1}}\right)^{-1}\right\|$. Since $\|\pi T^{-1}\| \le 1$, we have $\|\widetilde{\pi T^{-1}}\| \le 1$.

Now observe that, by Theorem 2.3, there exist a subspace Z of c_0 and an isomorphism $K: c_0/\ker \pi T^{-1} \to Z$ such that $||K|| ||K^{-1}|| < 1 + \varepsilon$. Hence, applying Theorem 4.1 in [9], we obtain

$$1 + 2\|y^*\| \le \left\|\widetilde{\pi T^{-1}} K^{-1}\right\| \left\|K\left(\widetilde{\pi T^{-1}}\right)^{-1}\right\| \le \|K^{-1}\| \left\|\widetilde{\pi T^{-1}}\right\| \|K\| \left\|\left(\widetilde{\pi T^{-1}}\right)^{-1}\right\| \le (1+\varepsilon)\|T\|.$$

Therefore $||T|| \ge \frac{1+2||e^*||}{1+\varepsilon} > \frac{1+2r^*(X)-\varepsilon}{1+\varepsilon}$. Letting $\varepsilon \to 0$, we get $||T|| ||T^{-1}|| \ge 1 + 2r^*(X)$.

Remark 2.8. From the proof of Proposition 3.8 in [6] we have $d(W_{e^*}, c_0) \leq 1 + 2 ||e^*||$. Applying Theorem 2.1 or Theorem 2.7, we conclude that $d(W_{e^*}, c_0) = 1 + 2 ||e^*||$ for every $e^* \in B_{\ell_1}$.

Acknowledgments. The author would like to thank dr hab. Łukasz Piasecki for helpful conversations and valuable suggestions.

References

- Alspach, D. E., Quotients of c₀ are almost isometric to subspaces of c₀, Proc. Amer. Math. Soc. **79** (1979), 285–288.
- [2] Alspach, D. E., A ℓ_1 -predual which is not isometric to a quotient of $C(\alpha)$, arXiv:math/9204215v1 (1992).
- [3] Banach, S., Théorie des opérations linéaires, Warszawa, 1932.
- [4] Cambern, M., On mappings of sequence spaces, Studia Math. 30 (1968), 73-77.
- [5] Casini, E., Miglierina, E., Piasecki, Ł, Hyperplanes in the space of convergent sequences and preduals of l₁, Canad. Math. Bull. 58 (2015), 459–470.
- [6] Casini, E., Miglierina, E., Piasecki, Ł, Popescu, R., Stability constants of the weak* fixed point property in the space l₁, J. Math. Anal. Appl. 452(1) (2017), 673–684.
- [7] Durier, R., Papini, P. L., Polyhedral norms in an infinite dimensional space, Rocky Mountain J. Math. 23 (1993), 863–875.
- [8] Gergont, A., Piasecki, Ł, On isomorphic embeddings of c into L₁-preduals and some applications, J. Math. Anal. Appl. 492(1) (2020), 124431, 11 pp.
- [9] Gergont, A., Piasecki, Ł, Some topological and metric properties of the space of l₁predual hyperplanes in c, Colloq. Math. 168(2) (2022), 229-247.
- [10] Megginson, R. E., An Introduction to Banach Space Theory, Springer-Verlag, New York, 1998.

Agnieszka Gergont Institute of Mathematics Maria Curie-Skłodowska University Pl. Marii Curie-Skłodowskiej 1 20-031 Lublin Poland e-mail: agnieszka.gergont@poczta.umcs.lublin.pl

Received July 7, 2022