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The twisted gauge-natural bilinear brackets
on couples of linear vector fields

and linear p-forms

Abstract. We completely describe all gauge-natural operators C which send
linear (p+2)-forms H on vector bundles E (with sufficiently large dimensional
bases) into R-bilinear operators CH transforming pairs (X1 ⊕ω1, X2 ⊕ω2) of
couples of linear vector fields and linear p-forms on E into couples CH(X1 ⊕
ω1, X2 ⊕ ω2) of linear vector fields and linear p-forms on E. Further, we
extract all C (as above) such that C0 is the restriction of the well-known
Courant bracket and CH satisfies the Jacobi identity in Leibniz form for all
closed linear (p+ 2)-forms H.

1. Introduction. All manifolds considered in the paper are assumed to
be Hausdorff, second countable, finite dimensional, without boundary, and
smooth (of class C∞). Maps between manifolds are assumed to be C∞.

A vector field X on a vector bundle E is called linear if LLX = 0, where
L is the Lie derivative and L is the Euler vector field. A p-form ω on a
vector bundle E is called linear if LLω = ω. Let ΓlE(TE ⊕

∧p T ∗E) denote
the space of couples X ⊕ ω of linear vector fields X and linear p-forms ω
on E.
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Let VBm,n be the category of n-rank vector bundles with m-dimensional
bases and their vector bundle isomorphism onto images. A VBm,n-gauge-
natural operator

C : Γl
(p+2∧

T ∗
)
 Lin2

(
Γl
(
T ⊕

p∧
T ∗
)
×Γl

(
T ⊕

p∧
T ∗
)
,Γl
(
T ⊕

p∧
T ∗
))

sending linear (p + 2)-forms H ∈ ΓlE(
∧p+2 T ∗E) on VBm,n-objects E into

R-bilinear operators

CH : ΓlE

(
TE ⊕

p∧
T ∗E

)
× ΓlE

(
TE ⊕

p∧
T ∗E

)
→ ΓlE

(
TE ⊕

p∧
T ∗E

)
is a VBm,n-invariant family of regular operators (functions)

C : ΓlE

(p+2∧
T ∗E

)
→ Lin2

(
ΓlE

(
TE ⊕

p∧
T ∗E

)
×ΓlE

(
TE ⊕

p∧
T ∗E

)
,ΓlE

(
TE ⊕

p∧
T ∗E

))
for all VBm,n-objects E, where Lin2(U × V,W ) denotes the vector space
of all bilinear (over R) functions U × V → W for any real vector spaces
U, V,W .

The first main result of the article is the following theorem.

Theorem 1.1. Let m, p ≥ 1 and n ≥ 1 be fixed integers such that m ≥ p+2.
Any VBm,n-gauge-natural operator

C : Γl
(p+2∧

T ∗
)
 Lin2

(
Γl
(
T ⊕

p∧
T ∗
)
×Γl

(
T ⊕

p∧
T ∗
)
,Γl
(
T ⊕

p∧
T ∗
))

is of the form

(1)

CH(ρ1, ρ2) = a[X1, X2]⊕ {b1LX1ω2 + b2LX2ω1 + b3diX1ω2

+ b4diX2ω1 + b5LX1diLω
2 + b6LX2diLω

1

+ c1iX1iX2H + c2iLiX1iX2dH + c3iLiX2diX1H

+ c4iLiX1diX2H + c5iLdiX2iX1H}

for arbitrary (uniquely determined by C) reals a, b1, b2, b3, b4, b5, b6, c1, c2, c3,
c4, c5, where ρi = Xi ⊕ ωi ∈ ΓlE(TE ⊕

∧p T ∗E), H ∈ ΓlE(
∧p+2 T ∗E), and

where [−,−] is the usual bracket on vector fields, L is the Lie derivative,
d is the exterior derivative, i is the insertion derivative and L is the Euler
vector field.

A VBm,n-gauge-natural operator C as above satisfies the Jacobi identity
in Leibniz form for closed linear (p+ 2)-forms if

(2) CH(ρ1, CH(ρ2, ρ3)) = CH(CH(ρ1, ρ2), ρ3) + CH(ρ2, CH(ρ1, ρ3))
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for all closed linear (p+ 2)-forms H ∈ ΓlE(
∧p+2 T ∗E) and all linear sections

ρi = Xi ⊕ ωi ∈ ΓlE(TE ⊕
∧p T ∗E) for i = 1, 2, 3 and all VBm,n-objects E.

For example, the twisted Dorfman–Courant bracket given by

(3) [[X1 ⊕ ω1, X2 ⊕ ω2]]H := [X1, X2]⊕ {LX1ω2 − iX2dω1 + iX1iX2H}

is a gauge-natural operator in question satisfying the Jacobi identity in
Leibniz form for closed linear (p+ 2)-forms.

The second main result of the article is the following theorem.

Theorem 1.2. If additionally m ≥ p+ 3, then any gauge-natural operator
C as above satisfying the Jacobi identity in Leibniz form for closed linear
(p+ 2)-forms and the initial condition C0 = [[−,−]]0 satisfies the equality

(4) CH(X1 ⊕ ω1, X2 ⊕ ω2) = [[X1 ⊕ ω1, X2 ⊕ ω2]]cH

for any closed linear (p+2)-form H ∈ ΓlE(
∧p+2 T ∗E) and any X1⊕ω1, X2⊕

ω2 ∈ ΓlE(TE ⊕
∧p T ∗E), where [[−,−]]H is the (above) twisted (H-twisted)

Dorfman–Courant bracket and c is an arbitrary (uniquely determined by C)
real number.

Theorems 1.1 and 1.2 for p = 1 are proved in [4].
From now on, let Rm,n be the trivial vector bundle over Rm with the

standard fibre Rn and let x1, . . . , xm, y1, . . . , yn be the usual coordinates on
Rm,n.

2. The gauge-natural bilinear brackets on couples of linear vector
fields and linear p-forms. Let m,n, p be positive integers.

Let E = (E →M) be a vector bundle from VBm,n.
Applying the tangent and the cotangent functors, we obtain double vector

bundles (TE;E, TM ;M) and (T ∗E;E,E∗;M).
A vector field X on E is called linear if it is a vector bundle map X :

E → TE between E →M and TE → TM .
Equivalently, a vector field X on E is linear if it has an expression

X =
m∑
i=1

ai(x1, . . . , xm)
∂

∂xi
+

n∑
j,k=1

bkj (x
1, . . . , xm)yj

∂

∂yk

in any local vector bundle trivialization x1, . . . , xm, y1, . . . , yn on E.
Equivalently, a vector field X on E is linear iff LLX = 0, where L denotes

the Lie derivative and L is the Euler vector field on E (in vector bundle
coordinates L =

∑n
j=1 y

j ∂
∂yj

).
Equivalently, a vector field X on E is linear if (at)∗X = X for any t > 0,

where at : E → E is the fibre-homothety by t.
A p-form ω on E is called linear if the induced vector bundle morphism

ω] : ⊕k−1TE → T ∗E
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over the identity on E is also a vector bundle morphism over a map ⊕k−1TM
→ E∗ on the other side of the double vector bundle.

Equivalently, a p-form ω on E is linear if it has an expression

ω =
∑

ai1,...,ip,j(x)yjdxi1∧. . .∧dxip+
∑

bi1,...,ip−1,j(x)dyj∧dxi1∧. . .∧dxip−1

in any local vector bundle trivialization x1, . . . , xm, y1, . . . , yn on E.
Equivalently, a p-form ω on E is linear iff LLω = ω.
Equivalently, a p-form ω on E is linear iff (a 1

t
)∗ω = tω for any t > 0.

We have the following definition being a modification of the general one
from [1].

Definition 2.1. A VBm,n-gauge-natural bilinear operator

A : Γl
(
T ⊕

p∧
T ∗
)
× Γl

(
T ⊕

p∧
T ∗
)
 Γl

(
T ⊕

p∧
T ∗
)

is a VBm,n-invariant family of R-bilinear operators

A : ΓlE

(
TE ⊕

p∧
T ∗E

)
× ΓlE

(
TE ⊕

p∧
T ∗E

)
→ ΓlE

(
TE ⊕

p∧
T ∗E

)
for all VBm,n-objects E, where ΓlE(TE ⊕

∧p T ∗E) is the vector space of
linear sections of TE ⊕

∧p T ∗E.

Remark 2.2. The VBm,n-invariance of A means that if

(X1 ⊕ ω1, X2 ⊕ ω2) ∈ ΓlE

(
TE ⊕

p∧
T ∗E

)
× ΓlE

(
TE ⊕

p∧
T ∗E

)
and

(X
1 ⊕ ω1, X

2 ⊕ ω2) ∈ Γl
E

(
TE ⊕

p∧
T ∗E

)
× Γl

E

(
TE ⊕

p∧
T ∗E

)
are ϕ-related by an VBm,n-map ϕ : E → E (i.e., X

i ◦ ϕ = Tϕ ◦ Xi and
ωi ◦ ϕ =

∧p T ∗ϕ ◦ ωi for i = 1, 2), then so are A(X1 ⊕ ω1, X2 ⊕ ω2) and
A(X

1 ⊕ ω1, X
2 ⊕ ω2).

In [2], we proved the following result.

Theorem 2.3. Let m, n ≥ 1 and p ≥ 1 be natural numbers such that
m ≥ p+ 1. Any VBm,n-gauge-natural bilinear operator

A : Γl
(
T ⊕

p∧
T ∗
)
× Γl

(
T ⊕

p∧
T ∗
)
 Γl

(
T ⊕

p∧
T ∗
)

is of the form

(5)
A(X1 ⊕ ω1, X2 ⊕ ω2) = a[X1, X2]⊕{b1LX1ω2 + b2LX2ω1 + b3diX1ω2

+ b4diX2ω1 + b5LX1diLω
2 + b6LX2diLω

1}
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for arbitrary (uniquely determined by A) real numbers a, b1, b2, b3, b4, b5, b6.

3. The twisted gauge-natural bilinear brackets on couples of linear
vector fields and linear p-forms.

Definition 3.1. A VBm,n-gauge-natural operator

C : Γl
(p+2∧

T ∗
)
 Lin2

(
Γl
(
T ⊕

p∧
T ∗
)
×Γl

(
T ⊕

p∧
T ∗
)
,Γl
(
T ⊕

p∧
T ∗
))

sending linear (p + 2)-forms H ∈ ΓlE(
∧p+2 T ∗E) on VBm,n-objects E into

R-bilinear operators

CH : ΓlE

(
TE ⊕

p∧
T ∗E

)
× ΓlE

(
TE ⊕

p∧
T ∗E

)
→ ΓlE

(
TE ⊕

p∧
T ∗E

)
is a VBm,n-invariant family of regular operators (functions)

C : ΓlE

(p+2∧
T ∗E

)
→ Lin2

(
ΓlE

(
TE ⊕

p∧
T ∗E

)
×ΓlE

(
TE ⊕

p∧
T ∗E

)
,ΓlE

(
TE ⊕

p∧
T ∗E

))
for all VBm,n-objects E, where Lin2(U × V,W ) denotes the vector space
of all bilinear (over R) functions U × V → W for any real vector spaces
U, V,W .

Remark 3.2. The invariance of C means that if H ∈ ΓlE(
∧p+2 T ∗E) and

H̃ ∈ Γl
Ẽ

(
∧p+2 T ∗Ẽ) are ϕ-related and

(X1 ⊕ ω1, X2 ⊕ ω2) ∈ ΓlE

(
TE ⊕

p∧
T ∗E

)
× ΓlE

(
TE ⊕

p∧
T ∗E

)
and

(X̃1 ⊕ ω̃1, X̃2 ⊕ ω̃2) ∈ Γl
Ẽ

(
TẼ ⊕

p∧
T ∗Ẽ

)
× Γl

Ẽ

(
TẼ ⊕

p∧
T ∗Ẽ

)
are also ϕ-related by a VBm,n-map ϕ : E → Ẽ, then so are CH(X1 ⊕ ω1,

X2 ⊕ ω2) and CH̃(X̃1 ⊕ ω̃1, X̃2 ⊕ ω̃2).
The regularity of C means that C transforms smoothly parametrized fam-

ilies (Ht, X
1
t ⊕ω1

t , X
2
t ⊕ω2

t ) into smoothly parametrized families CHt(X
1
t ⊕ω1

t ,
X2
t ⊕ ω2

t ).

Example 3.3. The twisted Dorfman–Courant bracket

(6) [[X1 ⊕ ω1, X2 ⊕ ω2]]H := [X1, X2]⊕ {LX1ω2 − iX2dω1 + iX1iX2H}

is a gauge natural operator in the sense of Definition 3.1.
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Remark 3.4. Quite similarly, one can introduce the concepts of VBm,n-
gauge-natural operators

Γl
(p+2∧

T ∗
)
 Lin2(Γ

l(T )× Γl(T ),Γl(T )) ,

Γl
(p+2∧

T ∗
)
 Lin2

(
Γl(T )× Γl(T ),Γl

( p∧
T ∗
))

,

Γl
(p+2∧

T ∗
)
 Lin2

(
Γl(T )× Γl

( p∧
T ∗
)
,Γl(T )

)
,

...

Γl
(p+2∧

T ∗
)
 Lin2

(
Γl
( p∧

T ∗
)
× Γl

( p∧
T ∗
)
,Γl
( p∧

T ∗
))

.

For example, a VBm,n-gauge-natural operator

Γl
(p+2∧

T ∗
)
 Lin2

(
Γl(T )× Γl

( p∧
T ∗
)
,Γl(T )

)
is a VBm,n-invariant family of regular operators (functions)

ΓlE

(p+2∧
T ∗E

)
→ Lin2

(
ΓlE(TE)× ΓlE

( p∧
T ∗E

)
,ΓlE(TE)

)
for all VBm,n-objects E.

Lemma 3.5. Any VBm,n-gauge-natural operator C in the sense of Def-
inition 3.1 can be considered (in the obvious way) as the system C =
(C1, C2, . . . , C8) of VBm,n-gauge natural operators

C1 : Γl
(p+2∧

T ∗
)
 Lin2(Γ

l(T )× Γl(T ),Γl(T )) ,

C2 : Γl
(p+2∧

T ∗
)
 Lin2

(
Γl(T )× Γl(T ),Γl

( p∧
T ∗
))

,

...

C8 : Γl
(p+2∧

T ∗
)
 Lin2

(
Γl
( p∧

T ∗
)
× Γl

( p∧
T ∗
)
,Γl
( p∧

T ∗
))

.

Proof. The lemma is obvious. �

We prove the following theorem corresponding to Theorem 1.1.

Theorem 3.6. Let m, p ≥ 1 and n ≥ 1 be fixed integers such that m ≥ p+2.
Any VBm,n-gauge-natural operator C in the sense of Definition 3.1 is of the
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form

(7)

CH(ρ1, ρ2) = a[X1, X2]⊕ {b1LX1ω2 + b2LX2ω1 + b3diX1ω2

+ b4diX2ω1 + b5LX1diLω
2 + b6LX2diLω

1

+ c1iX1iX2H + c2iLiX1iX2dH + c3iLiX2diX1H

+ c4iLiX1diX2H + c5iLdiX2iX1H}

for arbitrary (uniquely determined by C) reals a, b1, b2, b3, b4, b5, b6, c1, c2, c3,
c4, c5, where ρi = Xi ⊕ ωi ∈ ΓlE(TE ⊕

∧p T ∗E), H ∈ ΓlE(
∧p+2 T ∗E).

Proof. For p = 1, our theorem is the main result of [4]. So, Theorem 3.6
for p = 1 holds. So we may assume that p ≥ 2.

Consider a VBm,n-gauge-natural operator C in the sense of Definition 3.1.
We can easily see that C0 is a VBm,n-gauge-natural bilinear operator in the
sense of Definition 2.1. Hence, replacing C by C−C0 and using Theorem 2.3,
we may assume that

C0 = 0 .

So, because of Lemma 3.5, our theorem is an immediate consequence of
Lemmas 3.7–3.14, below. �

Lemma 3.7. Let m,n, p be fixed positive integers. Any VBm,n-gauge-natural
operator

C1 : Γl
(p+2∧

T ∗
)
 Lin2(Γ

l(T )× Γl(T ),Γl(T ))

such that C1
0 = 0 is 0.

Proof. Using the invariance of C1 with respect to the fiber homotheties,
we get C1

tH(X,X1) = C1
H(X,X1) for any linear vector fields X and X1 and

any linear (p + 2)-form H on a VBm,n-object E and any t > 0. Putting
t→ 0, we get C1

H(X,X1) = C1
0 (X,X1). Then (by C1

0 = 0) C1
H(X,X1) = 0.

So, C1 = 0. �

Lemma 3.8. Let m, p ≥ 2 and n ≥ 1 be fixed integers such that m ≥ p+ 2.
Any VBm,n-gauge-natural operator

C2 : Γl
(p+2∧

T ∗
)
 Lin2

(
Γl(T )× Γl(T ),Γl

( p∧
T ∗
))

such that C2
0 = 0 is of the form

(8)
C2
H(X1, X2) = c1iX1iX2H + c2iLiX1iX2dH + c3iLiX2diX1H

+ c4iLiX1diX2H + c5iLdiX2iX1H

for arbitrary (uniquely determined by C2) reals c1, c2, c3, c4, c5, where X1, X2

∈ ΓlE(TE) and H ∈ ΓlE(
∧p+2 T ∗E).
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Proof. Consider arbitrary linear (p+ 2)-forms H and H̃ and linear vector
fields X, X̃, X1 and X̃1 on E = Rm,n.

By the non-linear Peetre theorem (Theorem 19.10 (for f = 0) in [1]),
there is a positive integer r (independent of H, H̃, X, X̃, X1, X̃1) such that
the conditions

jr0(H) = jr0(H̃) , jr0(X) = jr0(X̃) , jr0(X1) = jr0(X̃1) (0 ∈ Rm)

imply
j00(C2

tH(tX, tX1)) = j00(C2
tH̃

(tX̃, tX̃1)) (0 ∈ Rm)

for a sufficiently small real number t > 0 (depending on H, H̃,X, X̃,X1, X̃1).
Further, using the invariance of C2 with respect to the fiber homotheties,

we get

(9) C2
tH(X,X1) = tC2

H(X,X1)

for all t > 0. (Then C2
tH(tX, tX1) = t3C2

H(X,X1) for all t > 0.)
Then the conditions

jr0(H) = jr0(H̃) , jr0(X) = jr0(X̃) , jr0(X1) = jr0(X̃1)

imply
C2
H(X,X1)|0 = C2

H̃
(X̃, X̃1)|0 (0 ∈ Rm) .

Consequently, C2 is of finite order r. Then C2
H(X,X1) is linear in H

because of (9) and the homogeneous function theorem.
It is obvious that C2 is determined by the values

(10) iX3 . . . iXp+2C
2
H(X1, X2)|u ∈ R

for all points u ∈ Rm,n
0 , all vectors X3, . . . , Xp+2 ∈ TuRm,n, all linear vector

fields X1 and X2 and all linear (p + 2)-forms H on Rm,n, where i is the
insertion derivative.

Using the 3-linearity of C2, we can assume that the underlined vector
field X2 of X2 is of the form X2 = fY for some “constant” vector field Y
on Rm and some f : Rm → R. We can also assume that u 6= 0 and

Tπ ◦X1|u, Y|0, Tπ(X3), . . . , Tπ(Xp+2)

are linearly independent (here we use m ≥ p + 2), where π is the bundle
projection of E = Rm,n. Then, using the VBm,n-invariance of C2, the 3-
linearity of C2 and the vector bundle version of the Frobenius theorem, we
can write

(11) u = e1 = (1, 0, . . . , 0) ∈ Rn = Rm,n
0 ,

H = xαykdxi1 ∧ . . . ∧ dxip+2 or H = xαdyk ∧ dxj1 ∧ . . . ∧ dxjp+1 ,

(12) X1 =
∂

∂x1
,
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(X2 = xβ
∂

∂x2
or X2 = xβyk

∂

∂yl
)

and

(13) X3 =
∂

∂x3 |u
, . . . , Xp+2 =

∂

∂xp+2 |u
,

where α = (α1, . . . , αm) and β = (β1, . . . , βm) are m-tuples of non-negative
integers, i1, . . . , ip+2 are integers with 1 ≤ i1 < i2 < . . . < ip+2 ≤ m,
j1, . . . , jp+1 are integers with 1 ≤ j1 < j2 < . . . < jp+1 ≤ m and k, l are
numbers from {1, . . . , n}. Let us assume additionally that

(14) iX3 . . . iXp+2C
2
H(X1, X2)|u 6= 0 .

First we consider the case H = xαykdxi1 ∧ . . . ∧ dxip+2 and X2 = xβ ∂
∂x2

.
Then using the invariance of C2 with respect to (τ1x

1, . . . , τmx
m, y1, . . . , yn),

we get the condition

τ1 · . . . · τp+2 · iX3 . . . iXp+2C
2
H(X1, X2)|u

= τα · τβ · τi1 · . . . · τip+2 · iX3 . . . iXp+2C
2
H(X1, X2)|u .

Then α = (0), β = (0), i1 = 1 and ... and ip+2 = p+ 2, i.e.,

H = ykdx1 ∧ . . . ∧ dxp+2 and X2 =
∂

∂x2
.

Next, we consider the case H = xαdyk∧dxj1∧. . .∧dxjp+1 and X2 = xβyk ∂
∂yl

.
Then (using similar arguments), we get

H = dyk ∧ dx1 ∧ dx3 ∧ . . . ∧ dxp+2 and X2 = yk
∂

∂yl
.

Similarly, in the case H = xαykdxi1 ∧ . . . ∧ dxip+2 and X2 = xβyk ∂
∂yl

, we
get a contradiction with (14).

Similarly, in the case H = xαdyk ∧ dxj1 ∧ . . . ∧ dxjp+1 and X2 = xβ ∂
∂x2

,
we get

(15) (H = xidyk ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxp+2 and X2 =
∂

∂x2
)

or

(16) (H = dyk ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxp+2 and X2 = xi
∂

∂x2
)

for some i = 1, . . . , p + 2, where â means that a is dropped. If i = io ≥ 4,
then using the invariance of C2 when replacing x3 by xio (and vice-versa),
we see that the value (10) for i = io is equal (modulo signum) to the value
(10) for io = 3. So, we can assume that i = 1, 2, 3.
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Consequently, the operator C2 is determined by the VB3,n-gauge-natural
operator

C̃2 : Γl
( 3∧

T ∗
)
 Lin2(Γ

l(T )× Γl(T ),Γl(T ∗))

given by

C̃2
H̃

(X̃1, X̃2) := j∗iY4 . . . iYp+2C
2
H̃∧ωo

(X̃1 × 0, X̃2 × 0) ,

X̃1, X̃2 ∈ Γl
Ẽ

(TẼ), H̃ ∈ Γl
Ẽ

(
∧3 T ∗Ẽ), where Ẽ is a VB3,n-object with base

M̃ , x4, . . . , xm are the usual coordinates on Rm−3, ωo := dx4 ∧ . . . ∧ dxp+2

(since p ≥ 2, then m ≥ p + 2 ≥ 4, and then ωo is well defined), Y4 := ∂
∂x4

and ... and Yp+2 := ∂
∂xp+2 are considered as linear vector fields on the

VBm,n-object E := Ẽ × Rm−3 with the base M̃ × Rm−3, j : Ẽ → E is
the inclusion y → (y, 0) and j∗ denotes the pull-back with respect to j. Of
course, C̃2

0 = 0.
By Theorem 3.6 for p = 1 (which is proved in [4]), the vector space of all

VB3,n-gauge-natural operators

C̃ : Γl
( 3∧

T ∗
)
 Lin2(Γ

l(T )× Γl(T ),Γl(T ∗))

with C̃0 = 0 is of dimension ≤ 5. Consequently, the vector space of all
VBm,n-gauge-natural operators

C2 : Γl
(p+2∧

T ∗
)
 Lin2

(
Γl(T )× Γl(T ),Γl

( p∧
T ∗
))

with C2
0 = 0 is of dimension ≤ 5.

On the other hand, the system of VBm,n-gauge-natural operators

D1, D2, D3, D4, D5 : Γl
(p+2∧

T ∗
)
 Lin2

(
Γl(T )× Γl(T ),Γl

( p∧
T ∗
))

defined by

D1
H(X1, X2) := iX1iX2H ,

D2
H(X1, X2) := iLiX1iX2dH ,

D3
H(X1, X2) := iLiX2diX1H ,

D4
H(X1, X2) := iLiX1diX2H ,

D5
H(X1, X2) := iLdiX2iX1H

is linearly independent. Indeed, if

a1D1 + a2D2 + a3D3 + a4D4 + a5D5 = 0 ,
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then (in particular)

a1iX1iX2H + a2iLiX1iX2dH + a3iLiX2diX1H

+ a4iLiX1diX2H + a5iLdiX2iX1H = 0

for any linear 3-form H̃ and any linear vector fields X̃1, X̃2 on R3,n, where
H = H̃ ∧ ωo ∈ ΓlRm,n(

∧p+2 T ∗Rm,n) and X1 = X̃1 × 0, X2 = X̃2 × 0 ∈
ΓlRm,n(TRm,n) and ωo is as above. Then

(a1iX̃1iX̃2H̃ + a2iLiX̃1iX̃2dH̃ + a3iLiX̃2diX̃1H̃

+ a4iLiX̃1diX̃2H̃ + a5iLdiX̃2iX̃1H̃) ∧ ωo = 0

for any H̃, X̃1, X̃2 as above. Then

a1iX̃1iX̃2H̃ + a2iLiX̃1iX̃2dH̃ + a3iLiX̃2diX̃1H̃

+ a4iLiX̃1diX̃2H̃ + a5iLdiX̃2iX̃1H̃ = 0

for any H̃, X̃1, X̃2 as above. Then

a1 = a2 = a3 = a4 = a5 = 0 ,

because the collection of operators D1, D2, D3, D4, D5 is linearly indepen-
dent for p = 1 and m = 3 and n ≥ 1, see [4].

So, the dimension argument ends the proof of our lemma. �

Lemma 3.9. Let m,n, p be fixed positive integers. Any VBm,n-gauge-natural
operator

C3 : Γl
(p+2∧

T ∗
)
 Lin2

(
Γl(T )× Γl

( p∧
T ∗
)
,Γl(T )

)
(not necessarily satisfying C3

0 = 0) is 0.

Proof. Using the invariance of C3 with respect to the fiber homotheties, we
get C3

tH(X, tω) = C3
H(X,ω) for any linear vector field X, any linear p-form

ω, any linear (p+ 2)-form H on a VBm,n-object E and any t > 0. Putting
t→ 0, we get C3

H(X,ω) = C3
0 (X, 0) = 0. So, C3 = 0. �

Lemma 3.10. Let m,n, p be fixed positive integers. Any VBm,n-gauge-
natural operator

C4 : Γl
(p+2∧

T ∗
)
 Lin2

(
Γl(T )× Γl

( p∧
T ∗
)
,Γl
( p∧

T ∗
))

such that C4
0 = 0 is 0.

Proof. Using the invariance of C4 with respect to the fiber homotheties,
we get C4

tH(X, tω) = tC4
H(X,ω) for any linear vector field X, any linear

p-form ω, any linear (p + 2)-form H on a VBm,n-object E and any t > 0.
Then C4

tH(X,ω) = C4
H(X,ω). Putting t→ 0, we get C4

H(X,ω) = C4
0 (X,ω).

Then (by the assumption C4
0 = 0), C4

H(X,ω) = 0. So, C4 = 0. �
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Lemma 3.11. Let m,n, p be fixed positive integers. Any VBm,n-gauge-
natural operator

C5 : Γl
(p+2∧

T ∗
)
 Lin2

(
Γl
( p∧

T ∗
)
× Γl(T ),Γl(T )

)
(not necessarily satisfying C5

0 = 0) is 0.

Proof. It is sufficient to apply Lemma 3.9 for C3
H(X,ω) := C5

H(ω,X). �

Lemma 3.12. Let m,n, p be fixed positive integers. Any VBm,n-gauge-
natural operator

C6 : Γl
(p+2∧

T ∗
)
 Lin2

(
Γl
( p∧

T ∗
)
× Γl(T ),Γl

( p∧
T ∗
))

such that C6
0 = 0 is 0.

Proof. It is sufficient to apply Lemma 3.10 for C4
H(X,ω) := C6

H(ω,X). �

Lemma 3.13. Let m,n, p be fixed positive integers. Any VBm,n-gauge-
natural operator

C7 : Γl
(p+2∧

T ∗
)
 Lin2

(
Γl
( p∧

T ∗
)
× Γl

( p∧
T ∗
)
,Γl(T )

)
(not necessarily satisfying C7

0 = 0) is 0.

Proof. Using the invariance of C7 with respect to the fiber homotheties,
we get C7

tH(tω, tω1) = C3
H(ω, ω1) for any linear p-forms ω and ω1, any linear

(p+ 2)-form H on a VBm,n-object E and any t > 0. Putting t→ 0, we get
C7
H(ω, ω1) = C7

0 (0, 0) = 0. So, C7 = 0. �

Lemma 3.14. Let m,n, p be fixed positive integers. Any VBm,n-gauge-
natural operator

C8 : Γl
(p+2∧

T ∗
)
 Lin2

(
Γl
( p∧

T ∗
)
× Γl

( p∧
T ∗
)
,Γl
( p∧

T ∗
))

(not necessarily satisfying C8
0 = 0) is 0.

Proof. Using the invariance of C8 with respect to the fiber homotheties, we
get C8

tH(tω, tω1) = tC8
H(ω, ω1) for any linear p-forms ω and ω1, any linear

(p + 2)-form H on a VBm,n-object E and any t > 0. Then C8
tH(ω, tω1) =

C8
H(ω, ω1). Putting t→0, we get C8

H(ω, ω1) = C8
0 (ω, 0) = 0. So, C8= 0. �
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4. The generalized twisted D-C brackets with the Jacobi identity
in Leibniz form.

Definition 4.1. Let C be a VBm,n-gauge-natural operator in the sense of
Definition 3.1. We say that C is a generalized twisted Dorfman–Courant
bracket if it satisfies the initial condition C0 = [[−,−]]0, where [[−,−]]H is
the usual twisted (H-twisted) Dorfman–Courant bracket as in Example 3.3.

As an immediate consequence of Theorem 3.6, we get

Lemma 4.2. Let m, n ≥ 1 and p ≥ 1 be natural numbers such that m ≥
p+ 2. Any generalized twisted Dorfman–Courant bracket C is of the form

(17)

CH(X1 ⊕ ω1, X2 ⊕ ω2) = [X1, X2]⊕ {LX1ω2 − iX2dω1+

+ c1iX1iX2H + c2iLiX1iX2dH

+ c3iLiX2diX1H + c4iLiX1diX2H

+ c5iLdiX2iX1H}

for any H ∈ ΓlE(
∧p+2 T ∗E), any X1 ⊕ ω1, X2 ⊕ ω2 ∈ ΓlE(TE ⊕

∧p T ∗E)
and any VBm,n-object E, where c1, c2, c3, c4, c5 are (uniquely determined by
C) real numbers.

Definition 4.3. A VBm,n-gauge-natural operator C in the sense of Def-
inition 3.1 satisfies the Jacobi identity in Leibniz form for closed linear
(p+ 2)-forms if

(18) CH(ρ1, CH(ρ2, ρ3)) = CH(CH(ρ1, ρ2), ρ3) + CH(ρ2, CH(ρ1, ρ3))

for all closed linear (p + 2)-forms H ∈ ΓlE(
∧p+2 T ∗E), all linear sections

ρi = Xi ⊕ ωi ∈ ΓlE(TE ⊕
∧p T ∗E) for i = 1, 2, 3 and all VBm,n-objects E.

Lemma 4.4. Let C be a generalized twisted Dorfman–Courant bracket of
the form (17). If C satisfies the Jacobi identity in Leibniz form for closed
linear (p+ 2)-forms, then

(19)

c3LX1iLiX3diX2H + c4LX1iLiX2diX3H

+ c5LX1iLdiX3iX2H + c3iLi[X2,X3]diX1H

+ c4iLiX1di[X2,X3]H + c5iLdi[X2,X3]iX1H

= −c3iX3diLiX2diX1H − c4iX3diLiX1diX2H

− c5iX3diLdiX2iX1H + c3iLiX3di[X1,X2]H

+ c4iLi[X1,X2]diX3H + c5iLdiX3di[X1,X2]H

+ c3LX2iLiX3diX1H + c4LX2iLiX1diX3H

+ c5LX2iLdiX3iX1H + c3iLi[X1,X3]diX2H

+ c4iLiX2di[X1,X3]H + c5iLdi[X1,X3]iX2H

for any linear vector fields X1, X2, X3 and any closed linear (p + 2)-form
H on Rm,n.
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Proof. For any linear vector fields X1, X2, X3 and any closed linear (p+2)-
form H on E, we can write

CH(X1 ⊕ 0, CH(X2 ⊕ 0, X3 ⊕ 0)) = [X1, [X2, X3]]⊕ Ω ,

CH(CH(X1 ⊕ 0, X2 ⊕ 0), X3 ⊕ 0) = [[X1, X2], X3]⊕Θ ,

CH(X2 ⊕ 0, CH(X1 ⊕ 0, X3 ⊕ 0)) = [X2, [X1, X3]]⊕ T ,

where

Ω = c1LX1iX2iX3H + c3LX1iLiX3diX2H

+ c4LX1iLiX2diX3H + c5LX1iLdiX3iX2H

+ c1iX1i[X2,X3]H + c3iLi[X2,X3]diX1H

+ c4iLiX1di[X2,X3]H + c5iLdi[X2,X3]iX1H ,

Θ = − c1iX3diX1iX2H − c3iX3diLiX2diX1H

− c4iX3diLiX1diX2H − c5iX3diLdiX2iX1H

+ c1i[X1,X2]iX3H + c3iLiX3di[X1,X2]H

+ c4iLi[X1,X2]diX3H + c5iLdiX3di[X1,X2]H ,

T = c1LX2iX1iX3H + c3LX2iLiX3diX1H

+ c4LX2iLiX1diX3H + c5LX2iLdiX3iX1H

+ c1iX2i[X1,X3]H + c3iLi[X1,X3]diX2H

+ c4iLiX2di[X1,X3]H + c5iLdi[X1,X3]iX2H .

Since C satisfies the Jacobi identity in Leibniz form for closed linear
(p+ 2)-forms,

Ω = Θ + T .
Moreover, the (usual) twisted Dorfman–Courant bracket satisfies the Jacobi
identity in Leibniz form for closed linear (p+ 2)-forms. Indeed, the (usual)
twisted Dorfman–Courant bracket is the restriction of the twisted Courant
bracket (which satisfies the Jacobi identity in Leibniz form for closed (p+2)-
forms, see [3]). So, we have Ω = Θ + T in the case c3 = c4 = c5 = 0, too.
So, we have (19). �

Lemma 4.5. Let C be a generalized twisted Dorfman–Courant bracket of
the form (17). Let m,n ≥ 1 and p ≥ 1 be such that m ≥ p + 3. If C
satisfies the Jacobi identity in Leibniz form for closed linear (p+ 2)-forms,
then c3 = c4 = c5 = 0.

Proof. Let ω̃o := dx3 ∧ . . .∧ dxp+1 if p ≥ 2 (then ω̃o is well defined because
m ≥ p+ 1 ≥ 3) and ω̃o := 1 if p = 1. Putting linear vector fields X1 = ∂

∂x1
,

X2 = ∂
∂x2

and X3 = L and the closed linear (p + 2)-form H := x1dx1 ∧
dx2 ∧ dy1 ∧ ω̃o into (19), we get
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c3 · 0 + c4 · (y1dx1 ∧ ω̃o) + c5 · (y1dx1 ∧ ω̃o)
+ c3 · 0 + c4 · 0 + c5 · 0
= −c3 · y1dx1 ∧ ω̃o − c4 · 0− c5 · (−y1dx1 ∧ ω̃o)

+ c3 · 0 + c4 · 0 + c5 · 0 + c3 · 0 + c4 · 0
+ c5 · 0 + c3 · 0 + c4 · 0 + c5 · 0 .

Hence c3 = −c4.
Similarly, let ω̃o be as above. Putting linear vector fields X1 = x2 ∂

∂x1
,

X2 = ∂
∂x2

, X3 = L and the closed linear (p+2)-form H := dx1∧dx2∧dy1∧ω̃o
into (19), we get

c3 · 0 + c4 · y1dx2 ∧ ω̃o + c5 · y1dx2 ∧ ω̃o
+ c3 · 0 + c4 · 0 + c5 · 0
= −c3 · 0− c4 · 0− c5 · (−y1dx2 ∧ ω̃o)

+ c3 · 0 + c4 · y1dx2 ∧ ω̃o + c5 · 0
+ c3 · 0 + c4 · (−y1dx2 ∧ ω̃o) + c5 · (−y1dx2 ∧ ω̃o)
+ c3 · 0 + c4 · 0 + c5 · 0 .

Hence c4 = −c5.
Now, let ω̃o := dx5 ∧ . . .∧ dxp+3 if p ≥ 2 (then ω̃o is well defined because

m ≥ p+ 3 ≥ 5), and ω̃o := 1 if p = 1. Putting linear vector fields X1 = ∂
∂x1

,
X2 = x1 ∂

∂x2
, X3 = ∂

∂x3
and the closed linear (p + 2)-form H := d(x2x4) ∧

dx3 ∧ dy1 ∧ ω̃o (H is well defined because m ≥ p+ 3 ≥ 4) into (19), we get

c3 · y1dx4 ∧ ω̃o + c4 · 0 + c5 · (−y1dx4 ∧ ω̃o)
+ c3 · 0 + c4 · 0 + c5 · 0
= −c3 · 0− c4 · (y1dx4 ∧ ω̃o + x4dy1 ∧ ω̃o)− c5 · 0

+ c3 · y1dx4 ∧ ω̃o + c4 · 0 + c5 · 0
+ c3 · 0 + c4 · 0 + c5 · 0
+ c3 · 0 + c4 · 0 + c5 · 0 .

Hence c4 = 0.
Consequently, c3 = c4 = c5 = 0, as well. �

Thus we have proved

Theorem 4.6. Let m, n ≥ 1 and p ≥ 1 be such that m ≥ p+ 3. Any gen-
eralized twisted Dorfman–Courant bracket C satisfying the Jacobi identity
in Leibniz form for closed linear (p+ 2)-forms is of the form

(20)
CH(X1 ⊕ ω1, X2 ⊕ ω2) = [X1, X2]⊕ {LX1ω2 − iX2dω1

+ c1iX1iX2H + c2iLiX1iX2dH}
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for any H ∈ ΓlE(
∧p+2 T ∗E), any X1 ⊕ ω1, X2 ⊕ ω2 ∈ ΓlE(TE ⊕

∧p T ∗E)
and any VBm,n-object E, where c1, c2 are (uniquely determined by C) real
numbers.

Given c1, c2 ∈ R, the generalized twisted Dorfman–Courant bracket C of
the form (20) satisfies the Jacobi identity in Leibniz form for closed linear
(p+ 2)-forms.

The above theorem implies immediately Theorem 1.2.
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