doi: 10.17951/a.2022.76.1.31-46

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXXVI, NO. 1, 2022	SECTIO A	31 - 46
-------------------------	----------	---------

JAN KUREK and WŁODZIMIERZ M. MIKULSKI

The twisted gauge-natural bilinear brackets on couples of linear vector fields and linear p-forms

ABSTRACT. We completely describe all gauge-natural operators C which send linear (p+2)-forms H on vector bundles E (with sufficiently large dimensional bases) into **R**-bilinear operators C_H transforming pairs $(X_1 \oplus \omega_1, X_2 \oplus \omega_2)$ of couples of linear vector fields and linear p-forms on E into couples $C_H(X_1 \oplus \omega_1, X_2 \oplus \omega_2)$ of linear vector fields and linear p-forms on E. Further, we extract all C (as above) such that C_0 is the restriction of the well-known Courant bracket and C_H satisfies the Jacobi identity in Leibniz form for all closed linear (p+2)-forms H.

1. Introduction. All manifolds considered in the paper are assumed to be Hausdorff, second countable, finite dimensional, without boundary, and smooth (of class C^{∞}). Maps between manifolds are assumed to be C^{∞} .

A vector field X on a vector bundle E is called linear if $\mathcal{L}_L X = 0$, where \mathcal{L} is the Lie derivative and L is the Euler vector field. A p-form ω on a vector bundle E is called linear if $\mathcal{L}_L \omega = \omega$. Let $\Gamma_E^l(TE \oplus \bigwedge^p T^*E)$ denote the space of couples $X \oplus \omega$ of linear vector fields X and linear p-forms ω on E.

²⁰¹⁰ Mathematics Subject Classification. 53A55, 53A45, 53A99.

Key words and phrases. Natural operator, linear vector field, linear p-form, Jacobi identity in Leibniz form.

Let $\mathcal{VB}_{m,n}$ be the category of *n*-rank vector bundles with *m*-dimensional bases and their vector bundle isomorphism onto images. A $\mathcal{VB}_{m,n}$ -gaugenatural operator

$$C: \Gamma^l \left(\bigwedge^{p+2} T^*\right) \rightsquigarrow Lin_2 \left(\Gamma^l \left(T \oplus \bigwedge^p T^* \right) \times \Gamma^l \left(T \oplus \bigwedge^p T^* \right), \Gamma^l \left(T \oplus \bigwedge^p T^* \right) \right)$$

sending linear (p+2)-forms $H \in \Gamma^l_E(\bigwedge^{p+2} T^*E)$ on $\mathcal{VB}_{m,n}$ -objects E into **R**-bilinear operators

$$C_H: \Gamma_E^l \left(TE \oplus \bigwedge^p T^*E \right) \times \Gamma_E^l \left(TE \oplus \bigwedge^p T^*E \right) \to \Gamma_E^l \left(TE \oplus \bigwedge^p T^*E \right)$$

is a $\mathcal{VB}_{m,n}$ -invariant family of regular operators (functions)

$$C: \Gamma_E^l \left(\bigwedge^{p+2} T^*E\right) \rightarrow Lin_2 \left(\Gamma_E^l \left(TE \oplus \bigwedge^p T^*E\right) \times \Gamma_E^l \left(TE \oplus \bigwedge^p T^*E\right), \Gamma_E^l \left(TE \oplus \bigwedge^p T^*E\right)\right)$$

for all $\mathcal{VB}_{m,n}$ -objects E, where $Lin_2(U \times V, W)$ denotes the vector space of all bilinear (over **R**) functions $U \times V \to W$ for any real vector spaces U, V, W.

The first main result of the article is the following theorem.

Theorem 1.1. Let $m, p \ge 1$ and $n \ge 1$ be fixed integers such that $m \ge p+2$. Any $\mathcal{VB}_{m,n}$ -gauge-natural operator

$$C: \Gamma^l \left(\bigwedge^{p+2} T^*\right) \rightsquigarrow Lin_2 \left(\Gamma^l \left(T \oplus \bigwedge^p T^*\right) \times \Gamma^l \left(T \oplus \bigwedge^p T^*\right), \Gamma^l \left(T \oplus \bigwedge^p T^*\right)\right)$$

is of the form

is of the form

(1)

$$C_{H}(\rho^{1},\rho^{2}) = a[X^{1},X^{2}] \oplus \{b_{1}\mathcal{L}_{X^{1}}\omega^{2} + b_{2}\mathcal{L}_{X^{2}}\omega^{1} + b_{3}di_{X^{1}}\omega^{2} + b_{4}di_{X^{2}}\omega^{1} + b_{5}\mathcal{L}_{X^{1}}di_{L}\omega^{2} + b_{6}\mathcal{L}_{X^{2}}di_{L}\omega^{1} + c_{1}i_{X^{1}}i_{X^{2}}H + c_{2}i_{L}i_{X^{1}}i_{X^{2}}dH + c_{3}i_{L}i_{X^{2}}di_{X^{1}}H + c_{4}i_{L}i_{X^{1}}di_{X^{2}}H + c_{5}i_{L}di_{X^{2}}i_{X^{1}}H\}$$

for arbitrary (uniquely determined by C) reals $a, b_1, b_2, b_3, b_4, b_5, b_6, c_1, c_2, c_3, c_4, c_5, where <math>\rho^i = X^i \oplus \omega^i \in \Gamma^l_E(TE \oplus \bigwedge^p T^*E), H \in \Gamma^l_E(\bigwedge^{p+2} T^*E), and$ where [-, -] is the usual bracket on vector fields, \mathcal{L} is the Lie derivative, d is the exterior derivative, i is the insertion derivative and L is the Euler vector field.

A $\mathcal{VB}_{m,n}$ -gauge-natural operator C as above satisfies the Jacobi identity in Leibniz form for closed linear (p+2)-forms if

(2)
$$C_H(\rho^1, C_H(\rho^2, \rho^3)) = C_H(C_H(\rho^1, \rho^2), \rho^3) + C_H(\rho^2, C_H(\rho^1, \rho^3))$$

for all closed linear (p+2)-forms $H \in \Gamma_E^l(\bigwedge^{p+2} T^*E)$ and all linear sections $\rho^i = X^i \oplus \omega^i \in \Gamma^l_E(TE \oplus \bigwedge^p T^*E)$ for i = 1, 2, 3 and all $\mathcal{VB}_{m,n}$ -objects E. For example, the twisted Dorfman–Courant bracket given by

(3) $[[X^1 \oplus \omega^1, X^2 \oplus \omega^2]]_H := [X^1, X^2] \oplus \{\mathcal{L}_{X^1}\omega^2 - i_{X^2}d\omega^1 + i_{X^1}i_{X^2}H\}$

is a gauge-natural operator in question satisfying the Jacobi identity in Leibniz form for closed linear (p+2)-forms.

The second main result of the article is the following theorem.

Theorem 1.2. If additionally $m \ge p+3$, then any gauge-natural operator C as above satisfying the Jacobi identity in Leibniz form for closed linear (p+2)-forms and the initial condition $C_0 = [[-, -]]_0$ satisfies the equality

(4)
$$C_H(X^1 \oplus \omega^1, X^2 \oplus \omega^2) = [[X^1 \oplus \omega^1, X^2 \oplus \omega^2]]_{cH}$$

for any closed linear (p+2)-form $H \in \Gamma_E^l(\bigwedge^{p+2} T^*E)$ and any $X^1 \oplus \omega^1, X^2 \oplus \omega^2$ $\omega^2 \in \Gamma^l_E(TE \oplus \bigwedge^p T^*E)$, where $[[-, -]]_H$ is the (above) twisted (H-twisted) Dorfman-Courant bracket and c is an arbitrary (uniquely determined by C) real number.

Theorems 1.1 and 1.2 for p = 1 are proved in [4].

From now on, let $\mathbf{R}^{m,n}$ be the trivial vector bundle over \mathbf{R}^m with the standard fibre \mathbf{R}^n and let $x^1, \ldots, x^m, y^1, \ldots, y^n$ be the usual coordinates on $\mathbf{R}^{m,n}$.

2. The gauge-natural bilinear brackets on couples of linear vector fields and linear *p*-forms. Let m, n, p be positive integers.

Let $E = (E \to M)$ be a vector bundle from $\mathcal{VB}_{m,n}$.

Applying the tangent and the cotangent functors, we obtain double vector bundles (TE; E, TM; M) and $(T^*E; E, E^*; M)$.

A vector field X on E is called linear if it is a vector bundle map X: $E \to TE$ between $E \to M$ and $TE \to TM$.

Equivalently, a vector field X on E is linear if it has an expression

$$X = \sum_{i=1}^{m} a^{i}(x^{1}, \dots, x^{m}) \frac{\partial}{\partial x^{i}} + \sum_{j,k=1}^{n} b^{k}_{j}(x^{1}, \dots, x^{m}) y^{j} \frac{\partial}{\partial y^{k}}$$

in any local vector bundle trivialization $x^1, \ldots, x^m, y^1, \ldots, y^n$ on E.

Equivalently, a vector field X on E is linear iff $\mathcal{L}_L X = 0$, where \mathcal{L} denotes the Lie derivative and L is the Euler vector field on E (in vector bundle coordinates $L = \sum_{j=1}^{n} y^j \frac{\partial}{\partial y^j}$.

Equivalently, a vector field X on E is linear if $(a_t)_*X = X$ for any t > 0, where $a_t: E \to E$ is the fibre-homothety by t.

A p-form ω on E is called linear if the induced vector bundle morphism

$$\omega^{\sharp}:\oplus^{k-1}TE\to T^*E$$

over the identity on E is also a vector bundle morphism over a map $\oplus^{k-1}TM \to E^*$ on the other side of the double vector bundle.

Equivalently, a *p*-form ω on *E* is linear if it has an expression

$$\omega = \sum a_{i_1,\dots,i_p,j}(x)y^j dx^{i_1} \wedge \dots \wedge dx^{i_p} + \sum b_{i_1,\dots,i_{p-1},j}(x)dy^j \wedge dx^{i_1} \wedge \dots \wedge dx^{i_{p-1}}$$

in any local vector bundle trivialization $x^1, \ldots, x^m, y^1, \ldots, y^n$ on E. Equivalently, a *p*-form ω on E is linear iff $\mathcal{L}_L \omega = \omega$.

Equivalently, a *p*-form ω on *E* is linear iff $(a_{\frac{1}{2}})_*\omega = t\omega$ for any t > 0.

We have the following definition being a modification of the general one from [1].

Definition 2.1. A $\mathcal{VB}_{m,n}$ -gauge-natural bilinear operator

$$A: \Gamma^l \left(T \oplus \bigwedge^p T^* \right) \times \Gamma^l \left(T \oplus \bigwedge^p T^* \right) \rightsquigarrow \Gamma^l \left(T \oplus \bigwedge^p T^* \right)$$

is a $\mathcal{VB}_{m,n}$ -invariant family of **R**-bilinear operators

$$A: \Gamma^l_E\left(TE \oplus \bigwedge^p T^*E\right) \times \Gamma^l_E\left(TE \oplus \bigwedge^p T^*E\right) \to \Gamma^l_E\left(TE \oplus \bigwedge^p T^*E\right)$$

for all $\mathcal{VB}_{m,n}$ -objects E, where $\Gamma^l_E(TE \oplus \bigwedge^p T^*E)$ is the vector space of linear sections of $TE \oplus \bigwedge^p T^*E$.

Remark 2.2. The $\mathcal{VB}_{m,n}$ -invariance of A means that if

$$(X^1 \oplus \omega^1, X^2 \oplus \omega^2) \in \Gamma^l_E \left(TE \oplus \bigwedge^p T^*E \right) \times \Gamma^l_E \left(TE \oplus \bigwedge^p T^*E \right)$$

and

$$(\overline{X}^1 \oplus \overline{\omega}^1, \overline{X}^2 \oplus \overline{\omega}^2) \in \Gamma^l_{\overline{E}} \left(T\overline{E} \oplus \bigwedge^p T^*\overline{E} \right) \times \Gamma^l_{\overline{E}} \left(T\overline{E} \oplus \bigwedge^p T^*\overline{E} \right)$$

are φ -related by an $\mathcal{VB}_{m,n}$ -map $\varphi : E \to \overline{E}$ (i.e., $\overline{X}^i \circ \varphi = T\varphi \circ X^i$ and $\overline{\omega}^i \circ \varphi = \bigwedge^p T^* \varphi \circ \omega^i$ for i = 1, 2), then so are $A(X^1 \oplus \omega^1, X^2 \oplus \omega^2)$ and $A(\overline{X}^1 \oplus \overline{\omega}^1, \overline{X}^2 \oplus \overline{\omega}^2)$.

In [2], we proved the following result.

Theorem 2.3. Let $m, n \ge 1$ and $p \ge 1$ be natural numbers such that $m \ge p+1$. Any $\mathcal{VB}_{m,n}$ -gauge-natural bilinear operator

$$A: \Gamma^l \left(T \oplus \bigwedge^p T^* \right) \times \Gamma^l \left(T \oplus \bigwedge^p T^* \right) \rightsquigarrow \Gamma^l \left(T \oplus \bigwedge^p T^* \right)$$

is of the form

(5)
$$A(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}) = a[X^{1}, X^{2}] \oplus \{b_{1}\mathcal{L}_{X^{1}}\omega^{2} + b_{2}\mathcal{L}_{X^{2}}\omega^{1} + b_{3}di_{X^{1}}\omega^{2} + b_{4}di_{X^{2}}\omega^{1} + b_{5}\mathcal{L}_{X^{1}}di_{L}\omega^{2} + b_{6}\mathcal{L}_{X^{2}}di_{L}\omega^{1}\}$$

for arbitrary (uniquely determined by A) real numbers $a, b_1, b_2, b_3, b_4, b_5, b_6$.

3. The twisted gauge-natural bilinear brackets on couples of linear vector fields and linear *p*-forms.

Definition 3.1. A $\mathcal{VB}_{m,n}$ -gauge-natural operator

$$C: \Gamma^l \left(\bigwedge^{p+2} T^*\right) \rightsquigarrow Lin_2 \left(\Gamma^l \left(T \oplus \bigwedge^p T^* \right) \times \Gamma^l \left(T \oplus \bigwedge^p T^* \right), \Gamma^l \left(T \oplus \bigwedge^p T^* \right) \right)$$

sending linear (p+2)-forms $H \in \Gamma^l_E(\bigwedge^{p+2} T^*E)$ on $\mathcal{VB}_{m,n}$ -objects E into **R**-bilinear operators

$$C_H: \Gamma_E^l \left(TE \oplus \bigwedge^p T^*E \right) \times \Gamma_E^l \left(TE \oplus \bigwedge^p T^*E \right) \to \Gamma_E^l \left(TE \oplus \bigwedge^p T^*E \right)$$

is a $\mathcal{VB}_{m,n}$ -invariant family of regular operators (functions)

$$C: \Gamma_E^l \left(\bigwedge^{p+2} T^*E\right) \rightarrow Lin_2 \left(\Gamma_E^l \left(TE \oplus \bigwedge^p T^*E\right) \times \Gamma_E^l \left(TE \oplus \bigwedge^p T^*E\right), \Gamma_E^l \left(TE \oplus \bigwedge^p T^*E\right)\right)$$

for all $\mathcal{VB}_{m,n}$ -objects E, where $Lin_2(U \times V, W)$ denotes the vector space of all bilinear (over **R**) functions $U \times V \to W$ for any real vector spaces U, V, W.

Remark 3.2. The invariance of C means that if $H \in \Gamma^l_E(\bigwedge^{p+2} T^*E)$ and $\tilde{H} \in \Gamma^l_{\tilde{E}}(\bigwedge^{p+2} T^*\tilde{E})$ are φ -related and

$$(X^1 \oplus \omega^1, X^2 \oplus \omega^2) \in \Gamma^l_E \left(TE \oplus \bigwedge^p T^*E \right) \times \Gamma^l_E \left(TE \oplus \bigwedge^p T^*E \right)$$

and

$$(\tilde{X}^1 \oplus \tilde{\omega}^1, \tilde{X}^2 \oplus \tilde{\omega}^2) \in \Gamma^l_{\tilde{E}} \left(T\tilde{E} \oplus \bigwedge^p T^*\tilde{E} \right) \times \Gamma^l_{\tilde{E}} \left(T\tilde{E} \oplus \bigwedge^p T^*\tilde{E} \right)$$

are also φ -related by a $\mathcal{VB}_{m,n}$ -map $\varphi: E \to \tilde{E}$, then so are $C_H(X^1 \oplus \omega^1, X^2 \oplus \omega^2)$ and $C_{\tilde{H}}(\tilde{X}^1 \oplus \tilde{\omega}^1, \tilde{X}^2 \oplus \tilde{\omega}^2)$.

The regularity of C means that C transforms smoothly parametrized families $(H_t, X_t^1 \oplus \omega_t^1, X_t^2 \oplus \omega_t^2)$ into smoothly parametrized families $C_{H_t}(X_t^1 \oplus \omega_t^1, X_t^2 \oplus \omega_t^2)$.

Example 3.3. The twisted Dorfman–Courant bracket

(6)
$$[[X^1 \oplus \omega^1, X^2 \oplus \omega^2]]_H := [X^1, X^2] \oplus \{\mathcal{L}_{X^1}\omega^2 - i_{X^2}d\omega^1 + i_{X^1}i_{X^2}H\}$$

is a gauge natural operator in the sense of Definition 3.1.

Remark 3.4. Quite similarly, one can introduce the concepts of $\mathcal{VB}_{m,n}$ gauge-natural operators

$$\begin{split} &\Gamma^{l}\left(\bigwedge^{p+2}T^{*}\right) \rightsquigarrow Lin_{2}(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}(T))\,, \\ &\Gamma^{l}\left(\bigwedge^{p+2}T^{*}\right) \rightsquigarrow Lin_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}\left(\bigwedge^{p}T^{*}\right)\right), \\ &\Gamma^{l}\left(\bigwedge^{p+2}T^{*}\right) \rightsquigarrow Lin_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}\left(\bigwedge^{p}T^{*}\right), \Gamma^{l}(T)\right), \\ &\vdots \\ &\Gamma^{l}\left(\bigwedge^{p+2}T^{*}\right) \rightsquigarrow Lin_{2}\left(\Gamma^{l}\left(\bigwedge^{p}T^{*}\right) \times \Gamma^{l}\left(\bigwedge^{p}T^{*}\right), \Gamma^{l}\left(\bigwedge^{p}T^{*}\right)\right). \end{split}$$

For example, a $\mathcal{VB}_{m,n}$ -gauge-natural operator

$$\Gamma^l\left(\bigwedge^{p+2}T^*\right) \rightsquigarrow Lin_2\left(\Gamma^l(T) \times \Gamma^l\left(\bigwedge^p T^*\right), \Gamma^l(T)\right)$$

is a $\mathcal{VB}_{m,n}$ -invariant family of regular operators (functions)

$$\Gamma_E^l \left(\bigwedge^{p+2} T^*E\right) \to Lin_2 \left(\Gamma_E^l(TE) \times \Gamma_E^l \left(\bigwedge^p T^*E\right), \Gamma_E^l(TE)\right)$$

for all $\mathcal{VB}_{m,n}$ -objects E.

Lemma 3.5. Any $\mathcal{VB}_{m,n}$ -gauge-natural operator C in the sense of Definition 3.1 can be considered (in the obvious way) as the system C = (C^1, C^2, \ldots, C^8) of $\mathcal{VB}_{m,n}$ -gauge natural operators

$$C^{1}: \Gamma^{l} \left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow Lin_{2}(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}(T)),$$

$$C^{2}: \Gamma^{l} \left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow Lin_{2} \left(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l} \left(\bigwedge^{p} T^{*}\right)\right),$$

$$\vdots$$

$$C^{8}: \Gamma^{l} \left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow Lin_{2} \left(\Gamma^{l} \left(\bigwedge^{p} T^{*}\right) \times \Gamma^{l} \left(\bigwedge^{p} T^{*}\right), \Gamma^{l} \left(\bigwedge^{p} T^{*}\right)\right).$$
bof. The lemma is obvious. \Box

Proof. The lemma is obvious.

We prove the following theorem corresponding to Theorem 1.1.

Theorem 3.6. Let $m, p \ge 1$ and $n \ge 1$ be fixed integers such that $m \ge p+2$. Any $\mathcal{VB}_{m,n}$ -gauge-natural operator C in the sense of Definition 3.1 is of the form

(7)

$$C_{H}(\rho^{1},\rho^{2}) = a[X^{1},X^{2}] \oplus \{b_{1}\mathcal{L}_{X^{1}}\omega^{2} + b_{2}\mathcal{L}_{X^{2}}\omega^{1} + b_{3}di_{X^{1}}\omega^{2} + b_{4}di_{X^{2}}\omega^{1} + b_{5}\mathcal{L}_{X^{1}}di_{L}\omega^{2} + b_{6}\mathcal{L}_{X^{2}}di_{L}\omega^{1} + c_{1}i_{X^{1}}i_{X^{2}}H + c_{2}i_{L}i_{X^{1}}i_{X^{2}}dH + c_{3}i_{L}i_{X^{2}}di_{X^{1}}H + c_{4}i_{L}i_{X^{1}}di_{X^{2}}H + c_{5}i_{L}di_{X^{2}}i_{X^{1}}H\}$$

for arbitrary (uniquely determined by C) reals $a, b_1, b_2, b_3, b_4, b_5, b_6, c_1, c_2, c_3, c_4, c_5$, where $\rho^i = X^i \oplus \omega^i \in \Gamma^l_E(TE \oplus \bigwedge^p T^*E), H \in \Gamma^l_E(\bigwedge^{p+2} T^*E).$

Proof. For p = 1, our theorem is the main result of [4]. So, Theorem 3.6 for p = 1 holds. So we may assume that $p \ge 2$.

Consider a $\mathcal{VB}_{m,n}$ -gauge-natural operator C in the sense of Definition 3.1. We can easily see that C_0 is a $\mathcal{VB}_{m,n}$ -gauge-natural bilinear operator in the sense of Definition 2.1. Hence, replacing C by $C-C_0$ and using Theorem 2.3, we may assume that

$$C_0 = 0$$
.

So, because of Lemma 3.5, our theorem is an immediate consequence of Lemmas 3.7–3.14, below. $\hfill \Box$

Lemma 3.7. Let m, n, p be fixed positive integers. Any $\mathcal{VB}_{m,n}$ -gauge-natural operator

$$C^1: \Gamma^l\left(\bigwedge^{p+2}T^*\right) \rightsquigarrow Lin_2(\Gamma^l(T) \times \Gamma^l(T), \Gamma^l(T))$$

such that $C_0^1 = 0$ is 0.

Proof. Using the invariance of C^1 with respect to the fiber homotheties, we get $C_{tH}^1(X, X_1) = C_H^1(X, X_1)$ for any linear vector fields X and X_1 and any linear (p+2)-form H on a $\mathcal{VB}_{m,n}$ -object E and any t > 0. Putting $t \to 0$, we get $C_H^1(X, X_1) = C_0^1(X, X_1)$. Then (by $C_0^1 = 0$) $C_H^1(X, X_1) = 0$. So, $C^1 = 0$.

Lemma 3.8. Let $m, p \ge 2$ and $n \ge 1$ be fixed integers such that $m \ge p+2$. Any $\mathcal{VB}_{m,n}$ -gauge-natural operator

$$C^{2}: \Gamma^{l}\left(\bigwedge^{p+2}T^{*}\right) \rightsquigarrow Lin_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}\left(\bigwedge^{p}T^{*}\right)\right)$$

such that $C_0^2 = 0$ is of the form

(8)
$$C_{H}^{2}(X^{1}, X^{2}) = c_{1}i_{X^{1}}i_{X^{2}}H + c_{2}i_{L}i_{X^{1}}i_{X^{2}}dH + c_{3}i_{L}i_{X^{2}}di_{X^{1}}H + c_{4}i_{L}i_{X^{1}}di_{X^{2}}H + c_{5}i_{L}di_{X^{2}}i_{X^{1}}H$$

for arbitrary (uniquely determined by C^2) reals c_1, c_2, c_3, c_4, c_5 , where $X^1, X^2 \in \Gamma^l_E(TE)$ and $H \in \Gamma^l_E(\bigwedge^{p+2} T^*E)$.

Proof. Consider arbitrary linear (p+2)-forms H and H and linear vector fields X, \tilde{X}, X_1 and \tilde{X}_1 on $E = \mathbf{R}^{m,n}$.

By the non-linear Peetre theorem (Theorem 19.10 (for f = 0) in [1]), there is a positive integer r (independent of $H, \tilde{H}, X, \tilde{X}, X_1, \tilde{X}_1$) such that the conditions

$$j_0^r(H) = j_0^r(\tilde{H}), j_0^r(X) = j_0^r(\tilde{X}), j_0^r(X_1) = j_0^r(\tilde{X}_1) \quad (0 \in \mathbf{R}^m)$$

imply

$$j_0^0(C_{tH}^2(tX, tX_1)) = j_0^0(C_{t\tilde{H}}^2(t\tilde{X}, t\tilde{X}_1)) \quad (0 \in \mathbf{R}^m)$$

for a sufficiently small real number t > 0 (depending on $H, \tilde{H}, X, \tilde{X}, X_1, \tilde{X}_1$).

Further, using the invariance of C^2 with respect to the fiber homotheties, we get

(9)
$$C_{tH}^2(X, X_1) = tC_H^2(X, X_1)$$

for all t > 0. (Then $C_{tH}^2(tX, tX_1) = t^3 C_H^2(X, X_1)$ for all t > 0.) Then the conditions

$$j_0^r(H) = j_0^r(\tilde{H}), j_0^r(X) = j_0^r(\tilde{X}), j_0^r(X_1) = j_0^r(\tilde{X}_1)$$

imply

$$C_{H}^{2}(X, X_{1})|_{0} = C_{\tilde{H}}^{2}(\tilde{X}, \tilde{X}_{1})|_{0} \quad (0 \in \mathbf{R}^{m}).$$

Consequently, C^2 is of finite order r. Then $C^2_H(X, X_1)$ is linear in H because of (9) and the homogeneous function theorem.

It is obvious that C^2 is determined by the values

(10)
$$i_{X_3} \dots i_{X_{p+2}} C^2_H(X_1, X_2)|_u \in \mathbf{R}$$

for all points $u \in \mathbf{R}_0^{m,n}$, all vectors $X_3, \ldots, X_{p+2} \in T_u \mathbf{R}^{m,n}$, all linear vector fields X_1 and X_2 and all linear (p+2)-forms H on $\mathbf{R}^{m,n}$, where i is the insertion derivative.

Using the 3-linearity of C^2 , we can assume that the underlined vector field \underline{X}_2 of X_2 is of the form $\underline{X}_2 = fY$ for some "constant" vector field Y on \mathbf{R}^m and some $f: \mathbf{R}^m \to \mathbf{R}$. We can also assume that $u \neq 0$ and

$$T\pi \circ X_{1|u}, Y_{|0}, T\pi(X_3), \dots, T\pi(X_{p+2})$$

are linearly independent (here we use $m \ge p+2$), where π is the bundle projection of $E = \mathbf{R}^{m,n}$. Then, using the $\mathcal{VB}_{m,n}$ -invariance of C^2 , the 3linearity of C^2 and the vector bundle version of the Frobenius theorem, we can write

(11)
$$u = e_1 = (1, 0, \dots, 0) \in \mathbf{R}^n = \mathbf{R}_0^{m, n},$$

$$H = x^{\alpha} y^k dx^{i_1} \wedge \ldots \wedge dx^{i_{p+2}}$$
 or $H = x^{\alpha} dy^k \wedge dx^{j_1} \wedge \ldots \wedge dx^{j_{p+1}}$

(12)
$$X_1 = \frac{\partial}{\partial x^1}$$

$$(X_2 = x^{\beta} \frac{\partial}{\partial x^2} \text{ or } X_2 = x^{\beta} y^k \frac{\partial}{\partial y^l})$$

and

(13)
$$X_3 = \frac{\partial}{\partial x^3}_{|u}, \dots, X_{p+2} = \frac{\partial}{\partial x^{p+2}}_{|u},$$

where $\alpha = (\alpha_1, \ldots, \alpha_m)$ and $\beta = (\beta_1, \ldots, \beta_m)$ are *m*-tuples of non-negative integers, i_1, \ldots, i_{p+2} are integers with $1 \leq i_1 < i_2 < \ldots < i_{p+2} \leq m$, j_1, \ldots, j_{p+1} are integers with $1 \leq j_1 < j_2 < \ldots < j_{p+1} \leq m$ and k, l are numbers from $\{1, \ldots, n\}$. Let us assume additionally that

(14)
$$i_{X_3} \dots i_{X_{p+2}} C^2_H(X_1, X_2)|_u \neq 0.$$

First we consider the case $H = x^{\alpha}y^k dx^{i_1} \wedge \ldots \wedge dx^{i_{p+2}}$ and $X_2 = x^{\beta} \frac{\partial}{\partial x^2}$. Then using the invariance of C^2 with respect to $(\tau_1 x^1, \ldots, \tau_m x^m, y^1, \ldots, y^n)$, we get the condition

$$\tau_1 \cdot \ldots \cdot \tau_{p+2} \cdot i_{X_3} \ldots i_{X_{p+2}} C_H^2(X_1, X_2)|_u = \tau^{\alpha} \cdot \tau^{\beta} \cdot \tau_{i_1} \cdot \ldots \cdot \tau_{i_{p+2}} \cdot i_{X_3} \ldots i_{X_{p+2}} C_H^2(X_1, X_2)|_u.$$

Then $\alpha = (0), \beta = (0), i_1 = 1$ and ... and $i_{p+2} = p + 2$, i.e.,

$$H = y^k dx^1 \wedge \ldots \wedge dx^{p+2}$$
 and $X_2 = \frac{\partial}{\partial x^2}$

Next, we consider the case $H = x^{\alpha} dy^k \wedge dx^{j_1} \wedge \ldots \wedge dx^{j_{p+1}}$ and $X_2 = x^{\beta} y^k \frac{\partial}{\partial y^l}$. Then (using similar arguments), we get

$$H = dy^k \wedge dx^1 \wedge dx^3 \wedge \ldots \wedge dx^{p+2} \text{ and } X_2 = y^k \frac{\partial}{\partial y^l}$$

Similarly, in the case $H = x^{\alpha} y^k dx^{i_1} \wedge \ldots \wedge dx^{i_{p+2}}$ and $X_2 = x^{\beta} y^k \frac{\partial}{\partial y^l}$, we get a contradiction with (14).

Similarly, in the case $H = x^{\alpha} dy^k \wedge dx^{j_1} \wedge \ldots \wedge dx^{j_{p+1}}$ and $X_2 = x^{\beta} \frac{\partial}{\partial x^2}$, we get

(15)
$$(H = x^i dy^k \wedge dx^1 \wedge \ldots \wedge \widehat{dx^i} \wedge \ldots \wedge dx^{p+2} \text{ and } X_2 = \frac{\partial}{\partial x^2})$$

or

(16)
$$(H = dy^k \wedge dx^1 \wedge \ldots \wedge \widehat{dx^i} \wedge \ldots \wedge dx^{p+2} \text{ and } X_2 = x^i \frac{\partial}{\partial x^2})$$

for some $i = 1, \ldots, p + 2$, where \hat{a} means that a is dropped. If $i = i_o \ge 4$, then using the invariance of C^2 when replacing x^3 by x^{i_o} (and vice-versa), we see that the value (10) for $i = i_o$ is equal (modulo signum) to the value (10) for $i_o = 3$. So, we can assume that i = 1, 2, 3.

Consequently, the operator C^2 is determined by the $\mathcal{VB}_{3,n}$ -gauge-natural operator

$$\tilde{C}^2: \Gamma^l\left(\bigwedge^3 T^*\right) \rightsquigarrow Lin_2(\Gamma^l(T) \times \Gamma^l(T), \Gamma^l(T^*))$$

given by

(

$$\tilde{C}^2_{\tilde{H}}(\tilde{X}_1, \tilde{X}_2) := j^* i_{Y_4} \dots i_{Y_{p+2}} C^2_{\tilde{H} \wedge \omega_o}(\tilde{X}_1 \times 0, \tilde{X}_2 \times 0),$$

 $\tilde{X}_1, \tilde{X}_2 \in \Gamma_{\tilde{E}}^l(T\tilde{E}), \tilde{H} \in \Gamma_{\tilde{E}}^l(\bigwedge^3 T^*\tilde{E})$, where \tilde{E} is a $\mathcal{VB}_{3,n}$ -object with base $\tilde{M}, x^4, \ldots, x^m$ are the usual coordinates on $\mathbf{R}^{m-3}, \omega_o := dx^4 \wedge \ldots \wedge dx^{p+2}$ (since $p \geq 2$, then $m \geq p+2 \geq 4$, and then ω_o is well defined), $Y_4 := \frac{\partial}{\partial x^4}$ and \ldots and $Y_{p+2} := \frac{\partial}{\partial x^{p+2}}$ are considered as linear vector fields on the $\mathcal{VB}_{m,n}$ -object $E := \tilde{E} \times \mathbf{R}^{m-3}$ with the base $\tilde{M} \times \mathbf{R}^{m-3}, j : \tilde{E} \to E$ is the inclusion $y \to (y, 0)$ and j^* denotes the pull-back with respect to j. Of course, $\tilde{C}_0^2 = 0$.

By Theorem 3.6 for p = 1 (which is proved in [4]), the vector space of all $\mathcal{VB}_{3,n}$ -gauge-natural operators

$$\tilde{C}: \Gamma^l\left(\bigwedge^3 T^*\right) \rightsquigarrow Lin_2(\Gamma^l(T) \times \Gamma^l(T), \Gamma^l(T^*))$$

with $\tilde{C}_0 = 0$ is of dimension ≤ 5 . Consequently, the vector space of all $\mathcal{VB}_{m,n}$ -gauge-natural operators

$$C^{2}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow Lin_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}\left(\bigwedge^{p} T^{*}\right)\right)$$

with $C_0^2 = 0$ is of dimension ≤ 5 .

On the other hand, the system of $\mathcal{VB}_{m,n}$ -gauge-natural operators

$$D^1, D^2, D^3, D^4, D^5: \Gamma^l\left(\bigwedge^{p+2}T^*\right) \rightsquigarrow Lin_2\left(\Gamma^l(T) \times \Gamma^l(T), \Gamma^l\left(\bigwedge^pT^*\right)\right)$$

defined by

$$\begin{split} D^1_H(X^1,X^2) &:= i_{X^1}i_{X^2}H \,, \\ D^2_H(X^1,X^2) &:= i_Li_{X^1}i_{X^2}dH \,, \\ D^3_H(X^1,X^2) &:= i_Li_{X^2}di_{X^1}H \,, \\ D^4_H(X^1,X^2) &:= i_Li_{X^1}di_{X^2}H \,, \\ D^5_H(X^1,X^2) &:= i_Ldi_{X^2}i_{X^1}H \end{split}$$

is linearly independent. Indeed, if

$$a^{1}D^{1} + a^{2}D^{2} + a^{3}D^{3} + a^{4}D^{4} + a^{5}D^{5} = 0,$$

then (in particular)

$$a^{1}i_{X^{1}}i_{X^{2}}H + a^{2}i_{L}i_{X^{1}}i_{X^{2}}dH + a^{3}i_{L}i_{X^{2}}di_{X^{1}}H + a^{4}i_{L}i_{X^{1}}di_{X^{2}}H + a^{5}i_{L}di_{X^{2}}i_{X^{1}}H = 0$$

for any linear 3-form \tilde{H} and any linear vector fields \tilde{X}^1, \tilde{X}^2 on $\mathbf{R}^{3,n}$, where $H = \tilde{H} \wedge \omega_o \in \Gamma^l_{\mathbf{R}^{m,n}}(\bigwedge^{p+2} T^* \mathbf{R}^{m,n})$ and $X^1 = \tilde{X}^1 \times 0, X^2 = \tilde{X}^2 \times 0 \in \Gamma^l_{\mathbf{R}^{m,n}}(T\mathbf{R}^{m,n})$ and ω_o is as above. Then

$$\begin{aligned} (a^1 i_{\tilde{X}^1} i_{\tilde{X}^2} \tilde{H} + a^2 i_L i_{\tilde{X}^1} i_{\tilde{X}^2} d\tilde{H} + a^3 i_L i_{\tilde{X}^2} di_{\tilde{X}^1} \tilde{H} \\ &+ a^4 i_L i_{\tilde{X}^1} di_{\tilde{X}^2} \tilde{H} + a^5 i_L di_{\tilde{X}^2} i_{\tilde{X}^1} \tilde{H}) \wedge \omega_o = 0 \end{aligned}$$

for any $\tilde{H}, \tilde{X}^1, \tilde{X}^2$ as above. Then

$$\begin{aligned} a^{1}i_{\tilde{X}^{1}}i_{\tilde{X}^{2}}\tilde{H} + a^{2}i_{L}i_{\tilde{X}^{1}}i_{\tilde{X}^{2}}d\tilde{H} + a^{3}i_{L}i_{\tilde{X}^{2}}di_{\tilde{X}^{1}}\tilde{H} \\ &+ a^{4}i_{L}i_{\tilde{X}^{1}}di_{\tilde{X}^{2}}\tilde{H} + a^{5}i_{L}di_{\tilde{X}^{2}}i_{\tilde{X}^{1}}\tilde{H} = 0 \end{aligned}$$

for any $\tilde{H}, \tilde{X}^1, \tilde{X}^2$ as above. Then

$$a^1 = a^2 = a^3 = a^4 = a^5 = 0$$

because the collection of operators D^1 , D^2 , D^3 , D^4 , D^5 is linearly independent for p = 1 and m = 3 and $n \ge 1$, see [4].

So, the dimension argument ends the proof of our lemma.

Lemma 3.9. Let m, n, p be fixed positive integers. Any $\mathcal{VB}_{m,n}$ -gauge-natural operator

$$C^{3}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow Lin_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}\left(\bigwedge^{p} T^{*}\right), \Gamma^{l}(T)\right)$$

(not necessarily satisfying $C_0^3 = 0$) is 0.

Proof. Using the invariance of C^3 with respect to the fiber homotheties, we get $C^3_{tH}(X, t\omega) = C^3_H(X, \omega)$ for any linear vector field X, any linear p-form ω , any linear (p+2)-form H on a $\mathcal{VB}_{m,n}$ -object E and any t > 0. Putting $t \to 0$, we get $C^3_H(X, \omega) = C^3_0(X, 0) = 0$. So, $C^3 = 0$.

Lemma 3.10. Let m, n, p be fixed positive integers. Any $\mathcal{VB}_{m,n}$ -gaugenatural operator

$$C^{4}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow Lin_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}\left(\bigwedge^{p} T^{*}\right), \Gamma^{l}\left(\bigwedge^{p} T^{*}\right)\right)$$

such that $C_0^4 = 0$ is 0.

Proof. Using the invariance of C^4 with respect to the fiber homotheties, we get $C_{tH}^4(X, t\omega) = tC_H^4(X, \omega)$ for any linear vector field X, any linear *p*-form ω , any linear (p+2)-form H on a $\mathcal{VB}_{m,n}$ -object E and any t > 0. Then $C_{tH}^4(X, \omega) = C_H^4(X, \omega)$. Putting $t \to 0$, we get $C_H^4(X, \omega) = C_0^4(X, \omega)$. Then (by the assumption $C_0^4 = 0$), $C_H^4(X, \omega) = 0$. So, $C^4 = 0$. **Lemma 3.11.** Let m, n, p be fixed positive integers. Any $\mathcal{VB}_{m,n}$ -gaugenatural operator

$$C^5: \Gamma^l\left(\bigwedge^{p+2} T^*\right) \rightsquigarrow Lin_2\left(\Gamma^l\left(\bigwedge^p T^*\right) \times \Gamma^l(T), \Gamma^l(T)\right)$$

(not necessarily satisfying $C_0^5 = 0$) is 0.

Proof. It is sufficient to apply Lemma 3.9 for $C^3_H(X, \omega) := C^5_H(\omega, X)$. \Box

Lemma 3.12. Let m, n, p be fixed positive integers. Any $\mathcal{VB}_{m,n}$ -gaugenatural operator

$$C^{6}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow Lin_{2}\left(\Gamma^{l}\left(\bigwedge^{p} T^{*}\right) \times \Gamma^{l}(T), \Gamma^{l}\left(\bigwedge^{p} T^{*}\right)\right)$$

such that $C_0^6 = 0$ is 0.

Proof. It is sufficient to apply Lemma 3.10 for $C^4_H(X, \omega) := C^6_H(\omega, X)$. \Box

Lemma 3.13. Let m, n, p be fixed positive integers. Any $\mathcal{VB}_{m,n}$ -gaugenatural operator

$$C^{7}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow Lin_{2}\left(\Gamma^{l}\left(\bigwedge^{p} T^{*}\right) \times \Gamma^{l}\left(\bigwedge^{p} T^{*}\right), \Gamma^{l}(T)\right)$$

(not necessarily satisfying $C_0^7 = 0$) is 0.

Proof. Using the invariance of C^7 with respect to the fiber homotheties, we get $C_{tH}^7(t\omega, t\omega^1) = C_H^3(\omega, \omega^1)$ for any linear *p*-forms ω and ω^1 , any linear (p+2)-form H on a $\mathcal{VB}_{m,n}$ -object E and any t > 0. Putting $t \to 0$, we get $C_H^7(\omega, \omega^1) = C_0^7(0, 0) = 0$. So, $C^7 = 0$.

Lemma 3.14. Let m, n, p be fixed positive integers. Any $\mathcal{VB}_{m,n}$ -gaugenatural operator

$$C^8: \Gamma^l\left(\bigwedge^{p+2} T^*\right) \rightsquigarrow Lin_2\left(\Gamma^l\left(\bigwedge^p T^*\right) \times \Gamma^l\left(\bigwedge^p T^*\right), \Gamma^l\left(\bigwedge^p T^*\right)\right)$$

(not necessarily satisfying $C_0^8 = 0$) is 0.

Proof. Using the invariance of C^8 with respect to the fiber homotheties, we get $C_{tH}^8(t\omega, t\omega_1) = tC_H^8(\omega, \omega_1)$ for any linear *p*-forms ω and ω_1 , any linear (p+2)-form *H* on a $\mathcal{VB}_{m,n}$ -object *E* and any t > 0. Then $C_{tH}^8(\omega, t\omega_1) = C_H^8(\omega, \omega_1)$. Putting $t \to 0$, we get $C_H^8(\omega, \omega_1) = C_0^8(\omega, 0) = 0$. So, $C^8 = 0$. \Box

4. The generalized twisted D-C brackets with the Jacobi identity in Leibniz form.

Definition 4.1. Let *C* be a $\mathcal{VB}_{m,n}$ -gauge-natural operator in the sense of Definition 3.1. We say that *C* is a generalized twisted Dorfman–Courant bracket if it satisfies the initial condition $C_0 = [[-, -]]_0$, where $[[-, -]]_H$ is the usual twisted (*H*-twisted) Dorfman–Courant bracket as in Example 3.3.

As an immediate consequence of Theorem 3.6, we get

Lemma 4.2. Let $m, n \ge 1$ and $p \ge 1$ be natural numbers such that $m \ge p+2$. Any generalized twisted Dorfman–Courant bracket C is of the form

(17)

$$C_{H}(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}) = [X^{1}, X^{2}] \oplus \{\mathcal{L}_{X^{1}}\omega^{2} - i_{X^{2}}d\omega^{1} + c_{1}i_{X^{1}}i_{X^{2}}H + c_{2}i_{L}i_{X^{1}}i_{X^{2}}dH + c_{3}i_{L}i_{X^{2}}di_{X^{1}}H + c_{4}i_{L}i_{X^{1}}di_{X^{2}}H + c_{5}i_{L}di_{X^{2}}i_{X^{1}}H\}$$

for any $H \in \Gamma^l_E(\bigwedge^{p+2} T^*E)$, any $X^1 \oplus \omega^1, X^2 \oplus \omega^2 \in \Gamma^l_E(TE \oplus \bigwedge^p T^*E)$ and any $\mathcal{VB}_{m,n}$ -object E, where c_1, c_2, c_3, c_4, c_5 are (uniquely determined by C) real numbers.

Definition 4.3. A $\mathcal{VB}_{m,n}$ -gauge-natural operator C in the sense of Definition 3.1 satisfies the Jacobi identity in Leibniz form for closed linear (p+2)-forms if

(18)
$$C_H(\rho^1, C_H(\rho^2, \rho^3)) = C_H(C_H(\rho^1, \rho^2), \rho^3) + C_H(\rho^2, C_H(\rho^1, \rho^3))$$

for all closed linear (p+2)-forms $H \in \Gamma^l_E(\bigwedge^{p+2} T^*E)$, all linear sections $\rho^i = X^i \oplus \omega^i \in \Gamma^l_E(TE \oplus \bigwedge^p T^*E)$ for i = 1, 2, 3 and all $\mathcal{VB}_{m,n}$ -objects E.

Lemma 4.4. Let C be a generalized twisted Dorfman-Courant bracket of the form (17). If C satisfies the Jacobi identity in Leibniz form for closed linear (p + 2)-forms, then

$$(19) \begin{aligned} c_{3}\mathcal{L}_{X^{1}i_{L}i_{X^{3}}di_{X^{2}}H + c_{4}\mathcal{L}_{X^{1}i_{L}i_{X^{2}}di_{X^{3}}H} \\ &+ c_{5}\mathcal{L}_{X^{1}i_{L}di_{X^{3}}i_{X^{2}}H + c_{3}i_{L}i_{[X^{2},X^{3}]}di_{X^{1}}H \\ &+ c_{4}i_{L}i_{X^{1}}di_{[X^{2},X^{3}]}H + c_{5}i_{L}di_{[X^{2},X^{3}]}i_{X^{1}}H \\ &= -c_{3}i_{X^{3}}di_{L}i_{X^{2}}di_{X^{1}}H - c_{4}i_{X^{3}}di_{L}i_{X^{1}}di_{X^{2}}H \\ &- c_{5}i_{X^{3}}di_{L}di_{X^{2}}i_{X^{1}}H + c_{3}i_{L}i_{X^{3}}di_{[X^{1},X^{2}]}H \\ &+ c_{4}i_{L}i_{[X^{1},X^{2}]}di_{X^{3}}H + c_{5}i_{L}di_{X^{3}}di_{[X^{1},X^{2}]}H \\ &+ c_{3}\mathcal{L}_{X^{2}}i_{L}i_{X^{3}}di_{X^{1}}H + c_{4}\mathcal{L}_{X^{2}}i_{L}i_{X^{1}}di_{X^{3}}H \\ &+ c_{5}\mathcal{L}_{X^{2}}i_{L}di_{X^{3}}i_{X^{1}}H + c_{5}i_{L}di_{[X^{1},X^{3}]}di_{X^{2}}H \\ &+ c_{4}i_{L}i_{X^{2}}di_{[X^{1},X^{3}]}H + c_{5}i_{L}di_{[X^{1},X^{3}]}i_{X^{2}}H \end{aligned}$$

for any linear vector fields X^1, X^2, X^3 and any closed linear (p+2)-form H on $\mathbf{R}^{m,n}$.

Proof. For any linear vector fields X^1, X^2, X^3 and any closed linear (p+2)-form H on E, we can write

$$C_H(X^1 \oplus 0, C_H(X^2 \oplus 0, X^3 \oplus 0)) = [X^1, [X^2, X^3]] \oplus \Omega,$$

$$C_H(C_H(X^1 \oplus 0, X^2 \oplus 0), X^3 \oplus 0) = [[X^1, X^2], X^3] \oplus \Theta,$$

$$C_H(X^2 \oplus 0, C_H(X^1 \oplus 0, X^3 \oplus 0)) = [X^2, [X^1, X^3]] \oplus \mathcal{T},$$

where

$$\begin{split} \Omega &= c_1 \mathcal{L}_{X^1} i_{X^2} i_{X^3} H + c_3 \mathcal{L}_{X^1} i_L i_{X^3} di_{X^2} H \\ &+ c_4 \mathcal{L}_{X^1} i_L i_{X^2} di_{X^3} H + c_5 \mathcal{L}_{X^1} i_L di_{X^3} i_{X^2} H \\ &+ c_1 i_{X^1} i_{[X^2, X^3]} H + c_3 i_L i_{[X^2, X^3]} di_{X^1} H \\ &+ c_4 i_L i_{X^1} di_{[X^2, X^3]} H + c_5 i_L di_{[X^2, X^3]} i_{X^1} H \,, \end{split}$$

$$\begin{split} \Theta &= -c_1 i_{X^3} di_{X^1} i_{X^2} H - c_3 i_{X^3} di_L i_{X^2} di_{X^1} H \\ &- c_4 i_{X^3} di_L i_{X^1} di_{X^2} H - c_5 i_{X^3} di_L di_{X^2} i_{X^1} H \\ &+ c_1 i_{[X^1, X^2]} i_{X^3} H + c_3 i_L i_{X^3} di_{[X^1, X^2]} H \\ &+ c_4 i_L i_{[X^1, X^2]} di_{X^3} H + c_5 i_L di_{X^3} di_{[X^1, X^2]} H \,, \end{split}$$

$$\begin{aligned} \mathcal{T} &= c_1 \mathcal{L}_{X^2} i_{X^1} i_{X^3} H + c_3 \mathcal{L}_{X^2} i_L i_{X^3} di_{X^1} H \\ &+ c_4 \mathcal{L}_{X^2} i_L i_{X^1} di_{X^3} H + c_5 \mathcal{L}_{X^2} i_L di_{X^3} i_{X^1} H \\ &+ c_1 i_{X^2} i_{[X^1, X^3]} H + c_3 i_L i_{[X^1, X^3]} di_{X^2} H \\ &+ c_4 i_L i_{X^2} di_{[X^1, X^3]} H + c_5 i_L di_{[X^1, X^3]} i_{X^2} H \,. \end{aligned}$$

Since C satisfies the Jacobi identity in Leibniz form for closed linear (p+2)-forms,

 $\Omega = \Theta + \mathcal{T}.$

Moreover, the (usual) twisted Dorfman–Courant bracket satisfies the Jacobi identity in Leibniz form for closed linear (p+2)-forms. Indeed, the (usual) twisted Dorfman–Courant bracket is the restriction of the twisted Courant bracket (which satisfies the Jacobi identity in Leibniz form for closed (p+2)-forms, see [3]). So, we have $\Omega = \Theta + \mathcal{T}$ in the case $c_3 = c_4 = c_5 = 0$, too. So, we have (19).

Lemma 4.5. Let C be a generalized twisted Dorfman-Courant bracket of the form (17). Let $m, n \ge 1$ and $p \ge 1$ be such that $m \ge p+3$. If C satisfies the Jacobi identity in Leibniz form for closed linear (p+2)-forms, then $c_3 = c_4 = c_5 = 0$.

Proof. Let $\tilde{\omega}_o := dx^3 \wedge \ldots \wedge dx^{p+1}$ if $p \ge 2$ (then $\tilde{\omega}_o$ is well defined because $m \ge p+1 \ge 3$) and $\tilde{\omega}_o := 1$ if p = 1. Putting linear vector fields $X^1 = \frac{\partial}{\partial x^1}$, $X^2 = \frac{\partial}{\partial x^2}$ and $X^3 = L$ and the closed linear (p+2)-form $H := x^1 dx^1 \wedge dx^2 \wedge dy^1 \wedge \tilde{\omega}_o$ into (19), we get

$$\begin{aligned} c_3 \cdot 0 + c_4 \cdot (y^1 dx^1 \wedge \tilde{\omega}_o) + c_5 \cdot (y^1 dx^1 \wedge \tilde{\omega}_o) \\ + c_3 \cdot 0 + c_4 \cdot 0 + c_5 \cdot 0 \\ = -c_3 \cdot y^1 dx^1 \wedge \tilde{\omega}_o - c_4 \cdot 0 - c_5 \cdot (-y^1 dx^1 \wedge \tilde{\omega}_o) \\ + c_3 \cdot 0 + c_4 \cdot 0 + c_5 \cdot 0 + c_3 \cdot 0 + c_4 \cdot 0 \\ + c_5 \cdot 0 + c_3 \cdot 0 + c_4 \cdot 0 + c_5 \cdot 0. \end{aligned}$$

Hence $c_3 = -c_4$.

Similarly, let $\tilde{\omega}_o$ be as above. Putting linear vector fields $X^1 = x^2 \frac{\partial}{\partial x^1}$, $X^2 = \frac{\partial}{\partial x^2}$, $X^3 = L$ and the closed linear (p+2)-form $H := dx^1 \wedge dx^2 \wedge dy^1 \wedge \tilde{\omega}_o$ into (19), we get

$$\begin{aligned} c_{3} \cdot 0 + c_{4} \cdot y^{1} dx^{2} \wedge \tilde{\omega}_{o} + c_{5} \cdot y^{1} dx^{2} \wedge \tilde{\omega}_{o} \\ + c_{3} \cdot 0 + c_{4} \cdot 0 + c_{5} \cdot 0 \\ &= -c_{3} \cdot 0 - c_{4} \cdot 0 - c_{5} \cdot (-y^{1} dx^{2} \wedge \tilde{\omega}_{o}) \\ + c_{3} \cdot 0 + c_{4} \cdot y^{1} dx^{2} \wedge \tilde{\omega}_{o} + c_{5} \cdot 0 \\ + c_{3} \cdot 0 + c_{4} \cdot (-y^{1} dx^{2} \wedge \tilde{\omega}_{o}) + c_{5} \cdot (-y^{1} dx^{2} \wedge \tilde{\omega}_{o}) \\ + c_{3} \cdot 0 + c_{4} \cdot 0 + c_{5} \cdot 0. \end{aligned}$$

Hence $c_4 = -c_5$.

Now, let $\tilde{\omega}_o := dx^5 \wedge \ldots \wedge dx^{p+3}$ if $p \ge 2$ (then $\tilde{\omega}_o$ is well defined because $m \ge p+3 \ge 5$), and $\tilde{\omega}_o := 1$ if p = 1. Putting linear vector fields $X^1 = \frac{\partial}{\partial x^1}$, $X^2 = x^1 \frac{\partial}{\partial x^2}$, $X^3 = \frac{\partial}{\partial x^3}$ and the closed linear (p+2)-form $H := d(x^2x^4) \wedge dx^3 \wedge dy^1 \wedge \tilde{\omega}_o$ (*H* is well defined because $m \ge p+3 \ge 4$) into (19), we get

$$\begin{aligned} c_3 \cdot y^1 dx^4 \wedge \tilde{\omega}_o + c_4 \cdot 0 + c_5 \cdot (-y^1 dx^4 \wedge \tilde{\omega}_o) \\ + c_3 \cdot 0 + c_4 \cdot 0 + c_5 \cdot 0 \\ = -c_3 \cdot 0 - c_4 \cdot (y^1 dx^4 \wedge \tilde{\omega}_o + x^4 dy^1 \wedge \tilde{\omega}_o) - c_5 \cdot 0 \\ + c_3 \cdot y^1 dx^4 \wedge \tilde{\omega}_o + c_4 \cdot 0 + c_5 \cdot 0 \\ + c_3 \cdot 0 + c_4 \cdot 0 + c_5 \cdot 0 \\ + c_3 \cdot 0 + c_4 \cdot 0 + c_5 \cdot 0 . \end{aligned}$$

Hence $c_4 = 0$.

Consequently, $c_3 = c_4 = c_5 = 0$, as well.

Thus we have proved

Theorem 4.6. Let $m, n \ge 1$ and $p \ge 1$ be such that $m \ge p+3$. Any generalized twisted Dorfman-Courant bracket C satisfying the Jacobi identity in Leibniz form for closed linear (p+2)-forms is of the form

(20)
$$C_H(X^1 \oplus \omega^1, X^2 \oplus \omega^2) = [X^1, X^2] \oplus \{\mathcal{L}_{X^1}\omega^2 - i_{X^2}d\omega^1 + c_1i_{X^1}i_{X^2}H + c_2i_Li_{X^1}i_{X^2}dH\}$$

for any $H \in \Gamma^l_E(\bigwedge^{p+2} T^*E)$, any $X^1 \oplus \omega^1, X^2 \oplus \omega^2 \in \Gamma^l_E(TE \oplus \bigwedge^p T^*E)$ and any $\mathcal{VB}_{m,n}$ -object E, where c_1, c_2 are (uniquely determined by C) real numbers.

Given $c_1, c_2 \in \mathbf{R}$, the generalized twisted Dorfman-Courant bracket C of the form (20) satisfies the Jacobi identity in Leibniz form for closed linear (p+2)-forms.

The above theorem implies immediately Theorem 1.2.

References

- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
- [2] Kurek, J., Mikulski, W. M., The gauge-natural bilinear brackets on couples of linear vector fields and linear p-forms, Ann. Univ. Mariae Curie-Skłodowska Sect. A 75(2) (2021), 73–92.
- [3] Mikulski, W. M., The natural operators similar to the twisted Courant bracket on couples of vector fields and p-forms, Filomat 44(12) (2020), 4071–4078.
- [4] Mikulski, W. M., On the gauge-natural operators similar to the twisted Dorfman-Courant bracket, Opuscula Math 41(2) (2021), 205–226.

Jan Kurek Institute of Mathematics Maria Curie-Skłodowska University Pl. Marii Curie-Skłodowskiej 1 20-031 Lublin Poland e-mail: kurek@hektor.umcs.lublin.pl

Włodzimierz M. Mikulski Institute of Mathematics Jagiellonian University ul. Łojasiewicza 6 30-348 Cracow Poland e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

Received February 7, 2022