ANNALES
UNIVERSITATIS MARIAE CURIE-SKもODOWSKA

The twisted gauge-natural bilinear brackets on couples of linear vector fields and linear \boldsymbol{p}-forms

Abstract

We completely describe all gauge-natural operators C which send linear ($p+2$)-forms H on vector bundles E (with sufficiently large dimensional bases) into \mathbf{R}-bilinear operators C_{H} transforming pairs $\left(X_{1} \oplus \omega_{1}, X_{2} \oplus \omega_{2}\right)$ of couples of linear vector fields and linear p-forms on E into couples $C_{H}\left(X_{1} \oplus\right.$ $\omega_{1}, X_{2} \oplus \omega_{2}$) of linear vector fields and linear p-forms on E. Further, we extract all C (as above) such that C_{0} is the restriction of the well-known Courant bracket and C_{H} satisfies the Jacobi identity in Leibniz form for all closed linear $(p+2)$-forms H.

1. Introduction. All manifolds considered in the paper are assumed to be Hausdorff, second countable, finite dimensional, without boundary, and smooth (of class \mathcal{C}^{∞}). Maps between manifolds are assumed to be \mathcal{C}^{∞}.

A vector field X on a vector bundle E is called linear if $\mathcal{L}_{L} X=0$, where \mathcal{L} is the Lie derivative and L is the Euler vector field. A p-form ω on a vector bundle E is called linear if $\mathcal{L}_{L} \omega=\omega$. Let $\Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right)$ denote the space of couples $X \oplus \omega$ of linear vector fields X and linear p-forms ω on E.

[^0]Let $\mathcal{V} \mathcal{B}_{m, n}$ be the category of n-rank vector bundles with m-dimensional bases and their vector bundle isomorphism onto images. A $\mathcal{V} \mathcal{B}_{m, n}$-gaugenatural operator
$C: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right) \times \Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right), \Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right)\right)$ sending linear $(p+2)$-forms $H \in \Gamma_{E}^{l}\left(\bigwedge^{p+2} T^{*} E\right)$ on $\mathcal{V} \mathcal{B}_{m, n}$-objects E into \mathbf{R}-bilinear operators

$$
C_{H}: \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right) \times \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right) \rightarrow \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right)
$$

is a $\mathcal{V} \mathcal{B}_{m, n}$-invariant family of regular operators (functions)
$C: \Gamma_{E}^{l}\left(\bigwedge^{p+2} T^{*} E\right)$
$\rightarrow \operatorname{Lin}_{2}\left(\Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right) \times \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right), \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right)\right)$
for all $\mathcal{V} \mathcal{B}_{m, n}$-objects E, where $\operatorname{Lin}_{2}(U \times V, W)$ denotes the vector space of all bilinear (over \mathbf{R}) functions $U \times V \rightarrow W$ for any real vector spaces U, V, W.

The first main result of the article is the following theorem.
Theorem 1.1. Let $m, p \geq 1$ and $n \geq 1$ be fixed integers such that $m \geq p+2$. Any $\mathcal{V B}_{m, n}$-gauge-natural operator
$C: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right) \times \Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right), \Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right)\right)$
is of the form

$$
\begin{align*}
C_{H}\left(\rho^{1}, \rho^{2}\right)= & a\left[X^{1}, X^{2}\right] \oplus\left\{b_{1} \mathcal{L}_{X^{1}} \omega^{2}+b_{2} \mathcal{L}_{X^{2}} \omega^{1}+b_{3} d i_{X^{1}} \omega^{2}\right. \\
& +b_{4} d i_{X^{2}} \omega^{1}+b_{5} \mathcal{L}_{X^{1}} d i_{L} \omega^{2}+b_{6} \mathcal{L}_{X^{2}} d i_{L} \omega^{1} \tag{1}\\
& +c_{1} i_{X^{1}} i_{X^{2}} H+c_{2} i_{L} i_{X^{1}} i_{X^{2}} d H+c_{3} i_{L} i_{X^{2}} d i_{X^{1}} H \\
& \left.+c_{4} i_{L} i_{X^{1}} d i_{X^{2}} H+c_{5} i_{L} d i_{X^{2}} i_{X^{1}} H\right\}
\end{align*}
$$

for arbitrary (uniquely determined by C) reals $a, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, c_{1}, c_{2}, c_{3}$, c_{4}, c_{5}, where $\rho^{i}=X^{i} \oplus \omega^{i} \in \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right), H \in \Gamma_{E}^{l}\left(\bigwedge^{p+2} T^{*} E\right)$, and where $[-,-]$ is the usual bracket on vector fields, \mathcal{L} is the Lie derivative, d is the exterior derivative, i is the insertion derivative and L is the Euler vector field.

A $\mathcal{V B}_{m, n}$-gauge-natural operator C as above satisfies the Jacobi identity in Leibniz form for closed linear $(p+2)$-forms if

$$
\begin{equation*}
C_{H}\left(\rho^{1}, C_{H}\left(\rho^{2}, \rho^{3}\right)\right)=C_{H}\left(C_{H}\left(\rho^{1}, \rho^{2}\right), \rho^{3}\right)+C_{H}\left(\rho^{2}, C_{H}\left(\rho^{1}, \rho^{3}\right)\right) \tag{2}
\end{equation*}
$$

for all closed linear $(p+2)$-forms $H \in \Gamma_{E}^{l}\left(\bigwedge^{p+2} T^{*} E\right)$ and all linear sections $\rho^{i}=X^{i} \oplus \omega^{i} \in \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right)$ for $i=1,2,3$ and all $\mathcal{V} \mathcal{B}_{m, n}$-objects E.

For example, the twisted Dorfman-Courant bracket given by
(3) $\left[\left[X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right]\right]_{H}:=\left[X^{1}, X^{2}\right] \oplus\left\{\mathcal{L}_{X^{1}} \omega^{2}-i_{X^{2}} d \omega^{1}+i_{X^{1}} i_{X^{2}} H\right\}$
is a gauge-natural operator in question satisfying the Jacobi identity in Leibniz form for closed linear $(p+2)$-forms.

The second main result of the article is the following theorem.
Theorem 1.2. If additionally $m \geq p+3$, then any gauge-natural operator C as above satisfying the Jacobi identity in Leibniz form for closed linear $(p+2)$-forms and the initial condition $C_{0}=[[-,-]]_{0}$ satisfies the equality

$$
\begin{equation*}
C_{H}\left(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right)=\left[\left[X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right]\right]_{c H} \tag{4}
\end{equation*}
$$

for any closed linear $(p+2)$-form $H \in \Gamma_{E}^{l}\left(\bigwedge^{p+2} T^{*} E\right)$ and any $X^{1} \oplus \omega^{1}, X^{2} \oplus$ $\omega^{2} \in \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right)$, where $[[-,-]]_{H}$ is the (above) twisted (H-twisted)
Dorfman-Courant bracket and c is an arbitrary (uniquely determined by C) real number.

Theorems 1.1 and 1.2 for $p=1$ are proved in [4].
From now on, let $\mathbf{R}^{m, n}$ be the trivial vector bundle over \mathbf{R}^{m} with the standard fibre \mathbf{R}^{n} and let $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{n}$ be the usual coordinates on $\mathbf{R}^{m, n}$.

2. The gauge-natural bilinear brackets on couples of linear vector

 fields and linear \boldsymbol{p}-forms. Let m, n, p be positive integers.Let $E=(E \rightarrow M)$ be a vector bundle from $\mathcal{V} \mathcal{B}_{m, n}$.
Applying the tangent and the cotangent functors, we obtain double vector bundles $(T E ; E, T M ; M)$ and $\left(T^{*} E ; E, E^{*} ; M\right)$.

A vector field X on E is called linear if it is a vector bundle map X : $E \rightarrow T E$ between $E \rightarrow M$ and $T E \rightarrow T M$.

Equivalently, a vector field X on E is linear if it has an expression

$$
X=\sum_{i=1}^{m} a^{i}\left(x^{1}, \ldots, x^{m}\right) \frac{\partial}{\partial x^{i}}+\sum_{j, k=1}^{n} b_{j}^{k}\left(x^{1}, \ldots, x^{m}\right) y^{j} \frac{\partial}{\partial y^{k}}
$$

in any local vector bundle trivialization $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{n}$ on E.
Equivalently, a vector field X on E is linear iff $\mathcal{L}_{L} X=0$, where \mathcal{L} denotes the Lie derivative and L is the Euler vector field on E (in vector bundle coordinates $\left.L=\sum_{j=1}^{n} y^{j} \frac{\partial}{\partial y^{j}}\right)$.

Equivalently, a vector field X on E is linear if $\left(a_{t}\right)_{*} X=X$ for any $t>0$, where $a_{t}: E \rightarrow E$ is the fibre-homothety by t.

A p-form ω on E is called linear if the induced vector bundle morphism

$$
\omega^{\sharp}: \oplus^{k-1} T E \rightarrow T^{*} E
$$

over the identity on E is also a vector bundle morphism over a map $\oplus^{k-1} T M$ $\rightarrow E^{*}$ on the other side of the double vector bundle.

Equivalently, a p-form ω on E is linear if it has an expression
$\omega=\sum a_{i_{1}, \ldots, i_{p}, j}(x) y^{j} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{p}}+\sum b_{i_{1}, \ldots, i_{p-1}, j}(x) d y^{j} \wedge d x^{i_{1}} \wedge \ldots \wedge d x^{i_{p-1}}$
in any local vector bundle trivialization $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{n}$ on E.
Equivalently, a p-form ω on E is linear iff $\mathcal{L}_{L} \omega=\omega$.
Equivalently, a p-form ω on E is linear iff $\left(a_{\frac{1}{t}}\right)_{*} \omega=t \omega$ for any $t>0$.
We have the following definition being a modification of the general one from [1].
Definition 2.1. A $\mathcal{V} \mathcal{B}_{m, n}$-gauge-natural bilinear operator

$$
A: \Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right) \times \Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right) \rightsquigarrow \Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right)
$$

is a $\mathcal{V} \mathcal{B}_{m, n}$-invariant family of \mathbf{R}-bilinear operators

$$
A: \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right) \times \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right) \rightarrow \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right)
$$

for all $\mathcal{V} \mathcal{B}_{m, n}$-objects E, where $\Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right)$ is the vector space of linear sections of $T E \oplus \bigwedge^{p} T^{*} E$.

Remark 2.2. The $\mathcal{V} \mathcal{B}_{m, n}$-invariance of A means that if

$$
\left(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right) \in \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right) \times \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right)
$$

and

$$
\left(\bar{X}^{1} \oplus \bar{\omega}^{1}, \bar{X}^{2} \oplus \bar{\omega}^{2}\right) \in \Gamma_{\bar{E}}^{l}\left(T \bar{E} \oplus \bigwedge^{p} T^{*} \bar{E}\right) \times \Gamma_{\bar{E}}^{l}\left(T \bar{E} \oplus \bigwedge^{p} T^{*} \bar{E}\right)
$$

are φ-related by an $\mathcal{V} \mathcal{B}_{m, n}$-map $\varphi: E \rightarrow \bar{E}$ (i.e., $\bar{X}^{i} \circ \varphi=T \varphi \circ X^{i}$ and $\bar{\omega}^{i} \circ \varphi=\bigwedge^{p} T^{*} \varphi \circ \omega^{i}$ for $\left.i=1,2\right)$, then so are $A\left(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right)$ and $A\left(\bar{X}^{1} \oplus \bar{\omega}^{1}, \bar{X}^{2} \oplus \bar{\omega}^{2}\right)$.

In [2], we proved the following result.
Theorem 2.3. Let $m, n \geq 1$ and $p \geq 1$ be natural numbers such that $m \geq p+1$. Any $\mathcal{V B}_{m, n}$-gauge-natural bilinear operator

$$
A: \Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right) \times \Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right) \rightsquigarrow \Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right)
$$

is of the form
(5)

$$
\begin{aligned}
A\left(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right)= & a\left[X^{1}, X^{2}\right] \oplus\left\{b_{1} \mathcal{L}_{X^{1}} \omega^{2}+b_{2} \mathcal{L}_{X^{2}} \omega^{1}+b_{3} d i_{X^{1}} \omega^{2}\right. \\
& \left.+b_{4} d i_{X^{2}} \omega^{1}+b_{5} \mathcal{L}_{X^{1}} d i_{L} \omega^{2}+b_{6} \mathcal{L}_{X^{2}} d i_{L} \omega^{1}\right\}
\end{aligned}
$$

for arbitrary (uniquely determined by A) real numbers $a, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}$.
3. The twisted gauge-natural bilinear brackets on couples of linear vector fields and linear \boldsymbol{p}-forms.

Definition 3.1. A $\mathcal{V} \mathcal{B}_{m, n}$-gauge-natural operator
$C: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right) \times \Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right), \Gamma^{l}\left(T \oplus \bigwedge^{p} T^{*}\right)\right)$
sending linear $(p+2)$-forms $H \in \Gamma_{E}^{l}\left(\bigwedge^{p+2} T^{*} E\right)$ on $\mathcal{V} \mathcal{B}_{m, n}$-objects E into R-bilinear operators

$$
C_{H}: \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right) \times \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right) \rightarrow \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right)
$$

is a $\mathcal{V} \mathcal{B}_{m, n}$-invariant family of regular operators (functions)
$C: \Gamma_{E}^{l}\left(\bigwedge^{p+2} T^{*} E\right)$
$\rightarrow \operatorname{Lin}_{2}\left(\Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right) \times \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right), \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right)\right)$
for all $\mathcal{V} \mathcal{B}_{m, n}$-objects E, where $\operatorname{Lin}_{2}(U \times V, W)$ denotes the vector space of all bilinear (over \mathbf{R}) functions $U \times V \rightarrow W$ for any real vector spaces U, V, W.
Remark 3.2. The invariance of C means that if $H \in \Gamma_{E}^{l}\left(\bigwedge^{p+2} T^{*} E\right)$ and $\tilde{H} \in \Gamma_{\tilde{E}}^{l}\left(\bigwedge^{p+2} T^{*} \tilde{E}\right)$ are φ-related and

$$
\left(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right) \in \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right) \times \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right)
$$

and

$$
\left(\tilde{X}^{1} \oplus \tilde{\omega}^{1}, \tilde{X}^{2} \oplus \tilde{\omega}^{2}\right) \in \Gamma_{\tilde{E}}^{l}\left(T \tilde{E} \oplus \bigwedge^{p} T^{*} \tilde{E}\right) \times \Gamma_{\tilde{E}}^{l}\left(T \tilde{E} \oplus \bigwedge^{p} T^{*} \tilde{E}\right)
$$

are also φ-related by a $\mathcal{V} \mathcal{B}_{m, n}$-map $\varphi: E \rightarrow \tilde{E}$, then so are $C_{H}\left(X^{1} \oplus \omega^{1}\right.$, $\left.X^{2} \oplus \omega^{2}\right)$ and $C_{\tilde{H}}\left(\tilde{X}^{1} \oplus \tilde{\omega}^{1}, \tilde{X}^{2} \oplus \tilde{\omega}^{2}\right)$.

The regularity of C means that C transforms smoothly parametrized families $\left(H_{t}, X_{t}^{1} \oplus \omega_{t}^{1}, X_{t}^{2} \oplus \omega_{t}^{2}\right)$ into smoothly parametrized families $C_{H_{t}}\left(X_{t}^{1} \oplus \omega_{t}^{1}\right.$, $\left.X_{t}^{2} \oplus \omega_{t}^{2}\right)$.

Example 3.3. The twisted Dorfman-Courant bracket

$$
\begin{equation*}
\left[\left[X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right]\right]_{H}:=\left[X^{1}, X^{2}\right] \oplus\left\{\mathcal{L}_{X^{1}} \omega^{2}-i_{X^{2}} d \omega^{1}+i_{X^{1}} i_{X^{2}} H\right\} \tag{6}
\end{equation*}
$$

is a gauge natural operator in the sense of Definition 3.1.

Remark 3.4. Quite similarly, one can introduce the concepts of $\mathcal{V} \mathcal{B}_{m, n^{-}}$ gauge-natural operators

$$
\begin{aligned}
& \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}(T)\right) \\
& \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}\left(\bigwedge^{p} T^{*}\right)\right), \\
& \Gamma^{l}\left(\bigwedge_{\bigwedge}^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}\left(\bigwedge^{p} T^{*}\right), \Gamma^{l}(T)\right), \\
& \vdots \\
& \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}\left(\bigwedge^{p} T^{*}\right) \times \Gamma^{l}\left(\bigwedge^{p} T^{*}\right), \Gamma^{l}\left(\bigwedge^{p} T^{*}\right)\right) .
\end{aligned}
$$

For example, a $\mathcal{V} \mathcal{B}_{m, n}$-gauge-natural operator

$$
\Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}\left(\bigwedge^{p} T^{*}\right), \Gamma^{l}(T)\right)
$$

is a $\mathcal{V} \mathcal{B}_{m, n}$-invariant family of regular operators (functions)

$$
\Gamma_{E}^{l}\left(\bigwedge^{p+2} T^{*} E\right) \rightarrow \operatorname{Lin}_{2}\left(\Gamma_{E}^{l}(T E) \times \Gamma_{E}^{l}\left(\bigwedge^{p} T^{*} E\right), \Gamma_{E}^{l}(T E)\right)
$$

for all $\mathcal{V} \mathcal{B}_{m, n}$-objects E.
Lemma 3.5. Any $\mathcal{V B}_{m, n}$-gauge-natural operator C in the sense of Definition 3.1 can be considered (in the obvious way) as the system $C=$ $\left(C^{1}, C^{2}, \ldots, C^{8}\right)$ of $\mathcal{V} \mathcal{B}_{m, n}$-gauge natural operators

$$
\begin{aligned}
& C^{1}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}(T)\right), \\
& C^{2}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}\left(\bigwedge^{p} T^{*}\right)\right), \\
& \vdots \\
& C^{8}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}\left(\bigwedge^{p} T^{*}\right) \times \Gamma^{l}\left(\bigwedge^{p} T^{*}\right), \Gamma^{l}\left(\bigwedge^{p} T^{*}\right)\right) .
\end{aligned}
$$

Proof. The lemma is obvious.
We prove the following theorem corresponding to Theorem 1.1.
Theorem 3.6. Let $m, p \geq 1$ and $n \geq 1$ be fixed integers such that $m \geq p+2$. Any $\mathcal{V B}_{m, n}$-gauge-natural operator C in the sense of Definition 3.1 is of the
form

$$
\begin{align*}
C_{H}\left(\rho^{1}, \rho^{2}\right)= & a\left[X^{1}, X^{2}\right] \oplus\left\{b_{1} \mathcal{L}_{X^{1}} \omega^{2}+b_{2} \mathcal{L}_{X^{2}} \omega^{1}+b_{3} d i_{X^{1}} \omega^{2}\right. \\
& +b_{4} d i_{X^{2}} \omega^{1}+b_{5} \mathcal{L}_{X^{1}} d i_{L} \omega^{2}+b_{6} \mathcal{L}_{X^{2}} d i_{L} \omega^{1} \\
& +c_{1} i_{X^{1} i_{X^{2}} H+c_{2} i_{L} i_{X^{1}} i_{X^{2}} d H+c_{3} i_{L} i_{X^{2}} d i_{X^{1}} H} \tag{7}\\
& \left.+c_{4} i_{L} i_{X^{1}} d i_{X^{2}} H+c_{5} i_{L} d i_{X^{2}} i_{X^{1}} H\right\}
\end{align*}
$$

for arbitrary (uniquely determined by C) reals $a, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, c_{1}, c_{2}, c_{3}$, c_{4}, c_{5}, where $\rho^{i}=X^{i} \oplus \omega^{i} \in \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right), H \in \Gamma_{E}^{l}\left(\bigwedge^{p+2} T^{*} E\right)$.

Proof. For $p=1$, our theorem is the main result of [4]. So, Theorem 3.6 for $p=1$ holds. So we may assume that $p \geq 2$.

Consider a $\mathcal{V} \mathcal{B}_{m, n}$-gauge-natural operator C in the sense of Definition 3.1. We can easily see that C_{0} is a $\mathcal{V} \mathcal{B}_{m, n}$-gauge-natural bilinear operator in the sense of Definition 2.1. Hence, replacing C by $C-C_{0}$ and using Theorem 2.3, we may assume that

$$
C_{0}=0
$$

So, because of Lemma 3.5, our theorem is an immediate consequence of Lemmas 3.7-3.14, below.

Lemma 3.7. Let m, n, p be fixed positive integers. Any $\mathcal{V} \mathcal{B}_{m, n}$-gauge-natural operator

$$
C^{1}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}(T)\right)
$$

such that $C_{0}^{1}=0$ is 0 .
Proof. Using the invariance of C^{1} with respect to the fiber homotheties, we get $C_{t H}^{1}\left(X, X_{1}\right)=C_{H}^{1}\left(X, X_{1}\right)$ for any linear vector fields X and X_{1} and any linear $(p+2)$-form H on a $\mathcal{V} \mathcal{B}_{m, n}$-object E and any $t>0$. Putting $t \rightarrow 0$, we get $C_{H}^{1}\left(X, X_{1}\right)=C_{0}^{1}\left(X, X_{1}\right)$. Then (by $\left.C_{0}^{1}=0\right) C_{H}^{1}\left(X, X_{1}\right)=0$. So, $C^{1}=0$.

Lemma 3.8. Let $m, p \geq 2$ and $n \geq 1$ be fixed integers such that $m \geq p+2$. Any $\mathcal{V} \mathcal{B}_{m, n}$-gauge-natural operator

$$
C^{2}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}\left(\bigwedge^{p} T^{*}\right)\right)
$$

such that $C_{0}^{2}=0$ is of the form

$$
\begin{align*}
C_{H}^{2}\left(X^{1}, X^{2}\right)= & c_{1} i_{X^{1}} i_{X^{2}} H+c_{2} i_{L} i_{X^{1}} i_{X^{2}} d H+c_{3} i_{L} i_{X^{2}} d i_{X^{1}} H \tag{8}\\
& +c_{4} i_{L} i_{X^{1}} d i_{X^{2}} H+c_{5} i_{L} d i_{X^{2}} i_{X^{1}} H
\end{align*}
$$

for arbitrary (uniquely determined by C^{2}) reals $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$, where X^{1}, X^{2} $\in \Gamma_{E}^{l}(T E)$ and $H \in \Gamma_{E}^{l}\left(\bigwedge^{p+2} T^{*} E\right)$.

Proof. Consider arbitrary linear $(p+2)$-forms H and \tilde{H} and linear vector fields X, \tilde{X}, X_{1} and \tilde{X}_{1} on $E=\mathbf{R}^{m, n}$.

By the non-linear Peetre theorem (Theorem 19.10 (for $f=0$) in [1]), there is a positive integer r (independent of $H, \tilde{H}, X, \tilde{X}, X_{1}, \tilde{X}_{1}$) such that the conditions

$$
j_{0}^{r}(H)=j_{0}^{r}(\tilde{H}), j_{0}^{r}(X)=j_{0}^{r}(\tilde{X}), j_{0}^{r}\left(X_{1}\right)=j_{0}^{r}\left(\tilde{X}_{1}\right) \quad\left(0 \in \mathbf{R}^{m}\right)
$$

imply

$$
j_{0}^{0}\left(C_{t H}^{2}\left(t X, t X_{1}\right)\right)=j_{0}^{0}\left(C_{t \tilde{H}}^{2}\left(t \tilde{X}, t \tilde{X}_{1}\right)\right) \quad\left(0 \in{\left.\underset{\sim}{\mathbf{R}^{m}}\right)}_{\tilde{\sim}^{m}}\right.
$$

for a sufficiently small real number $t>0$ (depending on $H, \tilde{H}, X, \tilde{X}, X_{1}, \tilde{X}_{1}$).
Further, using the invariance of C^{2} with respect to the fiber homotheties, we get

$$
\begin{equation*}
C_{t H}^{2}\left(X, X_{1}\right)=t C_{H}^{2}\left(X, X_{1}\right) \tag{9}
\end{equation*}
$$

for all $t>0$. (Then $C_{t H}^{2}\left(t X, t X_{1}\right)=t^{3} C_{H}^{2}\left(X, X_{1}\right)$ for all $t>0$.)
Then the conditions

$$
j_{0}^{r}(H)=j_{0}^{r}(\tilde{H}), j_{0}^{r}(X)=j_{0}^{r}(\tilde{X}), j_{0}^{r}\left(X_{1}\right)=j_{0}^{r}\left(\tilde{X}_{1}\right)
$$

imply

$$
C_{H}^{2}\left(X, X_{1}\right)_{\mid 0}=C_{\tilde{H}}^{2}\left(\tilde{X}, \tilde{X}_{1}\right)_{\mid 0}\left(0 \in \mathbf{R}^{m}\right)
$$

Consequently, C^{2} is of finite order r. Then $C_{H}^{2}\left(X, X_{1}\right)$ is linear in H because of (9) and the homogeneous function theorem.

It is obvious that C^{2} is determined by the values

$$
\begin{equation*}
i_{X_{3}} \ldots i_{X_{p+2}} C_{H}^{2}\left(X_{1}, X_{2}\right)_{\mid u} \in \mathbf{R} \tag{10}
\end{equation*}
$$

for all points $u \in \mathbf{R}_{0}^{m, n}$, all vectors $X_{3}, \ldots, X_{p+2} \in T_{u} \mathbf{R}^{m, n}$, all linear vector fields X_{1} and X_{2} and all linear $(p+2)$-forms H on $\mathbf{R}^{m, n}$, where i is the insertion derivative.

Using the 3 -linearity of C^{2}, we can assume that the underlined vector field \underline{X}_{2} of X_{2} is of the form $\underline{X}_{2}=f Y$ for some "constant" vector field Y on \mathbf{R}^{m} and some $f: \mathbf{R}^{m} \rightarrow \mathbf{R}$. We can also assume that $u \neq 0$ and

$$
T \pi \circ X_{1 \mid u}, Y_{\mid 0}, T \pi\left(X_{3}\right), \ldots, T \pi\left(X_{p+2}\right)
$$

are linearly independent (here we use $m \geq p+2$), where π is the bundle projection of $E=\mathbf{R}^{m, n}$. Then, using the $\mathcal{V} \mathcal{B}_{m, n}$-invariance of C^{2}, the 3linearity of C^{2} and the vector bundle version of the Frobenius theorem, we can write

$$
\begin{gather*}
u=e_{1}=(1,0, \ldots, 0) \in \mathbf{R}^{n}=\mathbf{R}_{0}^{m, n} \tag{11}\\
H=x^{\alpha} y^{k} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{p+2}} \text { or } H=x^{\alpha} d y^{k} \wedge d x^{j_{1}} \wedge \ldots \wedge d x^{j_{p+1}} \\
X_{1}=\frac{\partial}{\partial x^{1}}
\end{gather*}
$$

$$
\left(X_{2}=x^{\beta} \frac{\partial}{\partial x^{2}} \text { or } X_{2}=x^{\beta} y^{k} \frac{\partial}{\partial y^{l}}\right)
$$

and

$$
\begin{equation*}
X_{3}={\frac{\partial}{\partial x^{3}}{ }_{\mid u}, \ldots, X_{p+2}=\frac{\partial}{\partial x^{p+2}}{ }_{\mid u}, ~}_{\text {, }}, \tag{13}
\end{equation*}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)$ are m-tuples of non-negative integers, i_{1}, \ldots, i_{p+2} are integers with $1 \leq i_{1}<i_{2}<\ldots<i_{p+2} \leq m$, j_{1}, \ldots, j_{p+1} are integers with $1 \leq j_{1}<j_{2}<\ldots<j_{p+1} \leq m$ and k, l are numbers from $\{1, \ldots, n\}$. Let us assume additionally that

$$
\begin{equation*}
i_{X_{3}} \ldots i_{X_{p+2}} C_{H}^{2}\left(X_{1}, X_{2}\right)_{\mid u} \neq 0 . \tag{14}
\end{equation*}
$$

First we consider the case $H=x^{\alpha} y^{k} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{p+2}}$ and $X_{2}=x^{\beta} \frac{\partial}{\partial x^{2}}$. Then using the invariance of C^{2} with respect to $\left(\tau_{1} x^{1}, \ldots, \tau_{m} x^{m}, y^{1}, \ldots, y^{n}\right)$, we get the condition

$$
\begin{aligned}
& \tau_{1} \cdot \ldots \cdot \tau_{p+2} \cdot i_{X_{3}} \ldots i_{X_{p+2}} C_{H}^{2}\left(X_{1}, X_{2}\right)_{\mid u} \\
& \quad=\tau^{\alpha} \cdot \tau^{\beta} \cdot \tau_{i_{1}} \cdot \ldots \cdot \tau_{i p+2} \cdot i_{X_{3}} \ldots i_{X_{p+2}} C_{H}^{2}\left(X_{1}, X_{2}\right)_{\mid u} .
\end{aligned}
$$

Then $\alpha=(0), \beta=(0), i_{1}=1$ and \ldots and $i_{p+2}=p+2$, i.e.,

$$
H=y^{k} d x^{1} \wedge \ldots \wedge d x^{p+2} \text { and } X_{2}=\frac{\partial}{\partial x^{2}} .
$$

Next, we consider the case $H=x^{\alpha} d y^{k} \wedge d x^{j_{1}} \wedge \ldots \wedge d x^{j_{p+1}}$ and $X_{2}=x^{\beta} y^{k} \frac{\partial}{\partial y^{l}}$. Then (using similar arguments), we get

$$
H=d y^{k} \wedge d x^{1} \wedge d x^{3} \wedge \ldots \wedge d x^{p+2} \text { and } X_{2}=y^{k} \frac{\partial}{\partial y^{l}}
$$

Similarly, in the case $H=x^{\alpha} y^{k} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{p+2}}$ and $X_{2}=x^{\beta} y^{k} \frac{\partial}{\partial y}$, we get a contradiction with (14).

Similarly, in the case $H=x^{\alpha} d y^{k} \wedge d x^{j_{1}} \wedge \ldots \wedge d x^{j_{p+1}}$ and $X_{2}=x^{\beta} \frac{\partial}{\partial x^{2}}$, we get

$$
\begin{equation*}
\left(H=x^{i} d y^{k} \wedge d x^{1} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{p+2} \text { and } X_{2}=\frac{\partial}{\partial x^{2}}\right) \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(H=d y^{k} \wedge d x^{1} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{p+2} \text { and } X_{2}=x^{i} \frac{\partial}{\partial x^{2}}\right) \tag{16}
\end{equation*}
$$

for some $i=1, \ldots, p+2$, where \widehat{a} means that a is dropped. If $i=i_{o} \geq 4$, then using the invariance of C^{2} when replacing x^{3} by $x^{i_{o}}$ (and vice-versa), we see that the value (10) for $i=i_{o}$ is equal (modulo signum) to the value (10) for $i_{o}=3$. So, we can assume that $i=1,2,3$.

Consequently, the operator C^{2} is determined by the $\mathcal{V} \mathcal{B}_{3, n}$ - gauge-natural operator

$$
\tilde{C}^{2}: \Gamma^{l}\left(\bigwedge^{3} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}\left(T^{*}\right)\right)
$$

given by

$$
\tilde{C}_{\tilde{H}}^{2}\left(\tilde{X}_{1}, \tilde{X}_{2}\right):=j^{*} i_{Y_{4}} \ldots i_{Y_{p+2}} C_{\tilde{H} \wedge \omega_{o}}^{2}\left(\tilde{X}_{1} \times 0, \tilde{X}_{2} \times 0\right)
$$

$\tilde{X}_{1}, \tilde{X}_{2} \in \Gamma_{\tilde{E}}^{l}(T \tilde{E}), \tilde{H} \in \Gamma_{\tilde{E}}^{l}\left(\bigwedge^{3} T^{*} \tilde{E}\right)$, where \tilde{E} is a $\mathcal{V} \mathcal{B}_{3, n}$-object with base $\tilde{M}, x^{4}, \ldots, x^{m}$ are the usual coordinates on $\mathbf{R}^{m-3}, \omega_{o}:=d x^{4} \wedge \ldots \wedge d x^{p+2}$ (since $p \geq 2$, then $m \geq p+2 \geq 4$, and then ω_{o} is well defined), $Y_{4}:=\frac{\partial}{\partial x^{4}}$ and \ldots and $Y_{p+2}:=\frac{\partial}{\partial x^{p+2}}$ are considered as linear vector fields on the $\mathcal{V} \mathcal{B}_{m, n}$-object $E:=\tilde{E} \times \mathbf{R}^{m-3}$ with the base $\tilde{M} \times \mathbf{R}^{m-3}, j: \tilde{E} \rightarrow E$ is the inclusion $y \rightarrow(y, 0)$ and j^{*} denotes the pull-back with respect to j. Of course, $\tilde{C}_{0}^{2}=0$.

By Theorem 3.6 for $p=1$ (which is proved in [4]), the vector space of all $\mathcal{V B}_{3, n}$-gauge-natural operators

$$
\tilde{C}: \Gamma^{l}\left(\bigwedge^{3} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}\left(T^{*}\right)\right)
$$

with $\tilde{C}_{0}=0$ is of dimension ≤ 5. Consequently, the vector space of all $\mathcal{V} \mathcal{B}_{m, n}$-gauge-natural operators

$$
C^{2}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}\left(\bigwedge^{p} T^{*}\right)\right)
$$

with $C_{0}^{2}=0$ is of dimension ≤ 5.
On the other hand, the system of $\mathcal{V} \mathcal{B}_{m, n}$-gauge-natural operators

$$
D^{1}, D^{2}, D^{3}, D^{4}, D^{5}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}(T), \Gamma^{l}\left(\bigwedge^{p} T^{*}\right)\right)
$$

defined by

$$
\begin{aligned}
& D_{H}^{1}\left(X^{1}, X^{2}\right):=i_{X^{1}} i_{X^{2}} H \\
& D_{H}^{2}\left(X^{1}, X^{2}\right):=i_{L^{1}} i_{X^{1}} i_{X^{2}} d H \\
& D_{H}^{3}\left(X^{1}, X^{2}\right):=i_{L^{2}} i_{X^{2}} d i_{X^{1}} H \\
& D_{H}^{4}\left(X^{1}, X^{2}\right):=i_{L} i_{X^{1}} d i_{X^{2}} H \\
& D_{H}^{5}\left(X^{1}, X^{2}\right):=i_{L} d i_{X^{2}} i_{X^{1}} H
\end{aligned}
$$

is linearly independent. Indeed, if

$$
a^{1} D^{1}+a^{2} D^{2}+a^{3} D^{3}+a^{4} D^{4}+a^{5} D^{5}=0
$$

then (in particular)

$$
\begin{aligned}
a^{1} i_{X^{1}} i_{X^{2}} H & +a^{2} i_{L} i_{X^{1}} i_{X^{2}} d H+a^{3} i_{L} i_{X^{2}} d i_{X^{1}} H \\
& +a^{4} i_{L} i_{X^{1}} d i_{X^{2}} H+a^{5} i_{L} d i_{X^{2}} i_{X^{1}} H=0
\end{aligned}
$$

for any linear 3 -form \tilde{H} and any linear vector fields $\tilde{X}^{1}, \tilde{X}^{2}$ on $\mathbf{R}^{3, n}$, where $H=\tilde{H} \wedge \omega_{o} \in \Gamma_{\mathbf{R}^{m, n}}^{l}\left(\bigwedge^{p+2} T^{*} \mathbf{R}^{m, n}\right)$ and $X^{1}=\tilde{X}^{1} \times 0, X^{2}=\tilde{X}^{2} \times 0 \in$ $\Gamma_{\mathbf{R}^{m, n}}^{l}\left(T \mathbf{R}^{m, n}\right)$ and ω_{o} is as above. Then

$$
\begin{aligned}
\left(a^{1} i_{\tilde{X}^{1}} i_{\tilde{X}^{2}} \tilde{H}\right. & +a^{2} i_{L} i_{\tilde{X}^{1}} i_{\tilde{X}^{2}} d \tilde{H}+a^{3} i_{L} i_{\tilde{X}^{2}} d i_{\tilde{X}^{1}} \tilde{H} \\
& \left.+a^{4} i_{L} i_{\tilde{X}^{1}} d i_{\tilde{X}^{2}} \tilde{H}+a^{5} i_{L} d i_{\tilde{X}^{2}} i_{\tilde{X}^{1}} \tilde{H}\right) \wedge \omega_{o}=0
\end{aligned}
$$

for any $\tilde{H}, \tilde{X}^{1}, \tilde{X}^{2}$ as above. Then

$$
\begin{aligned}
a^{1} i_{\tilde{X}^{1}} i_{\tilde{X}^{2}} \tilde{H} & +a^{2} i_{L} i_{\tilde{X}^{1}} i_{\tilde{X}^{2}} d \tilde{H}+a^{3} i_{L} i_{\tilde{X}^{2}} d i_{\tilde{X}^{1}} \tilde{H} \\
& +a^{4} i_{L} i_{\tilde{X}^{1}} d i_{\tilde{X}^{2}} \tilde{H}+a^{5} i_{L} d i_{\tilde{X}^{2}} i_{\tilde{X}^{1}} \tilde{H}=0
\end{aligned}
$$

for any $\tilde{H}, \tilde{X}^{1}, \tilde{X}^{2}$ as above. Then

$$
a^{1}=a^{2}=a^{3}=a^{4}=a^{5}=0
$$

because the collection of operators $D^{1}, D^{2}, D^{3}, D^{4}, D^{5}$ is linearly independent for $p=1$ and $m=3$ and $n \geq 1$, see [4].

So, the dimension argument ends the proof of our lemma.
Lemma 3.9. Let m, n, p be fixed positive integers. Any $\mathcal{V} \mathcal{B}_{m, n}$-gauge-natural operator

$$
C^{3}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}\left(\bigwedge^{p} T^{*}\right), \Gamma^{l}(T)\right)
$$

(not necessarily satisfying $C_{0}^{3}=0$) is 0 .
Proof. Using the invariance of C^{3} with respect to the fiber homotheties, we get $C_{t H}^{3}(X, t \omega)=C_{H}^{3}(X, \omega)$ for any linear vector field X, any linear p-form ω, any linear $(p+2)$-form H on a $\mathcal{V} \mathcal{B}_{m, n}$-object E and any $t>0$. Putting $t \rightarrow 0$, we get $C_{H}^{3}(X, \omega)=C_{0}^{3}(X, 0)=0$. So, $C^{3}=0$.
Lemma 3.10. Let m, n, p be fixed positive integers. Any $\mathcal{V} \mathcal{B}_{m, n}$ - gaugenatural operator

$$
C^{4}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}(T) \times \Gamma^{l}\left(\bigwedge^{p} T^{*}\right), \Gamma^{l}\left(\bigwedge^{p} T^{*}\right)\right)
$$

such that $C_{0}^{4}=0$ is 0 .
Proof. Using the invariance of C^{4} with respect to the fiber homotheties, we get $C_{t H}^{4}(X, t \omega)=t C_{H}^{4}(X, \omega)$ for any linear vector field X, any linear p-form ω, any linear $(p+2)$-form H on a $\mathcal{V} \mathcal{B}_{m, n}$-object E and any $t>0$. Then $C_{t H}^{4}(X, \omega)=C_{H}^{4}(X, \omega)$. Putting $t \rightarrow 0$, we get $C_{H}^{4}(X, \omega)=C_{0}^{4}(X, \omega)$. Then (by the assumption $\left.C_{0}^{4}=0\right), C_{H}^{4}(X, \omega)=0$. So, $C^{4}=0$.

Lemma 3.11. Let m, n, p be fixed positive integers. Any $\mathcal{V B}_{m, n}$-gaugenatural operator

$$
C^{5}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}\left(\bigwedge^{p} T^{*}\right) \times \Gamma^{l}(T), \Gamma^{l}(T)\right)
$$

(not necessarily satisfying $C_{0}^{5}=0$) is 0 .
Proof. It is sufficient to apply Lemma 3.9 for $C_{H}^{3}(X, \omega):=C_{H}^{5}(\omega, X)$.
Lemma 3.12. Let m, n, p be fixed positive integers. Any $\mathcal{V B}_{m, n}$-gaugenatural operator

$$
C^{6}: \Gamma^{l}\left(\bigwedge_{\bigwedge}^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}\left(\bigwedge_{\bigwedge}^{p} T^{*}\right) \times \Gamma^{l}(T), \Gamma^{l}\left(\bigwedge^{p} T^{*}\right)\right)
$$

such that $C_{0}^{6}=0$ is 0 .
Proof. It is sufficient to apply Lemma 3.10 for $C_{H}^{4}(X, \omega):=C_{H}^{6}(\omega, X)$.
Lemma 3.13. Let m, n, p be fixed positive integers. Any $\mathcal{V} \mathcal{B}_{m, n}$-gaugenatural operator

$$
C^{7}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}\left(\bigwedge^{p} T^{*}\right) \times \Gamma^{l}\left(\bigwedge^{p} T^{*}\right), \Gamma^{l}(T)\right)
$$

(not necessarily satisfying $C_{0}^{7}=0$) is 0 .
Proof. Using the invariance of C^{7} with respect to the fiber homotheties, we get $C_{t H}^{7}\left(t \omega, t \omega^{1}\right)=C_{H}^{3}\left(\omega, \omega^{1}\right)$ for any linear p-forms ω and ω^{1}, any linear ($p+2$)-form H on a $\mathcal{V} \mathcal{B}_{m, n}$-object E and any $t>0$. Putting $t \rightarrow 0$, we get $C_{H}^{7}\left(\omega, \omega^{1}\right)=C_{0}^{7}(0,0)=0$. So, $C^{7}=0$.

Lemma 3.14. Let m, n, p be fixed positive integers. Any $\mathcal{V} \mathcal{B}_{m, n}$-gaugenatural operator

$$
C^{8}: \Gamma^{l}\left(\bigwedge^{p+2} T^{*}\right) \rightsquigarrow \operatorname{Lin}_{2}\left(\Gamma^{l}\left(\bigwedge^{p} T^{*}\right) \times \Gamma^{l}\left(\bigwedge^{p} T^{*}\right), \Gamma^{l}\left(\bigwedge^{p} T^{*}\right)\right)
$$

(not necessarily satisfying $C_{0}^{8}=0$) is 0 .
Proof. Using the invariance of C^{8} with respect to the fiber homotheties, we get $C_{t H}^{8}\left(t \omega, t \omega_{1}\right)=t C_{H}^{8}\left(\omega, \omega_{1}\right)$ for any linear p-forms ω and ω_{1}, any linear $(p+2)$-form H on a $\mathcal{V} \mathcal{B}_{m, n}$-object E and any $t>0$. Then $C_{t H}^{8}\left(\omega, t \omega_{1}\right)=$ $C_{H}^{8}\left(\omega, \omega_{1}\right)$. Putting $t \rightarrow 0$, we get $C_{H}^{8}\left(\omega, \omega_{1}\right)=C_{0}^{8}(\omega, 0)=0$. So, $C^{8}=0$.

4. The generalized twisted D-C brackets with the Jacobi identity in Leibniz form.

Definition 4.1. Let C be a $\mathcal{V} \mathcal{B}_{m, n}$-gauge-natural operator in the sense of Definition 3.1. We say that C is a generalized twisted Dorfman-Courant bracket if it satisfies the initial condition $C_{0}=[[-,-]]_{0}$, where $[[-,-]]_{H}$ is the usual twisted (H-twisted) Dorfman-Courant bracket as in Example 3.3.

As an immediate consequence of Theorem 3.6, we get
Lemma 4.2. Let $m, n \geq 1$ and $p \geq 1$ be natural numbers such that $m \geq$ $p+2$. Any generalized twisted Dorfman-Courant bracket C is of the form

$$
\begin{align*}
C_{H}\left(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right)= & {\left[X^{1}, X^{2}\right] \oplus\left\{\mathcal{L}_{X^{1}} \omega^{2}-i_{X^{2}} d \omega^{1}+\right.} \\
& +c_{1} i_{X^{1}} i_{X^{2}} H+c_{2} i_{L} i_{X^{1}} i_{X^{2}} d H \tag{17}\\
& +c_{3} i_{L} i_{X^{2}} d i_{X^{1}} H+c_{4} i_{L} i_{X^{1}} d i_{X^{2}} H \\
& \left.+c_{5} i_{L} d i_{X^{2}} i_{X^{1}} H\right\}
\end{align*}
$$

for any $H \in \Gamma_{E}^{l}\left(\bigwedge^{p+2} T^{*} E\right)$, any $X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2} \in \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right)$ and any $\mathcal{V B}_{m, n}$-object E, where $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ are (uniquely determined by C) real numbers.

Definition 4.3. A $\mathcal{V} \mathcal{B}_{m, n}$-gauge-natural operator C in the sense of Definition 3.1 satisfies the Jacobi identity in Leibniz form for closed linear ($p+2$)-forms if

$$
\begin{equation*}
C_{H}\left(\rho^{1}, C_{H}\left(\rho^{2}, \rho^{3}\right)\right)=C_{H}\left(C_{H}\left(\rho^{1}, \rho^{2}\right), \rho^{3}\right)+C_{H}\left(\rho^{2}, C_{H}\left(\rho^{1}, \rho^{3}\right)\right) \tag{18}
\end{equation*}
$$

for all closed linear $(p+2)$-forms $H \in \Gamma_{E}^{l}\left(\bigwedge^{p+2} T^{*} E\right)$, all linear sections $\rho^{i}=X^{i} \oplus \omega^{i} \in \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right)$ for $i=1,2,3$ and all $\mathcal{V} \mathcal{B}_{m, n}$-objects E.

Lemma 4.4. Let C be a generalized twisted Dorfman-Courant bracket of the form (17). If C satisfies the Jacobi identity in Leibniz form for closed linear $(p+2)$-forms, then

$$
\begin{align*}
& c_{3} \mathcal{L}_{X^{1}} i_{L} i_{X^{3}} d i_{X^{2}} H+c_{4} \mathcal{L}_{X^{1}} i_{L} i_{X^{2}} d i_{X^{3}} H \\
& +c_{5} \mathcal{L}_{X^{1}} i_{L} d i_{X^{3}} i_{X^{2}} H+c_{3} i_{L} i_{\left[X^{2}, X^{3}\right]} d i_{X^{1}} H \\
& +c_{4} i_{L} i_{X^{1}} d i_{\left[X^{2}, X^{3}\right]} H+c_{5} i_{L} d i_{\left[X^{2}, X^{3}\right]} i_{X^{1}} H \\
& =-c_{3} i_{X^{3}} d i_{L} i_{X^{2}} d i_{X^{1}} H-c_{4} i_{X^{3}} d i_{L} i_{X^{1}} d i_{X^{2}} H \\
& \quad-c_{5} i_{X^{3}} d i_{L} d i_{X^{2}} i_{X^{1}} H+c_{3} i_{L} i_{X^{3}} d i_{\left[X^{1}, X^{2}\right]} H \tag{19}\\
& \quad+c_{4} i_{L} i_{\left[X^{1}, X^{2}\right]} d i_{X^{3}} H+c_{5} i_{L} d i_{X^{3}} d i_{\left[X^{1}, X^{2}\right]} H \\
& \quad+c_{3} \mathcal{L}_{X^{2}} i_{L} i_{X^{3}} d i_{X^{1}} H+c_{4} \mathcal{L}_{X^{2}} i_{L} i_{X^{1}} d i_{X^{3}} H \\
& \quad+c_{5} \mathcal{L}_{X^{2}} i_{L} d i_{X^{3}} i_{X^{1}} H+c_{3} i_{L} i_{\left[X^{1}, X^{3}\right]} d i_{X^{2}} H \\
& \quad+c_{4} i_{L} i_{X^{2}} d i_{\left[X^{1}, X^{3}\right.} i_{X^{2}} H
\end{align*}
$$

for any linear vector fields X^{1}, X^{2}, X^{3} and any closed linear $(p+2)$-form H on $\mathbf{R}^{m, n}$.

Proof. For any linear vector fields X^{1}, X^{2}, X^{3} and any closed linear ($p+2$)form H on E, we can write

$$
\begin{aligned}
& C_{H}\left(X^{1} \oplus 0, C_{H}\left(X^{2} \oplus 0, X^{3} \oplus 0\right)\right)=\left[X^{1},\left[X^{2}, X^{3}\right]\right] \oplus \Omega, \\
& C_{H}\left(C_{H}\left(X^{1} \oplus 0, X^{2} \oplus 0\right), X^{3} \oplus 0\right)=\left[\left[X^{1}, X^{2}\right], X^{3}\right] \oplus \Theta, \\
& C_{H}\left(X^{2} \oplus 0, C_{H}\left(X^{1} \oplus 0, X^{3} \oplus 0\right)\right)=\left[X^{2},\left[X^{1}, X^{3}\right]\right] \oplus \mathcal{T},
\end{aligned}
$$

where

$$
\begin{aligned}
\Omega= & c_{1} \mathcal{L}_{X^{1}} i_{X^{2}} i_{X^{3}} H+c_{3} \mathcal{L}_{X^{1}} i_{L} i_{X^{3}} d i_{X^{2}} H \\
& +c_{4} \mathcal{L}_{X^{1}} i_{L} i_{X^{2}} d i_{X^{3}} H+c_{5} \mathcal{L}_{X^{1}} i_{L} d i_{X^{3}} i_{X^{2}} H \\
& +c_{1} i_{X^{1}} i_{\left[X^{2}, X^{3}\right]} H+c_{3} i_{L} i_{\left[X^{2}, X^{3}\right]} d i_{X^{1}} H \\
& +c_{4} i_{L} i_{X^{1}} i_{\left[X^{2}, X^{3}\right]} H+c_{5} i_{L} d i_{\left[X^{2}, X^{3}\right]} i_{X^{1}} H, \\
= & -c_{1} i_{X^{3}} d i_{X^{1}} i_{X^{2}} H-c_{3} i_{X^{3}} d i_{L} i_{X^{2}} d i_{X^{1}} H \\
& -c_{4} i_{X^{3}} d i_{L} i_{X^{1}} d i_{X^{2}} H-c_{5} i_{X^{3}} d i_{L} d i_{X^{2}} i_{X^{1}} H \\
& +c_{1} i_{\left[X^{1}, X^{2}\right] i^{3}} H+c_{3} i_{L} i_{X^{3}} d i_{\left[X^{1}, X^{2}\right]} H \\
& +c_{4} i_{L} i_{\left[X^{1}, X^{2}\right]} d i_{X^{3}} H+c_{5} i_{L} d i_{X^{3}} d i_{\left[X^{1}, X^{2}\right]} H, \\
= & c_{1} \mathcal{L}_{X^{2}} i_{X^{1}} i_{X^{3}} H+c_{3} \mathcal{L}_{X^{2}} i_{L} i_{X^{3}} d i_{X^{1}} H \\
& +c_{4} \mathcal{L}_{X^{2}} i_{L} i_{X^{1}} d i_{X^{3}} H+c_{5} \mathcal{L}_{X^{2}} i_{L} d i_{X^{3}} i_{X^{1}} H \\
& \left.+c_{1} i_{X^{2}} i_{\left[X^{1}, X^{3}\right]} H+c_{3} i_{L} i_{\left[X^{1}, X^{3}\right]} d i_{X^{2}}, X^{3}\right]
\end{aligned} H+c_{5} i_{L} d i_{\left[X^{1}, X^{3}\right]} i_{X^{2}} H .
$$

Since C satisfies the Jacobi identity in Leibniz form for closed linear ($p+2$)-forms,

$$
\Omega=\Theta+\mathcal{T} .
$$

Moreover, the (usual) twisted Dorfman-Courant bracket satisfies the Jacobi identity in Leibniz form for closed linear ($p+2$)-forms. Indeed, the (usual) twisted Dorfman-Courant bracket is the restriction of the twisted Courant bracket (which satisfies the Jacobi identity in Leibniz form for closed ($p+2$)forms, see [3]). So, we have $\Omega=\Theta+\mathcal{T}$ in the case $c_{3}=c_{4}=c_{5}=0$, too. So, we have (19).
Lemma 4.5. Let C be a generalized twisted Dorfman-Courant bracket of the form (17). Let $m, n \geq 1$ and $p \geq 1$ be such that $m \geq p+3$. If C satisfies the Jacobi identity in Leibniz form for closed linear $(p+2)$-forms, then $c_{3}=c_{4}=c_{5}=0$.
Proof. Let $\tilde{\omega}_{o}:=d x^{3} \wedge \ldots \wedge d x^{p+1}$ if $p \geq 2$ (then $\tilde{\omega}_{o}$ is well defined because $m \geq p+1 \geq 3)$ and $\tilde{\omega}_{o}:=1$ if $p=1$. Putting linear vector fields $X^{1}=\frac{\partial}{\partial x^{1}}$, $X^{2}=\frac{\partial}{\partial x^{2}}$ and $X^{3}=L$ and the closed linear $(p+2)$-form $H:=x^{1} d x^{1} \wedge$ $d x^{2} \wedge d y^{1} \wedge \tilde{\omega}_{o}$ into (19), we get

$$
\begin{aligned}
& c_{3} \cdot 0+c_{4} \cdot\left(y^{1} d x^{1} \wedge \tilde{\omega}_{o}\right)+c_{5} \cdot\left(y^{1} d x^{1} \wedge \tilde{\omega}_{o}\right) \\
& +c_{3} \cdot 0+c_{4} \cdot 0+c_{5} \cdot 0 \\
& =-c_{3} \cdot y^{1} d x^{1} \wedge \tilde{\omega}_{o}-c_{4} \cdot 0-c_{5} \cdot\left(-y^{1} d x^{1} \wedge \tilde{\omega}_{o}\right) \\
& \quad+c_{3} \cdot 0+c_{4} \cdot 0+c_{5} \cdot 0+c_{3} \cdot 0+c_{4} \cdot 0 \\
& \quad+c_{5} \cdot 0+c_{3} \cdot 0+c_{4} \cdot 0+c_{5} \cdot 0
\end{aligned}
$$

Hence $c_{3}=-c_{4}$.
Similarly, let $\tilde{\omega}_{o}$ be as above. Putting linear vector fields $X^{1}=x^{2} \frac{\partial}{\partial x^{1}}$, $X^{2}=\frac{\partial}{\partial x^{2}}, X^{3}=L$ and the closed linear $(p+2)$-form $H:=d x^{1} \wedge d x^{2} \wedge d y^{1} \wedge \tilde{\omega}_{o}$ into (19), we get

$$
\begin{aligned}
& c_{3} \cdot 0+c_{4} \cdot y^{1} d x^{2} \wedge \tilde{\omega}_{o}+c_{5} \cdot y^{1} d x^{2} \wedge \tilde{\omega}_{o} \\
&+ c_{3} \cdot 0+c_{4} \cdot 0+c_{5} \cdot 0 \\
&=-c_{3} \cdot 0-c_{4} \cdot 0-c_{5} \cdot\left(-y^{1} d x^{2} \wedge \tilde{\omega}_{o}\right) \\
&+c_{3} \cdot 0+c_{4} \cdot y^{1} d x^{2} \wedge \tilde{\omega}_{o}+c_{5} \cdot 0 \\
&+c_{3} \cdot 0+c_{4} \cdot\left(-y^{1} d x^{2} \wedge \tilde{\omega}_{o}\right)+c_{5} \cdot\left(-y^{1} d x^{2} \wedge \tilde{\omega}_{o}\right) \\
& \quad+c_{3} \cdot 0+c_{4} \cdot 0+c_{5} \cdot 0
\end{aligned}
$$

Hence $c_{4}=-c_{5}$.
Now, let $\tilde{\omega}_{o}:=d x^{5} \wedge \ldots \wedge d x^{p+3}$ if $p \geq 2$ (then $\tilde{\omega}_{o}$ is well defined because $m \geq p+3 \geq 5$), and $\tilde{\omega}_{o}:=1$ if $p=1$. Putting linear vector fields $X^{1}=\frac{\partial}{\partial x^{1}}$, $X^{2}=x^{1} \frac{\partial}{\partial x^{2}}, X^{3}=\frac{\partial}{\partial x^{3}}$ and the closed linear $(p+2)$-form $H:=d\left(x^{2} x^{4}\right) \wedge$ $d x^{3} \wedge d y^{1} \wedge \tilde{\omega}_{o}(H$ is well defined because $m \geq p+3 \geq 4)$ into (19), we get

$$
\begin{aligned}
& c_{3} \cdot y^{1} d x^{4} \wedge \tilde{\omega}_{o}+c_{4} \cdot 0+c_{5} \cdot\left(-y^{1} d x^{4} \wedge \tilde{\omega}_{o}\right) \\
& + \\
& =c_{3} \cdot 0+c_{4} \cdot 0+c_{5} \cdot 0 \\
& = \\
& \quad-c_{3} \cdot 0-c_{4} \cdot\left(y^{1} d x^{4} \wedge \tilde{\omega}_{o}+x^{4} d y^{1} \wedge \tilde{\omega}_{o}\right)-c_{5} \cdot 0 \\
& \quad+c_{3} \cdot y^{1} d x^{4} \wedge \tilde{\omega}_{o}+c_{4} \cdot 0+c_{5} \cdot 0 \\
& \quad+c_{3} \cdot 0+c_{4} \cdot 0+c_{5} \cdot 0 \\
& \quad+c_{3} \cdot 0+c_{4} \cdot 0+c_{5} \cdot 0
\end{aligned}
$$

Hence $c_{4}=0$.
Consequently, $c_{3}=c_{4}=c_{5}=0$, as well.
Thus we have proved
Theorem 4.6. Let $m, n \geq 1$ and $p \geq 1$ be such that $m \geq p+3$. Any generalized twisted Dorfman-Courant bracket C satisfying the Jacobi identity in Leibniz form for closed linear $(p+2)$-forms is of the form

$$
\begin{align*}
C_{H}\left(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right)= & {\left[X^{1}, X^{2}\right] \oplus\left\{\mathcal{L}_{X^{1}} \omega^{2}-i_{X^{2}} d \omega^{1}\right.} \tag{20}\\
& \left.+c_{1} i_{X^{1}} i_{X^{2}} H+c_{2} i_{L} i_{X^{1}} i_{X^{2}} d H\right\}
\end{align*}
$$

for any $H \in \Gamma_{E}^{l}\left(\bigwedge^{p+2} T^{*} E\right)$, any $X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2} \in \Gamma_{E}^{l}\left(T E \oplus \bigwedge^{p} T^{*} E\right)$ and any $\mathcal{V} \mathcal{B}_{m, n}$-object E, where c_{1}, c_{2} are (uniquely determined by C) real numbers.

Given $c_{1}, c_{2} \in \mathbf{R}$, the generalized twisted Dorfman-Courant bracket C of the form (20) satisfies the Jacobi identity in Leibniz form for closed linear ($p+2$)-forms.

The above theorem implies immediately Theorem 1.2.

References

[1] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
[2] Kurek, J., Mikulski, W. M., The gauge-natural bilinear brackets on couples of linear vector fields and linear p-forms, Ann. Univ. Mariae Curie-Skłodowska Sect. A 75(2) (2021), 73-92.
[3] Mikulski, W. M., The natural operators similar to the twisted Courant bracket on couples of vector fields and p-forms, Filomat 44(12) (2020), 4071-4078.
[4] Mikulski, W. M., On the gauge-natural operators similar to the twisted DorfmanCourant bracket, Opuscula Math 41(2) (2021), 205-226.

Jan Kurek
Institute of Mathematics
Maria Curie-Skłodowska University
Pl. Marii Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: kurek@hektor.umcs.lublin.pl
Włodzimierz M. Mikulski
Institute of Mathematics
Jagiellonian University
ul. Łojasiewicza 6
30-348 Cracow
Poland
e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

Received February 7, 2022

[^0]: 2010 Mathematics Subject Classification. 53A55, 53A45, 53A99.
 Key words and phrases. Natural operator, linear vector field, linear p-form, Jacobi identity in Leibniz form.

