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Natural affinors and torsion of connections
on Weil like functors on double vector bundles

Abstract. We describe completely all natural affinors on product preserving
gauge bundle functors on double vector bundles. Next, we study torsion of
double-linear connections.

1. Introduction. We assume that any manifold considered in the paper
is Hausdorff, second countable, finite dimensional, without boundary and
smooth (i.e. of class C∞). All maps between manifolds are assumed to be
smooth (of class C∞).
The concept of double vector bundles was introduced in [12] and further
studied in [1, 7, 9], etc. The framework of double vector bundles is con-
venient for many constructions like linear forms, linear Poisson structures,
linear connections, etc. The equivalent concept of double vector bundles
can be found in [10]. We cite it in Section 2 of the present note.
The general concept of gauge bundle functors can be found in [5]. The
concept of product preserving gauge bundle functors (ppgb-functors) on the
category of double vector bundles can be found in [10], too. We cite it in
Section 3.
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In [10], it is proved that the ppgb-functors F on the category of double
vector bundles are in bijection with the AF -bilinear maps

⋄F : UF × V F →WF ,

where AF are Weil algebras and UF and V F and WF are finite dimensional
(over R) AF -modules. Moreover, given a ppgb-functor F on double vector
bundles and a point c ∈ AF , in [10] an affinor (i.e. tensor field of type (1, 1))

af(c) : TFK → TFK

on FK is constructed for any double vector bundle K.
The main result of the present note is the following one extending [6].

Theorem 1.1. Let F be a ppgb-functor on double vector bundles. The
canonical affinors af(c) for all c ∈ AF are all natural affinors on FK.

Canonical (later called natural) affinors on some other bundle functors
are described in [2, 3, 6, 8], etc. We point out that natural affinors play an
important role in differential geometry. For example, natural affinors are
useful in the prolongation of vector fields to product preserving bundles, see
e.g. [5]. Natural affinors can be also used to define the general concept of a
torsion of a connection, [6].

2. On double vector bundles.

Definition 2.1 ([10]). An almost double vector bundle is a system K =
(Kr,Kl, Er, El) of vector bundles Kr = (K, τr, Er), Kl = (K, τl, El), Er =
(Er, τ l,M) and El = (El, τ r,M) such that τ l ◦ τr = τ r ◦ τl.
IfK ′ = (K ′

r,K
′
l , E

′
r, E

′
l) is another almost double vector bundle, an almost

double vector bundle map K → K ′ is a map f : K → K ′ such that there
are maps f

r
: Er → E′

r, f l : El → E′
l and f : M → M ′ such that (f, f

r
) :

Kr → K ′
r, (f, f l) : Kl → K ′

l , (f r, f) : Er → E′
r and (f

l
, f) : El → E′

l are
vector bundle maps.
We call M the basis of K and f :M →M ′ the base map of f .

We have the trivial almost double vector bundle

Rm1,m2,n1,n2 = (Kr,Kl, Er, El),

where Kl = (Rm1 × Rm2 × Rn1 × Rn2 , τl,R
m1 × Rn1), Kr = (Rm1 ×

Rm2 ×Rn1 ×Rn2 , τr,R
m1 ×Rm2), Er = (Rm1 ×Rm2 , τ l,R

m1) and El =
(Rm1 ×Rn1 , τ r,R

m1), and where τr, τl, τ r, τ l are the obvious projections.

Definition 2.2 ([10]). A double vector bundle is a locally trivial almost dou-
ble vector bundle K, that is, there are non-negative integers m1,m2, n1, n2
such that for any x ∈ M there is an open neighborhood Ω ⊂ M of x such
that K|Ω = Rm1,m2,n1,n2 modulo an almost double vector bundle isomor-
phism.
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A very important example of a double vector bundle is the tangent bun-
dle TE = (TE, TE,E, TM) of a vector bundle E = (E, π,M), where
τr := pTE : TE → E, τl := Tπ : TE → TM , τ r := pTM : TM → M ,
τ l := π : E → M. Another such example is the cotangent bundle T ∗E =
(T ∗E, T ∗E,E,E∗) of a vector bundle E, see [9]. Double vector bundle struc-
tures on TTM and TT ∗M make possible the Lagrangian formulation of the
dynamics in classical mechanics, see [13].
All double vector bundles and almost double vector bundle maps between
them form a category which we denote by DVB. (In [10], the notion of 2-VB
instead of DVB is used.) Any DVB-map f : Rm1,m2,n1,n2 → Rm′

1,m
′
2,n

′
1,n

′
2 is

of the form

(1)

f(x, u, v, w)

=

(
a(x),

∑
j

aj(x)u
j ,
∑
k

bk(x)v
k,
∑
j,k

cjk(x)u
jvk +

∑
l

dl(x)w
l

)
for some maps a : Rm1 → Rm′

1 , aj : Rm1 → Rm′
2 , bk : Rm1 → Rn′

1 , cjk :

Rm1 → Rn′
2 , dl : Rm1 → Rn′

2 , j = 1, . . . ,m2, k = 1, . . . , n1, l = 1, . . . , n2,
where x ∈ Rm1 , u = (u1, . . . , um2) ∈ Rm2 , v = (v1, . . . , vn1) ∈ Rn1 , w =
(w1, . . . , wn2) ∈ Rn2 .
By the local description (presented in [7]) of double vector bundles in the
sense of [9], the double vector bundles in our sense are equivalent to the one
of [9].

3. On ppgb-functors on double vector bundles. Let FM denote
the category of fibred manifolds and fibred maps. The general concept of
(gauge) bundle functors can be found in the book [5]. We need the following
particular case of it.

Definition 3.1 ([10]). A gauge bundle functor onDVB is a covariant functor
F : DVB → FM sending any double vector bundle K with the basis M
into fibred manifold pK : FK → M over M and any double vector bundle
map f : K → K ′ with the base map f : M → M ′ into fibred map Ff :

FK → FK ′ over f :M →M ′ and satisfying the following conditions:
(i) (Localization condition) For every double vector bundle K with the
basis M and any open subset U ⊂ M , the inclusion map iK|U : K|U → K

induces diffeomorphism FiK|U : F (K|U) → p−1
K (U), and

(ii) (Regularity condition) F transforms smoothly parametrized families
of DVB-maps into smoothly parametrized families of FM-maps.
A gauge bundle functor F on DVB is called a Weil like functor (or ppgb-
functor) if F (K1×K2) = F (K1)×F (K2) for any DVB-objects K1 and K2.

An example of a ppgb-functor on DVB is the tangent functor T sending
any DVB-object K with basis M into the tangent bundle TK (treated as
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the fibred manifold over M) and any DVB-map f : K → K ′ into Tf :
TK → TK ′.
In [10], it is proved that the ppgb-functors F on the category of double
vector bundles are in bijection with the AF -bilinear maps

⋄F : UF × V F →WF ,

where AF are Weil algebras and UF and V F and WF are finite dimensional
(over R) AF -modules. We have

FRm1,m2,n1,n2 = (AF )m1 × (UF )m2 × (V F )n1 × (WF )n2 ,

and if f : Rm1,m2,n1,n2 → Rm′
1,m

′
2,n

′
1,n

′
2 is of the form (1), then

Ff : (AF )m1 × (UF )m2 × (V F )n1 × (WF )n2 →

→ (AF )m
′
1 × (UF )m

′
2 × (V F )n

′
1 × (WF )n

′
2

is of the similar form

(2)

Ff(x, u, v, w)

=

(
aA

F
(x),

∑
j

aA
F

j (x)uj,
∑
k

bA
F

k (x)vk,
∑
j,k

cA
F

jk(x)u
j⋄F vk+

∑
l

dA
F

l (x)wl

)
,

x ∈ (AF )m1 , u = (u1, . . . , um2) ∈ (UF )m2 , v = (v1, . . . , vn1) ∈ (V F )n1 ,
w = (w1, . . . , wn2) ∈ (WF )n2 , where aA

F
= TAF

a : TAF
Rm1 = (AF )m1 →

TAF
Rm′

1 = (AF )m
′
1 , aA

F

j = TAF
aj : (AF )m1 → (AF )m

′
2 , bA

F

k = TAF
bk :

(AF )m1 → (AF )n
′
1 , cA

F

ij = TAF
cjk : (AF )m1 → (AF )n

′
2 , dA

F

l = TAF
dl :

(AF )m1 → (AF )n
′
2 are the values of a, aj , bk, cjk, dl by the (usual) Weil

functor TAF
of Weil algebra AF . So, F has values in DVB, i.e. F : DVB →

DVB.

4. Tangent bundle of a ppgb-functor on double vector bundles.
It is observed that any ppgb-functor F on DVB has values in DVB. So,
we can compose ppgb-functors F1 and F and obtain ppgb-functor F1F on
DVB. In particular, the composition TF of the tangent functor T and a
ppgb-functor F on DVB is again a ppgb-functor on DVB. We have
ATF = AF ×AF , UTF = UF × UF , V TF = V F × V F , W TF =WF ×WF

and the algebra multiplication (of ATF ) and the module multiplications (of
UTF and V TF and W TF ) and the ATF -bilinear map ⋄TF satisfy

(3)

(a1, a2)(b1, b2) = (a1b1, a2b1 + a1b2) ,

(a1, a2)(u1, u2) = (a1u1, a2u1 + a1u2) ,

(a1, a2)(v1, v2) = (a1v1, a2v1 + a1v2) ,

(a1, a2)(w1, w2) = (a1w1, a2w1 + a1w2) ,

(u1, u2) ⋄TF (v1, v2) = (u1 ⋄F v1, u2 ⋄F v1 + u1 ⋄F v2)
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for any a1, a2, b1, b2 ∈ AF , u1, u2 ∈ UF , v1, v2 ∈ V F , w1, w2 ∈WF .
In [10], for any c ∈ AF , it is constructed a DVB-invariant affinor

af(c) : TFK → TFK

on FK for any DVB-object K. If K = Rm1,m2,n1,n2 , then

af(c)((a1, u1, v1, w1), (a2, u2, v2, w2)) = ((a1, u1, v1, w1), c(a2, u2, v2, w2))

for any a1, a2 ∈ (AF )m1 , u1, u2 ∈ (UF )m2 , v1, v2 ∈ (V F )n1 , w1, w2 ∈
(WF )n2 , where the standard identification TX = X ×X for vector spaces
X is applied. The invariance means that if f : K → K1 is a DVB-map,
then TFf ◦ af(c) = af(c) ◦ TFf .

5. The natural affinors on ppgb-functors on double vector bun-
dles. Let DVBm1,m2,n1,n2 be the category of all DVB-objects K being lo-
cally isomorphic with Rm1,m2,n1,n2 with local DVB-isomorphisms between
them as morphisms.

Definition 5.1. ADVBm1,m2,n1,n2-natural affinor on F is aDVBm1,m2,n1,n2-
invariant family B : TF → TF of affinors

B : TFK → TFK

on FK for any DVBm1,m2,n1,n2-object K. It means that TFf ◦B = B◦TFf
for any DVBm1,m2,n1,n2-map f : K → K ′.

Theorem 5.2. If m1 ≥ 2, then the natural affinors

af(c) : TF → TF

for c ∈ AF are all DVBm1,m2,n1,n2-natural affinors on a ppgb-functor F .

Proof. Let B be a DVBm1,m2,n1,n2-natural affinor on a ppgb-functor F on
DVB. Clearly, B is determined by the affinor

B : TFRm1,m2,n1,n2 → TFRm1,m2,n1,n2

on FRm1,m2,n1,n2 = (AF )m1 × (UF )m2 × (V F )n1 × (WF )n2 . Then

B : FRm1,m2,n1,n2 × FRm1,m2,n1,n2 → FRm1,m2,n1,n2 × FRm1,m2,n1,n2

modulo the standard identification. So, we can write

B(x, y) = (x, B̃(x, y))

for all x, y ∈ FRm1,m2,n1,n2 , where B̃(x, y) ∈ FRm1,m2,n1,n2 is linear in y.
Because of the invariance of B with respect to the homotheties

t · idRm1,m2,n1,n2 for t > 0, B̃(tx, ty) = tB̃(x, y), i.e. B̃(tx, y) = B̃(x, y).
Consequently, B̃(x, y) is independent of x. So, we can write

B((a1, u1, v1, w1), (a2, u2, v2, w2))

= ((a1, u1, v1, w1), (α(a2, u2, v2, w2), β(a2, u2, v2, w2),

γ(a2, u2, v2, w2), δ(a2, u2, v2, w2)))
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for all a1, a2 ∈ (AF )m1 , u1, u2 ∈ (UF )m2 , v1, v2 ∈ (V F )n1 and w1, w2 ∈
(WF )n2 , where α(a2, u2, v2, w2) ∈ (AF )m1 is linear in (a2, u2, v2, w2) and
β(a2, u2, v2, w2) ∈ (UF )m2 is linear in (a2, u2, v2, w2) and γ(a2, u2, v2, w2) ∈
(V F )n1 is linear in (a2, u2, v2, w2) and δ(a2, u2, v2, w2) ∈ (WF )n2 is linear in
(a2, u2, v2, w2).
Let φt,t1,t2,t3 : Rm1,m2,n1,n2 → Rm1,m2,n1,n2 be given by

φt,t1,t2,t3(x, y1, y2, y3) = (tx, t1y1, t2y2, t3y3)

for all x ∈ Rm1 and y1 ∈ Rm2 and y2 ∈ Rn1 and y3 ∈ Rn2 , where t, t1, t2, t3
are positive real numbers. It is a DVBm1,m2,n1,n2-map. Then, by the invari-
ance of B with respect to φt,t1,t2,t3 , we derive

α(ta2, t1u2, t2v2, t3w2) = tα(a2, u2, v2, w2) .

Consequently, α(a2, u2, v2, w2) is linear in a2 and independent of u2, v2, w2.
Similarly, β(a2, u2, v2, w2) is linear in u2 and independent of a2, v2, w2, and
γ(a2, u2, v2, w2) is linear in v2 and independent od a2, u2, w2, and
δ(a2, u2, v2, w2) is linear in w2 and independent of b, u2, v2. Hence we can
write

B((a1, u1, v1, w1), (a2, u2, v2, w2))

= ((a1, u1, v1, w1), (α(a2), β(u2), γ(v2), δ(w2)))

for all a1, a2 ∈ (AF )m1 , u1, u2 ∈ (UF )m2 , v1, v2 ∈ (V F )n1 , w1, w2 ∈ (WF )n2 ,
where α(a2) ∈ (AF )m1 is linear in a2 and β(u2) ∈ (UF )m2 is linear in u2
and γ(v2) ∈ (V F )n1 is linear in v2 and δ(w2) ∈ (WF )n2 is linear in w2.
Let f : Rm1,m2,n1,n2 → Rm1,m2,n1,n2 be given by

f(x, y1, y2, y3) = (x+ x1x, y1 + x1y1, y2 + x1y2, y3 + x1y3)

for all x = (x1, . . . , xm1) ∈ Rm1 and y1 ∈ Rm2 and y2 ∈ Rn1 and y3 ∈ Rn2 .
It is a DVBm1,m2,n1,n2-map on the open and dense subset in Rm1,m2,n1,n2 ,
x1 ̸= −1. Then, by the invariance of B with respect to f and (in particular)
formula (2) for TF instead of F and formulas (3), we get

((a1 + a11a1, u1 + a11u1, . . .), (α(a2 + a11a2 + a12a1), β(u2 + a11u2 + a12u1), . . .))

= ((a1 + a11a1, u1 + a11u1, . . .), (α(a2) + a11α(a2) + α1(a2)a1,

β(u2) + a11β(u2) + α1(a2)u1, . . .))

for all a1, a2 ∈ (AF )m1and u1, u2 ∈ (UF )m2and ..., where (α1(b), . . . , αm1(b))
= α(b) ∈ (AF )m1 and (b1, . . . , bm1) = b ∈ (AF )m1 . Then

α(a11a2) + α(a12a1) = a11α(a2) + α1(a2)a1 ,

β(a11u2) + β(a12u1) = a11β(u2) + α1(a2)u1 ,

γ(a11v2) + γ(a12v1) = a11γ(v2) + α1(a2)v1 ,

δ(a11w2) + δ(a12w1) = a11δ(w2) + α1(a2)w1 .
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If a11 = 1, then

α(a12a1) = α1(a2)a1 , β(a
1
2u1) = α1(a2)u1 ,

γ(a12v1) = α1(a2)v1 , δ(a
1
2w1) = α1(a2)w1 .

If a2 = (1, 0, . . . , 0) ∈ (AF )m1 , we get

α(a) = c1a , β(u) = c1u , γ(v) = c1v , δ(w) = c1w

for any a = (a1, . . . , am1) ∈ (AF )m1 with a1 = 1 and u ∈ (UF )m2 and
v ∈ (V F )n1 and w ∈ (WF )n2 , where c1 := α1(1, 0, . . . , 0) ∈ AF .
Similarly, replacing 1 by i ∈ {1, . . . ,m1}, we derive

α(a) = cia , β(u) = ciu , γ(v) = civ , δ(w) = ciw

for any a = (a1, . . . , am1) ∈ (AF )m1 with ai = 1 and u ∈ (UF )m2 and
v ∈ (V F )n1 and w ∈ (WF )n2 , where ci := αi(0, . . . , 1, . . . , 0) ∈ AF (1 in i-th
position).
From the linearity of α and m1 ≥ 2 we obtain

α(a) = ca , β(u) = cu , γ(v) = cv , δ(w) = cw

for any a = (a1, . . . , am) ∈ (AF )m1 and u ∈ (UF )m2 and v ∈ (V F )n1 and
w ∈ (WF )n2 , where c := c1 = . . . = cm ∈ AF . That c1 = . . . = cm is a
simple consequence of the invariance of B with respect to the permutations
of the base coordinates.
Then

B((a1, u1, v1, w1), (a2, u2, v2, w2)) = ((a1, u1, v1, w1), c(a2, u2, v2, w2))

for all a1, a2 ∈ (AF )m1 , u1, u2 ∈ (UF )m2 , v1, v2 ∈ (V F )n1 , w1, w2 ∈ (WF )n2 ,
where c ∈ AF is as above. Then B = af(c), as well and the proof is complete.
Q.E.D. □

6. On double-linear vector fields. Let K be a double vector bundle
with basis M . A vector field Z on K is called double-linear if the flow of Z
is formed by local DVB-isomorphisms.
Let x1, . . . , xm1 , u1, . . . , um2 , v1, . . . , vn1 , w1, . . . , wn2 be (local) DVB-
coordinates on K. A map f : K → K is a DVB-map if and only if it is of
the form (1). Consequently, a vector field Z on K is double linear if and
only if it is of the form

(4)

Z =

m1∑
i=1

ai(x)
∂

∂xi
+

m2∑
j,j1=1

bj1j (x)uj
∂

∂uj1
+

n1∑
k,k1=1

ck1k (x)vk
∂

∂vk1

+

n2∑
l,l1=1

el1l (x)w
l ∂

∂wl1
+

m2∑
j2=1

n1∑
k2=1

n2∑
l2=1

f l2j2k2(x)u
j2vk2

∂

∂wl2
.
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So, we have:

Lemma 6.1 ([11]). The space of all double-linear vector fields on K is the
Lie subalgebra in the Lie algebra of vector fields on K.

Let F be a ppgb-functor on DVB. Then FK is again a DVB-object (see
Section 3).

Lemma 6.2. Let Z be a double-linear vector field on FK and c ∈ AF be a
point. Then the vector field af(c)(Z) on FK is also double-linear.

Proof. We may assume that K = Rm1,m2,n1,n2 . Then FK = Am1 ×Um2 ×
V n1 ×Wn2 . Fixing the bases (over R) of Am1 and Um2 and V n1 and Wn2 ,
we can write FK = RM1,M2,N1,N2 . Let x1, . . . , xM1 , u1, . . . , uM2 , v1, . . . , vN1 ,
w1, . . . , wN2 be the usual coordinates on RM1,M2,N1,N2 . Then Z is of the
form

(5)

Z =

M1∑
i=1

ai(x)
∂

∂xi
+

M2∑
j,j1=1

bj1j (x)uj
∂

∂uj1
+

N1∑
k,k1=1

ck1k (x)vk
∂

∂vk1

+

N2∑
l,l1=1

el1l (x)w
l ∂

∂wl1
+

M2∑
j2=1

N1∑
k2=1

N2∑
l2=1

f l2j2k2(x)u
j2vk2

∂

∂wl2
.

To prove that af(c)(Z) is double-linear, it is sufficient to show that
af(c)(Z) is of the form (5), too. Of course, it is sufficient to show that
af(c)( ∂

∂xi ) is the linear combination of ∂
∂x1 , . . . ,

∂
∂xM1

with real coefficients
and that af(c)( ∂

∂uj ) is the linear combination of ∂
∂u1 , . . . ,

∂
∂uM2

with real co-
efficients and that af(c)( ∂

∂vk
) is the linear combination of ∂

∂v1
, . . . , ∂

∂vN1
with

real coefficients and that af(c)( ∂
∂wl ) is the linear combination of

∂
∂w1 , . . . ,

∂
∂wN2

with real coefficients.
For example, we prove that af(c)( ∂

∂u1 ) is the linear combination of
∂

∂u1 , . . . ,
∂

∂uM2
with real coefficients. Let (x, u, v, w) ∈ Am1 × Um2 × V n1 ×

Wn2 . Let e1, . . . , eM2 be the usual basis in RM2=̃Um2 . We can write
∂

∂uj |(x,u,v,w)
= ((x, u, v, w), (0, ej , 0, 0)). Then

af(c)

(
∂

∂u1

)
|(x,u,v,w)

= ((x, u, v, w), (0, c · e1, 0, 0)) .

On the other hand, c · e1 ∈ Um2 (as e1 ∈ Um2), and then c · e1 is the
linear combination of e1, . . . , eM2 with real coefficients. The proof of the
proposition is complete. Q.E.D. □

7. The F-N-bracket and double-linear (semi-basic) tangent val-
ued p-forms. If K → M is a fibred manifold, a projectable semi-basic
tangent valued p-form on K is a section φ : K → ∧pT ∗M ⊗ TK such
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that φ(X1, . . . , Xp) is a projectable vector field on K for any vector fields
X1, . . . , Xp on M .
Given a projectable semi-basic tangent valued p-form φ : K → ∧pT ∗M ⊗

TK we have the underlying tangent valued p-form φ :M → ∧pT ∗M ⊗ TM
onM such that φ(X1, . . . , Xp) is the underlying vector field of φ(X1, . . . , Xp)
for any vector fields X1, . . . , Xp on M .

Lemma 7.1. Let K → M be a fibred manifold. Given a projectable semi-
basic tangent valued p-form φ : K → ∧pT ∗M ⊗ TK on K and a pro-
jectable semi-basic tangent valued q-form ψ : K → ∧qT ∗M ⊗TK on K, the
Frolicher–Nijenhuis bracket (F-N-bracket) [[φ,ψ]] is (again) a projectable
semi-basic tangent valued (p + q)-form [[φ,ψ]] : K → ∧p+qT ∗M ⊗ TK on
K satisfying

(6)

[[φ,ψ]](X1, . . . , Xp+q)

=
1

p!q!

∑
σ

signσ[φ(Xσ1, . . . , Xσp), ψ(Xσ(p+1), . . . , Xσ(p+q))]

+
−1

p!(q − 1)!

∑
σ

signσψ([φ(Xσ1, . . . , Xσp), Xσ(p+1)], Xσ(p+2), . . .)

+
(−1)pq

(p− 1)q!

∑
σ

signσφ([ψ(Xσ1, . . . , Xσq), Xσ(q+1)], Xσ(q+2), . . .)

+
(−1)p−1

(p− 1)!(q − 1)!2!

∑
σ

signσψ(φ([Xσ1, Xσ2], Xσ3, . . .), Xσ(p+2), . . .)

+
(−1)(p−1)q

(p− 1)!(q − 1)!2!

∑
σ

signσφ(ψ([Xσ1 , Xσ2], Xσ3, . . .), Xσ(q+2), . . .)

for any vector fields X1, . . . , Xp+q on M , where sums are over all permuta-
tions σ : {1, . . . , p+ q} → {1, . . . , p+ q}.

Proof. It is well-known fact, see e.g. [4]. Q.E.D. □

Let F be a ppgb-functor on DVB and K be a DVB-object with basis M .
Then we have the fibred manifold FK →M . We have also the DVB-object
FK with basis FM .

Definition 7.2. A double-linear semi-basic tangent valued p-form on FK →
M is a projectable semi-basic tangent valued p-form φ : FK → ∧pT ∗M ⊗
TFK on (fibered manifold) FK (with basis M) such that (additionally)
φ(X1, . . . , Xp) is a double-linear vector field on DVB-object FK (with basis
FM) for any vector fields X1, . . . , Xp on M .
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Remark 7.3. If F is the identity functor and K = Rm1,m2,n1,n2 , the space
of double-linear semi-basic tangent valued p-forms on Rm1,m2,n1,n2 is (in
obvious way) a module over the ring of smooth maps Rm1 → R. This
module is free and the basis is (for example) the collection consisting of
dxi1 ∧ . . . ∧ dxip ⊗ ∂

∂xi and uj1dxi1 ∧ . . . ∧ dxip ⊗ ∂
∂uj and duj1 ∧ dxi

′
1 ∧ . . . ∧

dxi
′
p−1 ⊗ ∂

∂uj and vk1dxi1 ∧ . . . ∧ dxip ⊗ ∂
∂vk
and dvk1 ∧ dxi′1 ∧ . . . ∧ dxi

′
p−1 ⊗

∂
∂vk
and wl1dxi1 ∧ . . . ∧ dxip ⊗ ∂

∂wl and dwl1 ∧ dxi
′
1 ∧ . . . ∧ dxi

′
p−1 ⊗ ∂

∂wl

and ujvkdxi1 ∧ . . . ∧ dxip ⊗ ∂
∂wl and vkduj ∧ dxi

′
1 ∧ . . . ∧ dxi

′
p−1 ⊗ ∂

∂wl and

ujdvk ∧ dxi′1 ∧ . . .∧ dxi
′
p−1 ⊗ ∂

∂wl and duj ∧ dvk ∧ dxi
′′
1 ∧ . . .∧ dxi

′′
p−2 ⊗ ∂

∂wl for
all integers i, i1, . . . , ip, i′1, . . . , i

′
p−1, i

′′
1, . . . , i

′′
p−2, j, j1, k, k1, l, l1 with 1 ≤ i1 <

. . . < ip ≤ m1 and 1 ≤ i′1 < . . . < i′p−1 ≤ m1 and 1 ≤ i′′1 < . . . < i′′p−2 ≤ m1

and 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2 and 1 ≤ j2 ≤ m2 and 1 ≤ k ≤ n1 and
1 ≤ k1 ≤ n1 and 1 ≤ l ≤ n2 and 1 ≤ l1 ≤ n2, where x1, . . . , xm1 , u1, . . . , um2 ,
v1, . . . , vn1 , w1, . . . , wn2 are the usual coordinates on Rm1,m2,n1,n2 .

Proposition 7.4. Let φ : FK → ∧pT ∗M ⊗ TFK be a double-linear (then
projectable) semi-basic tangent valued p-form on FK → M and ψ : FK →
∧qT ∗M ⊗ TFK be a double-linear semi-basic tangent valued q-form on
FK → M . Then the F-N bracket [[φ,ψ]] : FK → ∧p+qT ∗M ⊗ TFK
of φ and ψ is a double-linear semi-basic tangent valued (p + q)-form on
FK →M .

Proof. It is a simple consequence of formula (6) (with FK → M playing
the role of K →M) and Lemma 6.1. Q.E.D. □

8. An application to torsion of double-linear connections in FK →
M . Let F be a ppgb-functor on DVB and let K be a DVBm1,m2,n1,n2-object
with basis M .

Definition 8.1. A double-linear connection in FK →M is a double-linear
semi-basic tangent valued 1-form Γ : FK → T ∗M ⊗ TFK on FK → M
such that the underlying vector field of Γ(X) is equal to X for any vector
field X on basis M .

Assume m1 ≥ 2. Let Γ : FK → T ∗M ⊗ TFK be a double-linear connec-
tion in FK → M and let B : TFK → TFK be a DVBm1,m2,n1,n2-natural
affinor on FK. Ifm1 ≥ 2, then B = af(c) for some c ∈ AF , see Theorem 5.2.
If c = λ + n, where λ ∈ R and n is nilpotent, then given a vector field X
on M , the vector field B ◦ Γ(X) on FK is projectable with the underlying
vector field λX. Now, because of Lemma 6.2, B ◦Γ is a double-linear semi-
basic tangent-valued 1-form on FK → M , where (B ◦ Γ)(X) := B ◦ Γ(X)
for any vector field X on M .

Definition 8.2. The torsion τB(Γ) of type B of Γ is by definition the F-N
bracket of Γ and B ◦ Γ, i.e. τB(Γ) := [[Γ, B ◦ Γ]].
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Theorem 8.3. Let F and Γ and B be as above. Assume m1,m2, n1, n2 are
non-negative integers with m1 ≥ 2. The torsion τB(Γ) of type B of Γ is a
double-linear semi-basic tangent valued 2-form on FK. If B = af(c), where
c = λ+ n, λ ∈ R, n ∈ AF is a nilpotent, then

τB(Γ)(X,Y ) = 2λRΓ(X,Y ) + [Γ(X), af(n) ◦ Γ(Y )]

− [Γ(Y ), af(n) ◦ Γ(X)]− af(n) ◦ Γ([X,Y ])

for any vector fields X and Y onM , where RΓ = 1
2 [[Γ,Γ]] : FK → ∧2T ∗M⊗

V FK (i.e. RΓ(X,Y ) = [Γ(X),Γ(Y )] − Γ([X,Y ])) is the curvature of Γ.
Thus τB(Γ) : FK → ∧2T ∗M ⊗ V FK, where V is the vertical functor.

Proof. Since Γ is a double-linear semi-basic tangent valued 1-form on
FK →M , then so is B ◦Γ, see Lemma 6.2, and then [[Γ, B ◦Γ]] is a double-
linear semi-basic tangent valued 2-form on FK → M , see Proposition 7.4.
To obtain the formula, we propose to apply the one of the F-N-bracket, see
(6) for FK → M instead of K → M and Γ and B ◦ Γ instead of φ and ψ.
Q.E.D. □

Remark 8.4. If F = T is the tangent functor and B = J is the almost
tangent structure (i.e. AF = D, c = n = (0, 1) ∈ D, λ = 0), then

τJ(Γ)(X,Y ) = [Γ(X), J ◦ Γ(Y )]− [Γ(Y ), J ◦ Γ(X)]− J ◦ Γ([X,Y ])

for any vector fields X and Y on M . If additionally K = (M,M,M,M),
then τJ(Γ) is (almost) the usual torsion of a usual linear connection Γ onM .
Indeed, if x1, . . . , xm are local coordinates on M and x1, . . . , xm, y1, . . . , ym

are the induced coordinates on TM , then J =
∑m

i=1 dx
i ⊗ ∂

∂yi
. If Γ( ∂

∂xi ) =
∂
∂xi −Γk

ij(x)y
j ∂
∂yk
, then J ◦Γ( ∂

∂xi ) =
∂
∂yi
. Then τJΓ (

∂
∂xi ,

∂
∂xj ) = (Γk

ij−Γk
ji)

∂
∂yk

(the Einstein summation convention). Therefore our torsion generalizes the
classical torsion of classical linear connection.

Example 8.5. Let V : DVB → FM be the vertical functor sending any
double vector bundle K with basis M into the usual vertical bundle V K =
∪x∈MT (Kx) → M of K. Then AV = R and ⋄V : D×D → D is the usual
multiplication of the dual numbers. By our theorem, any natural affinor B
on V K is B = af(λ) = λId, λ ∈ R. On the other hand, the torsion (in our
sense) of the type B = λId of double linear connection Γ on V K →M is of
the form τB(Γ) = [[Γ, B ◦Γ]] = λ[[Γ,Γ]] = 2λRΓ. Consequently, any torsion
(in our sense) of double linear connection Γ on V K → M is the constant
multiple of the curvature RΓ of Γ.

Example 8.6. If we replace in the previous example the algebra of dual
numbers D by the arbitrary Weil algebra A, we get the A-vertical bundle
V AK = ∪x∈MT

A(Kx) → M of a double vector bundle K → M . Clearly,
AV A

= R and ⋄V A
: A×A→ A is the algebra multiplication of A. Thus any

natural affinor B on V AK is proportional to the identity one, i.e. B = λId.
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Then (similarly to the previous example) τB(Γ) = 2λRΓ for any double
linear connection Γ on V AK → M . Hence any torsion (in our sense) of
a double linear connection Γ on V AK → M is a constant multiple of the
curvature RΓ of Γ.

By the arguments of the above examples we have:

Corollary 8.7. If AF = R, then any natural affinor on FK is the constant
multiple of the identity one and any torsion (in our sense) of a double linear
connection Γ on FK →M is a constant multiple of the curvature RΓ of Γ.

Acknowledgement. The authors thank the reviewer for valuable com-
ments that improved the paper.
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[4] Janyška, J., Natural operations with projectable tangent valued forms, Ann. Mat. Pura
Appl. CLIX (1991), 171–187.
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