UNIVERSITATIS MARIAE CURIE-SKもODOWSKA

ANDRZEJ WALENDZIAK

On implicative BE algebras

Abstract

We consider some generalizations of BCK algebras (RML, BE, $\mathrm{aBE}, \mathrm{BE}^{* *}$ and $\mathrm{aBE}{ }^{* *}$ algebras). We investigate the property of implicativity for these algebras. We prove that for any implicative $\mathrm{BE}^{* *}$ algebra the commutativity property is equivalent to the property of antisymmetry and show that implicative $\mathrm{aBE}^{* *}$ algebras are commutative BCK algebras. We also show that the class of implicative $\mathrm{BE}^{* *}$ algebras is a variety.

1. Introduction. In 1966, Y. Imai and K. Iséki [3] introduced a new notion called a BCK algebra. It is an algebraic formulation of the BCKpropositional calculus system of C. A. Meredith [12], which generalizes the concept of implicative algebras (see [1]). Hundred of papers were written on BCK algebras, and the books [11] and [4]. In [10], as a generalization of BCK algebras, H. S. Kim and Y. H. Kim defined BE algebras. In 2008, A. Walendziak [14] defined commutative BE algebras and proved that they are BCK algebras. A. Iorgulescu [5] introduced new generalizations of BCK algebras (RML, aBE, BE**, aBE** algebras and many others).

In 1978, K. Iséki and S. Tanaka [8] introduced the notion of implicativity in the theory of BCK algebras. The present paper is a continuation of the author's paper [15], where the property of implicativity for various generalizations of BCK algebras was studied. Here we consider RML, BE, aBE, $\mathrm{BE}^{* *}$ and $\mathrm{aBE}^{* *}$ algebras and investigate the implicative property for these

[^0]algebras. We prove that for any implicative $\mathrm{BE}^{* *}$ algebra the commutativity property is equivalent to the property of antisymmetry and show that implicative $\mathrm{aBE}^{* *}$ algebras are commutative BCK algebras. We also show that the class of implicative $\mathrm{BE}^{* *}$ algebras is a variety.
2. Preliminaries. Let $\mathcal{A}=(A, \rightarrow, 1)$ be an algebra of type $(2,0)$. We consider the following list of properties ([5]) that can be satisfied by \mathcal{A} :
(An) (Antisymmetry) $x \rightarrow y=1=y \rightarrow x \Longrightarrow x=y$,
(BB) $(y \rightarrow z) \rightarrow[(z \rightarrow x) \rightarrow(y \rightarrow x)]=1$,
(D) $y \rightarrow((y \rightarrow x) \rightarrow x)=1$,
(Ex) (Exchange) $x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$,
(K) $x \rightarrow(y \rightarrow x)=1$,
(L) (Last element) $x \rightarrow 1=1$,
(M) $1 \rightarrow x=x$,
(Re) (Reflexivity) $x \rightarrow x=1$,
(*) $y \rightarrow z=1 \Longrightarrow(x \rightarrow y) \rightarrow(x \rightarrow z)=1$,
(**) $y \rightarrow z=1 \Longrightarrow(z \rightarrow x) \rightarrow(y \rightarrow x)=1$,
(Tr) (Transitivity) $x \rightarrow y=1=y \rightarrow z \Longrightarrow x \rightarrow z=1$.
Lemma 2.1 ([5], Proposition 2.1). Let $\mathcal{A}=(A, \rightarrow, 1)$ be an algebra of type $(2,0)$. Then the following hold:
(i) $(\mathrm{M})+(\mathrm{BB})$ imply $(\mathrm{Re}),\left({ }^{* *}\right)$,
(ii) $(\mathrm{M})+(\mathrm{BB})+(\mathrm{An})$ imply (Ex),
(iii) $(\mathrm{M})+\left({ }^{* *}\right)$ imply (Tr),
(iv) $(\mathrm{Re})+(\mathrm{Ex})$ imply (D),
(v) $(\mathrm{Re})+(\mathrm{L})+(\mathrm{Ex})$ imply (K),
(vi) $(\operatorname{Re})+(\operatorname{Ex})+(\operatorname{Tr})$ imply $\left({ }^{* *}\right)$,
(vii) $(\mathrm{M})+\left({ }^{*}\right)$ imply (Tr).

Definition 2.2 ([5]).

1. An $R M L$ algebra is an algebra $\mathcal{A}=(A, \rightarrow, 1)$ verifying (Re), (M), (L).
2. A BE algebra is a RML algebra verifying (Ex).
3. An aBE algebra is a BE algebra verifying (An).
4. A $B E^{* *}$ algebra is a BE algebra verifying (${ }^{* *)}$.
5. An $a B E^{* *}$ algebra is a $\mathrm{BE}^{* *}$ algebra verifying (An).
6. A $B C K$ algebra is an algebra $\mathcal{A}=(A, \rightarrow, 1)$ verifying (An), (BB), (M), (L).

Denote by RML, BE, aBE, $\mathbf{B E}^{* *}$, $\mathbf{a B E}^{* *}$ and $\mathbf{B C K}$ the classes of RML, $\mathrm{BE}, \mathrm{aBE}, \mathrm{BE}^{* *}, \mathrm{aBE} \mathrm{B}^{* *}$ and BCK algebras, respectively. By definition and Lemma 2.1 (i) and (ii), we have
$\mathrm{BCK} \subset \mathrm{aBE}^{* *} \subset \mathrm{aBE} \subset \mathrm{BE} \subset \mathbf{R M L}$ and $\mathrm{aBE}^{* *} \subset \mathrm{BE}^{* *} \subset \mathrm{BE}$.

The interrelationships between the classes of algebras mentioned before are visualized in Figure 1. (An arrow indicates proper inclusion, that is, if \mathbf{X} and \mathbf{Y} are classes of algebras, then $\mathbf{X} \longrightarrow \mathbf{Y}$ means $\mathbf{X} \subset \mathbf{Y}$.)

Figure 1

Let $\mathcal{A}=(A, \rightarrow, 1)$ be an algebra of type $(2,0)$. We define the binary relation \leq by: for all $x, y \in A$,

$$
x \leq y \Longleftrightarrow x \rightarrow y=1
$$

It is known that \leq is an order relation in BCK algebras. By definition, in RML and BE algebras, \leq is a reflexive relation; in aBE algebras, \leq is reflexive and antisymmetric. By Lemma 2.1 (iii), in $\mathrm{BE}^{* *}$ algebras, \leq is reflexive and transitive (i.e., it is a pre-order relation). Lastly, in aBE** algebras, \leq is an order relation.

In [13], S. Tanaka introduced the notion of commutativity in the theory of BCK algebras. A BCK algebra $\mathcal{A}=(A, \rightarrow, 1)$ is called commutative if, for all $x, y \in A$,
(Com) $\quad(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$.
H. Yutani [17] proved that the class of commutative BCK algebras is equationally definable. Commutative BCI and BE algebras were considered in [7] and [14, 2], respectively. K. Iséki [7] proved that any commutative BCI algebra is a BCK algebra. For BE algebras, this was shown in [14]. The property of commutativity for other generalizations of BCK algebras was investigated in [16].

As in the case of BCK algebras, we define:
Definition 2.3. An RML algebra $\mathcal{A}=(A, \rightarrow, 1)$ is called commutative if it satisfies (Com).

Lemma 2.4. Let $\mathcal{A}=(A, \rightarrow, 1)$ be an algebra of type $(2,0)$. Then:
(i) $(\mathrm{Com})+(\mathrm{M})$ imply (An),
(ii) $(\mathrm{Com})+(\mathrm{K})$ imply (D),
(iii) $(\mathrm{Com})+(\mathrm{Re})+(\mathrm{L})+(\mathrm{Ex})$ imply (BB).

Proof. The statements (i) and (ii) are proved in [16] (see Proposition 3.3).
(iii) Let \mathcal{A} verify (Com), (Re), (L) and (Ex). By Lemma 2.1 (v), \mathcal{A} verifies (K). Let $x, y, z \in A$. We have

$$
\begin{aligned}
&(y \rightarrow z) \rightarrow[(z \rightarrow x) \rightarrow(y \rightarrow x)] \\
& \quad \stackrel{(\mathrm{Ex})}{=}(y \rightarrow z) \rightarrow[y \rightarrow((z \rightarrow x) \rightarrow x)] \\
& \quad \stackrel{(\mathrm{Com})}{=}(y \rightarrow z) \rightarrow[y \rightarrow((x \rightarrow z) \rightarrow z)] \\
& \quad \stackrel{(\mathrm{Ex})}{=}(y \rightarrow z) \rightarrow[(x \rightarrow z) \rightarrow(y \rightarrow z)] \stackrel{(\mathrm{K})}{=} 1,
\end{aligned}
$$

that is, (BB) holds in \mathcal{A}.
3. Implicative BE algebras. The well-known implicative and positive implicative BCK algebras were introduced by K. Iséki and S. Tanaka [8].

Let $\mathcal{A}=(A, \rightarrow, 1)$ be an algebra of type $(2,0)$. We first consider the following properties:

$$
\begin{aligned}
(\mathrm{Im}) & (x \rightarrow y) \rightarrow x=x, \\
(\mathrm{pi)} & y \rightarrow(y \rightarrow x)=y \rightarrow x, \\
\text { (pimpl) } & x \rightarrow(y \rightarrow z)=(x \rightarrow y) \rightarrow(x \rightarrow z) .
\end{aligned}
$$

Remark 3.1. Note that from Theorem 8 of [8] it follows that for BCK algebras, (pimpl) and (pi) are equivalent. By Theorem 9 of [8], in commutative BCK algebras, we have $(\mathrm{Im}) \Longleftrightarrow$ (pi) \Longleftrightarrow (pimpl).
Proposition 3.2. Let $\mathcal{A}=(A, \rightarrow, 1)$ be an algebra of type $(2,0)$. Then
(i) $(\mathrm{Re})+(\mathrm{Im})$ imply (M),
(ii) $(\mathrm{M})+(\mathrm{Im})$ imply (L),
(iii) (Im) implies (pi),
(iv) $(\mathrm{Re})+(\mathrm{M})+($ pimpl $)+(\mathrm{An})$ imply (Ex),
(v) $(\mathrm{Re})+(\mathrm{Im})+(\mathrm{BB})+(\mathrm{An})$ imply (pimpl),
(vi) $(\mathrm{Re})+($ pimpl $)$ imply (L),
(vii) $(\mathrm{M})+(\mathrm{K})+(\mathrm{Com})+($ pimpl $)$ imply (Im).

Proof. (i)-(iii) follow from Proposition 3.5 of [15].
(iv) follows from Theorem 6.16 of [5].
(v) By above (i)-(iii), \mathcal{A} satisfies (M), (L) and (pi). By Lemma 2.1 (ii) and (v), \mathcal{A} also satisfies (Ex) and (K). Let $x, y, z \in A$. We have

$$
\begin{aligned}
&(x \rightarrow(y \rightarrow z)) \rightarrow[(x \rightarrow y) \rightarrow(x \rightarrow z)] \\
& \quad \stackrel{(\mathrm{Ex})}{=}(x \rightarrow y) \rightarrow[(x \rightarrow(y \rightarrow z)) \rightarrow(x \rightarrow z)] \\
& \quad \stackrel{(\mathrm{Ex})}{=}(x \rightarrow y) \rightarrow[(y \rightarrow(x \rightarrow z)) \rightarrow(x \rightarrow z)] \\
& \quad \stackrel{(\mathrm{pi})}{=}(x \rightarrow y) \rightarrow[(y \rightarrow(x \rightarrow z)) \rightarrow(x \rightarrow(x \rightarrow z))] \stackrel{(\mathrm{BB})}{=} 1 .
\end{aligned}
$$

Then

$$
\begin{equation*}
x \rightarrow(y \rightarrow z) \leq(x \rightarrow y) \rightarrow(x \rightarrow z) \tag{3.1}
\end{equation*}
$$

On the other hand, from (K) we see that $y \rightarrow(x \rightarrow y)=1$, and we obtain

$$
\begin{aligned}
& {[(x \rightarrow y) \rightarrow(x \rightarrow z)] \rightarrow(x \rightarrow(y \rightarrow z))} \\
& \quad \stackrel{(\mathrm{Ex})}{=}[(x \rightarrow y) \rightarrow(x \rightarrow z)] \rightarrow(y \rightarrow(x \rightarrow z)) \\
& \quad \stackrel{(\mathrm{M})}{=}[y \rightarrow(x \rightarrow y)] \rightarrow[((x \rightarrow y) \rightarrow(x \rightarrow z)) \rightarrow(y \rightarrow(x \rightarrow z))] \\
& \quad \stackrel{(\mathrm{BB})}{=} 1 .
\end{aligned}
$$

Hence

$$
\begin{equation*}
(x \rightarrow y) \rightarrow(x \rightarrow z) \leq x \rightarrow(y \rightarrow z) \tag{3.2}
\end{equation*}
$$

Applying (An), from (3.1) and (3.2), we get (pimpl).
(vi) follows from Proposition 6.4 (i) of [5].
(vii) By Lemma 2.4, \mathcal{A} satisfies (An) and (D). Let $x, y, z \in A$. We have

$$
\begin{array}{r}
((x \rightarrow y) \rightarrow x) \rightarrow x \stackrel{(\mathrm{Com})}{=}(x \rightarrow(x \rightarrow y)) \rightarrow(x \rightarrow y) \\
\quad \stackrel{(\mathrm{pimpl})}{=} x \rightarrow((x \rightarrow y) \rightarrow y) \stackrel{(\mathrm{D})}{=} 1 .
\end{array}
$$

Therefore, $(x \rightarrow y) \rightarrow x \leq x$. On the other hand, from (K) we see that $x \leq(x \rightarrow y) \rightarrow x$. Applying (An), we get (Im).

Lemma 3.3 ([15], Lemma 3.8). Let $\mathcal{A}=(A, \rightarrow, 1)$ be an algebra of type $(2,0)$. Then

$$
(\mathrm{Re})+(\mathrm{Com})+(\operatorname{Im})+(\mathrm{BB}) \Longleftrightarrow(\operatorname{Re})+(\mathrm{Com})+(\operatorname{Im})+(\mathrm{Ex})
$$

As in the case of BCK algebras, we now define:
Definition 3.4. An RML algebra \mathcal{A} is called implicative if it satisfies (Im).

Example 3.5 ([15], Example 3.24). Consider the set $A=\{a, b, c, d, 1\}$ and the operation \rightarrow given by the following table:

\rightarrow	a	b	c	d	1
a	1	b	b	d	1
b	a	1	a	a	1
c	1	1	1	1	1
d	a	1	1	1	1
1	a	b	c	d	1

We can observe that the properties (Im), (Re), (M) and (L) are satisfied. Hence, $(A, \rightarrow, 1)$ is an implicative RML algebra. It does not satisfy (An) for $(x, y)=(c, d) ;(\mathrm{Ex})$ for $(x, y, z)=(a, b, d) ;(\operatorname{Tr})$ for $(x, y, z)=(d, c, a)$; $\left.{ }^{* *}\right)$ for $(x, y, z)=(a, d, c)$.
Example 3.6. Let $A=\{a, b, c, 1\}$ and \rightarrow be defined as follows:

\rightarrow	a	b	c	1
a	1	b	b	1
b	a	1	1	1
c	1	1	1	1
1	a	b	c	1

It is easy to check that the properties $(\operatorname{Im}),(\operatorname{Re}),(\mathrm{M}),(\mathrm{L})$ and (Ex) are satisfied; (An) is not satisfied for $x=b, y=c ;\left({ }^{* *}\right)$ is not satisfied for $x=a$, $y=b, z=c$. Therefore, $(A, \rightarrow, 1)$ is an implicative BE algebra without (An) and (**).
Example 3.7. Consider the set $A=\{a, b, c, 1\}$ and the operation \rightarrow given by the following table:

\rightarrow	a	b	c	1
a	1	b	c	1
b	a	1	1	1
c	a	1	1	1
1	a	b	c	1

The algebra $\mathcal{A}=(A, \rightarrow, 1)$ satisfies properties (Im), (Re), (M), (L), (Ex), ${ }^{(* *)}$. It does not satisfy (An) for $(x, y)=(b, c)$. Hence, \mathcal{A} is an implicative BE** algebra without (An).
Example 3.8 ([15], Example 3.34). Let $A=\{a, b, c, 1\}$ and \rightarrow be defined as follows:

\rightarrow	a	b	c	1
a	1	b	b	1
b	a	1	a	1
c	1	1	1	1
1	a	b	c	1

We can observe that the properties (Im), (An), (Re), (M), (L), (BB) and (Ex) are satisfied. Therefore, $\mathcal{A}=(A, \rightarrow, 1)$ is an implicative BCK algebra.

Denote by im-RML the class of all implicative RML algebras. Similarly, if \mathbf{X} is a subclass of the class RML, then im- \mathbf{X} denotes the class of all implicative algebras belonging to \mathbf{X}. Examples $3.5-3.8$ show that

```
im-BCK }\subseteq\mathrm{ im-aBE** }\subset im-BE** \subset im-BE \subset im-RML
```

Proposition 3.9 ([15], Proposition 3.14). Let $\mathcal{A}=(A, \rightarrow, 1)$ be an algebra verifying (Re), (D), (**) and (Im). Then

$$
\begin{equation*}
y \leq x \Longrightarrow(x \rightarrow y) \rightarrow y \leqslant x \tag{3.3}
\end{equation*}
$$

for all $x, y \in A$.
Theorem 3.10. If $\mathcal{A}=(A, \rightarrow, 1)$ is an implicative $B E^{* *}$ algebra, then \mathcal{A} is commutative if and only if it satisfies (An).
Proof. Let \mathcal{A} be an implicative $\mathrm{BE}^{* *}$ algebra. If \mathcal{A} is commutative, then \mathcal{A} satisfies (An) by Lemma 2.4 (i). Conversely, suppose that (An) holds in \mathcal{A}. From Lemma 2.1 (iii)-(v) it follows that \mathcal{A} satisfies (Tr), (D) and (K). By Proposition 3.9, \mathcal{A} satisfies (3.3). Let $x, y \in A$. From (K) we have $x \leq(y \rightarrow x) \rightarrow x$. Applying $\left({ }^{* *}\right)$ twice, we obtain

$$
\begin{equation*}
(x \rightarrow y) \rightarrow y \leq(((y \rightarrow x) \rightarrow x) \rightarrow y) \rightarrow y . \tag{3.4}
\end{equation*}
$$

By (D), $y \leq(y \rightarrow x) \rightarrow x$, and hence, using (3.3), we get

$$
\begin{equation*}
(((y \rightarrow x) \rightarrow x) \rightarrow y) \rightarrow y \leq(y \rightarrow x) \rightarrow x . \tag{3.5}
\end{equation*}
$$

Since \mathcal{A} satisfies (Tr), from inequalities (3.4) and (3.5) we have

$$
(x \rightarrow y) \rightarrow y \leq(y \rightarrow x) \rightarrow x .
$$

Hence, by (An), we obtain (Com).
Proposition 3.11. In aBE** algebras, we have

$$
(\mathrm{Im}) \Longleftrightarrow(\mathrm{Com})+(\mathrm{pimpl}) .
$$

Proof. Let $\mathcal{A}=(A, \rightarrow, 1)$ be an aBE** algebra. Assume that \mathcal{A} satisfies (Im). From Theorem 3.10 we conclude that (Com) holds in \mathcal{A}. Applying Lemma 2.4 (iii), we see that \mathcal{A} satisfies (BB). By Proposition 3.2 (v), (pimpl) holds in \mathcal{A}.

Conversely, suppose that \mathcal{A} satisfies (Com) and (pimpl). By Lemma $2.1(\mathrm{v}),(\mathrm{Re})+(\mathrm{L})+(\mathrm{Ex})$ imply (K). Then, from Proposition 3.2 (vii) we deduce that \mathcal{A} satisfies (Im).

Remark 3.12. Since every BCK algebra is an aBE** algebra, from Proposition 3.11 we obtain Theorem 9 of [8].

Corollary 3.13. Any implicative aBE** algebra is a commutative BCK algebra.

Proof. Let \mathcal{A} be an implicative aBE** algebra. By Proposition 3.11, \mathcal{A} is commutative. From Lemma 3.3 we see that \mathcal{A} verifies (BB). Hence \mathcal{A} is a BCK algebra.

Remark 3.14. Note that from Corollary 3.13 we deduce that $\mathbf{i m - B C K}=$ im-aBE**.

By Proposition 3.2 (i) and (ii), we obtain:
Proposition 3.15. An algebra $\mathcal{A}=(A, \rightarrow, 1)$ is an implicative $B E$ algebra if and only if it satisfies the equations (Re), (Ex) and (Im).
Lemma 3.16. If $\mathcal{A}=(A, \rightarrow, 1)$ is an implicative $B E^{* *}$ algebra, then it satisfies the following condition:
(W) $\quad(((y \rightarrow x) \rightarrow x) \rightarrow z) \rightarrow(y \rightarrow z)=1$.

Proof. By Lemma 2.1 (iv), \mathcal{A} satisfies (D). Let $x, y, z \in A$. From (D) it follows that $y \leq(y \rightarrow x) \rightarrow x$. Applying $\left({ }^{(* *)}\right.$, we obtain $((y \rightarrow x) \rightarrow x) \rightarrow$ $z \leq y \rightarrow z$. Hence we have (W).

The next theorem shows that the class of implicative BE** algebras is a variety.
Theorem 3.17. An algebra $\mathcal{A}=(A, \rightarrow, 1)$ is an implicative $B E^{* *}$ algebra if and only if it satisfies the equations (Re), (Ex), (Im) and (W).
Proof. If \mathcal{A} is an implicative $\mathrm{BE}^{* *}$ algebra, then it satisfies (Re), (Ex), (Im) and, by Lemma 3.16, (W).

Conversely, let \mathcal{A} satisfy (Re), (Ex), (Im) and (W). Obviously, \mathcal{A} is an implicative BE algebra. To prove (${ }^{* *}$), let $x, y, z \in A$ and $y \leq x$. By (M) and (W), $x \rightarrow z \leq y \rightarrow z$, that is, \mathcal{A} satisfies (${ }^{* *)}$. Thus \mathcal{A} is an implicative BE** algebra.

Recall the definition of Tarski algebras. A Tarski algebra is an algebra $\mathcal{A}=(A, \rightarrow, 1)$ of type $(2,0)$ satisfying the following axioms ([9]): for all $x, y, z \in A$,
(T1) $1 \rightarrow x=x$,
(T2) $x \rightarrow x=1$,
(T3) $(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$,
(T4) $x \rightarrow(y \rightarrow z)=(x \rightarrow y) \rightarrow(x \rightarrow z)$.
Note that (T1) is (M), (T2) is (Re), (T3) is (Com) and (T4) is (pimpl).
Theorem 3.18. Let $\mathcal{A}=(A, \rightarrow, 1)$ be an algebra of type $(2,0)$. The following conditions are equivalent:
(i) \mathcal{A} is an implicative aBE** algebra,
(ii) \mathcal{A} satisfies $(\mathrm{Re})+(\mathrm{Com})+(\mathrm{Im})+(\mathrm{Ex})$,
(iii) \mathcal{A} satisfies $(\mathrm{Re})+(\mathrm{Com})+(\operatorname{Im})+(\mathrm{BB})$,
(iv) \mathcal{A} is a Tarski algebra.

Proof. (i) implies (ii) and (ii) implies (iii) by Proposition 3.11 and Lemma 3.3 , respectively. Now let \mathcal{A} satisfy (Re), (Com), (Im) and (BB). By Proposition 3.2 (i), (Re) + (Im) imply (M), thus, $(\mathrm{T} 1)=(\mathrm{M})$ holds. By Lemma 2.4 (i), (Com) + (M) imply (An); then, by Proposition 3.2 (v), $(\mathrm{Re})+(\mathrm{Im})+(\mathrm{BB})+(\mathrm{An})$ imply $($ pimpl $)$; thus, $(\mathrm{T} 4)=($ pimpl $)$ holds. Consequently, \mathcal{A} is a Tarski algebra.

Finally, let \mathcal{A} satisfy (M), (Re), (Com) and (pimpl). By Lemma 2.4 (i), (Com) $+(\mathrm{M})$ imply (An); thus, (An) holds. By Proposition 3.2 (vi), (Re) + (pimpl) imply (L); thus, (L) holds. By Proposition 3.2 (iv), (Re) + (M) $+($ pimpl $)+(A n)$ imply (Ex); thus, (Ex) holds.

By Lemma 2.4 (iii), (Com) $+(\operatorname{Re})+(\mathrm{L})+(\mathrm{Ex})$ imply (BB); then, by Lemma 2.1 (i), (M) + (BB) imply $\left({ }^{(* *)}\right.$; thus, $\left({ }^{* *}\right)$ holds. By Lemma 2.1 $(\mathrm{v}),(\operatorname{Re})+(\mathrm{L})+(\operatorname{Ex})$ imply (K); then, by Proposition $3.2($ vii $),(\mathrm{M})+$ $(\mathrm{K})+(\mathrm{Com})+($ pimpl) imply (Im); thus (Im) holds.

Consequently, \mathcal{A} is an implicative aBE** algebra, that is, (i) holds.
Corollary 3.19. Let \mathcal{A} be an implicative aBE algebra satisfying (Tr). Then \mathcal{A} is a Tarski algebra.

Proof. By Lemma 2.1 (vi), \mathcal{A} satisfies (**). Then \mathcal{A} is an implicative aBE** algebra. From Theorem 3.18 we see that \mathcal{A} is a Tarski algebra.
Remark 3.20. If \mathcal{A} is an algebra satisfying (M) and (*), then it also satisfies (Tr) by Lemma 2.1 (vii). Therefore, implicative aBE algebras with $\left({ }^{*}\right)$ are Tarski algebras.
Open Problem 3.21. Is there an implicative aBE algebra not satisfying (Tr)?

References

[1] Abbott, J. C., Semi-boolean algebras, Mat. Vesnik 4 (1967), 177-198.
[2] Çiloğlu, Z., Çeven, Y., Commutative and bounded BE-algebras, Algebra 2013, Article ID 473714, 5 pp. https://doi.org/10.1155/ 2013/473714.
[3] Imai, Y., Iséki, K., On axiom system of propositional calculi. XIV, Proc. Japan Acad. 42 (1966), 19-22. https://doi.org/10.3792/pja/1195522169.
[4] Iorgulescu, A., Algebras of logic as BCK algebras, Academy of Economic Studies Press, Bucharest, 2008.
[5] Iorgulescu, A., New generalizations of BCI, BCK and Hilbert algebras - Part I, J. Mult.-Valued Logic Soft Comput. 27 (2016), 353-406.
[6] Iorgulescu, A., New generalizations of BCI, BCK and Hilbert algebras - Part II, J. Mult.-Valued Logic Soft Comput. 27 (2016), 407-456.
[7] Iséki, K., On BCI-algebras, Math. Semin. Notes 8 (1980), 125-130.
[8] Iséki, K., Tanaka, S., An introduction to the theory of BCK-algebras, Math. Japon. 23 (1) (1978/79), 1-26.
[9] Jun, Y. B., Kang, M. S., Fuzzifications of generalized Tarski filters in Tarski algebras, Comp. Math. Appl. 61 (2011), 1-7.
[10] Kim, H. S., Kim, Y. H., On BE-algebras, Sci. Math. Jpn. 66 (2007), 113-128.
[11] Meng, J., Jun, Y. B., BCK algebras, Kyung Moon Sa Company, Seoul, 1994.
[12] Meredith, C. A., Formal Logics, Oxford, 2nd ed., 1962.
[13] Tanaka, S., A new class of algebras, Math. Semin. Notes 3 (1975), 37-43.
[14] Walendziak, A., On commutative BE-algebras, Sci. Math. Jpn. 69 (2009), 281-284.
[15] Walendziak, A., The implicative property for some generalizations of BCK algebras, J. Mult.-Valued Logic Soft Comput. 31 (2018), 591-611.
[16] Walendziak, A., The property of commutativity for some generalizations of BCK algebras, Soft Comput. 23 (2019), 7505-7511.
[17] Yutani, H., On a system of axioms of commutative BCK-algebras, Math. Semin. Notes 5 (1977), 255-256.

Andrzej Walendziak
Faculty of Exact and Natural Scieces
Siedlce University
3 Maja 54, 08-110 Siedlce
Poland
e-mail: walent@interia.pl
Received August 11, 2022

[^0]: 2010 Mathematics Subject Classification. 03G25, 06A06.
 Key words and phrases. BE algebra, BE** algebra, BCK algebra, commutativity, implicativity.

