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Three types of reproducing kernel
Hilbert spaces of polynomials

Abstract. In this paper we will investigate reproducing kernel Hilbert spaces
of polynomials of degree at most n with three different inner products: given
by an integral with a weight, given by the sum of products of values of a
polynomial at n + 1 points and given by the sum of products of coefficients
of the same power. In the first case we will show that the reproducing kernel
depends continuously on deformation of an inner product in a precisely defined
sense. In the second and third case we will give a formula for the reproducing
kernel.

1. Preliminaries. The problem of orthogonal polynomials for an integral
inner product with continuous weights of integration and for an inner prod-
uct defined as a product of values of polynomials at n+ 1 given points was
widely investigated (see e.g. [1, 2, 6]). The problem of different reproducing
kernels on a Hilbert space of polynomials of degree at most n, however,
was not considered. The so-called “discrete polynomial kernel” (see [4])
uses the concept of functions defined on countable domains and therefore is
a different idea.
Let H be a Hilbert space of functions defined on U with values in K,
where K is the field of real or complex numbers. Let ⟨−|·⟩ be its inner
product (i.e. we assume complex conjugation in the first variable) and ∥ · ∥
be its norm.
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Reproducing kernel of H is a function (if exists) K : U ×U → K such
that K(z, ·) ∈ H and〈

K(z, ·)
∣∣∣f(·)〉〈K(z, ·)

∣∣∣f(·)〉 = f(z)

for any f ∈ H and any z ∈ U (reproducing property).
Functionals of point evaluation are functionals

Ez : U ∋ z 7→ f(z) ∈ K.

It is well known that

Proposition 1.1. H is equipped with a reproducing kernel if and only if all
functionals of point evaluation are continuous.

Proof. Indeed, if functionals of point evaluation are continuous, then by
the Riesz representation theorem for any Ez there exists ez ∈ H such that

⟨ez|f⟩ = f(z)

for any f ∈ H and any z ∈ U . The function K(z, w) := ez(w) is the
reproducing kernel of H.
On the other hand, if K is the reproducing kernel of H, then

|f(z)| =
∣∣∣〈K(z, ·)

∣∣∣f〉∣∣∣ ≤ ∥∥∥K(z, ·)
∥∥∥ · ∥f∥

=
√〈

K(z, ·)
∣∣∣K(z, ·)

〉
· ∥f∥ =

√
K(z, z)∥f∥,

by the reproducing property, Hölder’s inequality and by the reproducing
property again, so functionals of point evaluation are continuous. □

In particular all finite-dimensional Hilbert spaces of functions are repro-
ducing kernel Hilbert spaces. Indeed, any linear operator between two finite-
dimensional Banach spaces is continuous, so it applies also to any functional
of point evaluation. There are, however, infinite-dimensional Hilbert spaces
of functions which are not equipped with a reproducing kernel. Some ex-
amples can be found in [5] or [7].
Another consequence of the Riesz representation theorem is the fact that
the reproducing kernel of H, if it exists, is given by the formula

K(z, w) :=
∑
i∈I

φi(z)φi(w),

where
{φi}i∈I

is an orthonormal basis of H.
It is well known that for any reproducing kernel we have

K(z, z) ≥ 0
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for any z ∈ U . Indeed, by the reproducing property and the fact that norm
of any element is non-negative, we have

K(z, z) =
〈
K(z, ·)

∣∣∣K(z, ·)
〉
≥ 0.

This fact will be used frequently in what follows without further recalling.

Theorem 1.1. Let H be equipped with the reproducing kernel. If K(z, z) ̸=
0, then

kz(·) :=
K(z, ·)
K(z, z)

is the only element of H with the following properties:
(i) kz(z) = 1;
(ii) if mz ∈ H, mz(z) = 1 and ∥mz∥ ≤ ∥kz∥, then mz = kz. Moreover,

∥kz∥ =
1√

K(z, z)
.

Proof. By the reproducing property and the Cauchy–Schwarz inequality,
for any f ∈ H, z ∈ U we have

|f(z)| = |⟨K(z, ·)|f⟩| ≤ ∥K(z, ·)∥ · ∥f∥,
i.e.

(1) |f(z)| ≤
√
K(z, z)∥f∥.

Moreover,
√
K(z, z) is the smallest possible constant for which inequality

(1) holds. Indeed, let Ez : H ∋ f 7→ f(z) ∈ C be the functional of point
evaluation. By the Riesz correspondence theorem,

∥Ez∥∗ =
∥∥∥K(z, ·)

∥∥∥
µ
,

but ∥∥∥K(z, ·)
∥∥∥ =√K(z, z).

Clearly, by definition,
∥∥∥Kµ(z, ·)

∥∥∥
µ
is the smallest constant for which inequal-

ity (1) holds.
Now we have

1√
K(z, z)

≤ ∥f∥
|f(z)|

=

∥∥∥∥ f

f(z)

∥∥∥∥ .
But ∥∥∥∥∥K(z, w)

K(z, z)

∥∥∥∥∥ = 1√
K(z, z)

,

by the reproducing property. To end the proof we need only to show that
if ∥mz∥µ = ∥kz∥µ, then mz = kz. Note that for fz := 1

2(mz + kz) we have
fz(z) = 1 and

∥fz∥ =

∥∥∥∥12(mz + kz)

∥∥∥∥ ≤ 1

2
(∥mz∥+ ∥kz∥) = ∥kz∥.
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On the other hand, we have shown above that

∥fz∥ ≥ ∥kz∥,

so ∥fz∥ = ∥kz∥. Since in our case the triangle inequality is in fact the
equality and each Hilbert space is strictly convex, there exists α ∈ C such
that mz = αkz. Thus ∥∥∥∥12(mz + kz)

∥∥∥∥ =
1

2
(α+ 1)∥kz∥.

Since
∥fz∥ = ∥kz∥,

we see that α = 1 and in conclusion mz = kz. □

Now we investigate the case in which f(z) = 0 for each f ∈ H and some
z ∈ U .

Theorem 1.2. The following conditions are equivalent for a point z ∈ U :
(i) f(z) = 0 for any f ∈ H;
(ii) K(z, z) = 0;
(iii) K(z, ·) ≡ 0.

Proof. (i) ⇒ (ii) If for some z ∈ U we have f(z) = 0 for any f ∈ H, then
in particular for g(·) = K(z, ·) we have g(z) = 0.
(ii) ⇒ (iii) Because

∥K(z, ·)∥ =
√
K(z, z) = 0,

we conclude that Kµ(z, ·) ≡ 0.
(iii) ⇒ (i) By the reproducing property, for any f ∈ H we have

f(z) =
〈
K(z, ·)

∣∣∣f〉 = ⟨0|f⟩ = 0. □

Note that since for any z ∈ R there exist polynomials f such that
f(z) ̸= 0, if H is the space of polynomials of degree at most n and K is its
reproducing kernel, then K(z, z) > 0, no matter what the inner product is.
That property will be used in what follows without further recalling.

Proposition 1.2. Let H be a reproducing kernel Hilbert space and the func-
tion equal to 1 everywhere be its element. Then

K(z, z) ≥ 1

∥1∥2
.

Proof. By the reproducing property, Cauchy’s inequality and by the repro-
ducing property again,

1 = |⟨K(z, ·)|1⟩| ≤ ∥K(z, ·)∥ · ∥1∥ =
√

K(z, z)∥1∥. □
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2. RKHS of polynomials with an integral inner product. Let µ :
R → R be a measurable function such that:
(i) µ(w) ≥ 0 a.e.;
(ii) µ is bounded from above;
(iii) there exists a set X with the Lebesgue measure greater than 0 such
that µ(w) > 0 for any w ∈ X;
(iv) µ has the compact support.
Such a function will be called a weight.
In this section we will consider the Hilbert space Pn(R) of all polynomials
of degree at most n equipped with the inner product

⟨f |g⟩µ :=

∫
R
f(w)g(w)µ(w)dw.

We will use the symbol
∥f∥µ

for the norm generated by this inner product.
For example, for the weight µ being the indicator function of the interval

[0, 1], {
1, 2

√
3x−

√
3
}

is an orthonormal basis of P1(R) equipped with the inner product ⟨·|·⟩µ and

K(z, w) = 12zw − 6z − 6w + 4

is the reproducing kernel of this space.
We could also consider the case of weights not bounded from above, but
in such a situation some polynomials may not be elements of our space.
Note also that in the case of weighted Bergman and Szegö spaces (see [5,
7]), if a weight “goes to zero” at some point too quickly, then there is no
reproducing kernel of the corresponding weighted space. In our case any
weight is admissible, i.e. for any weight there exists the reproducing kernel
of the corresponding weighted space.

Theorem 2.1. Let W (R) be the set of weights on R equipped with the
topology of almost everywhere convergence. The map

W (R) ∋ µ 7→ Kµ(z, ·) ∈ Pn(R)

is continuous.

Note that since all topologies generated by norms on a finite-dimensional
space are the same, we can conclude that reproducing kernels converge in
supx∈[a,b] | · | or Lp([a, b]) metric.

Proof. First let us note that the map

Φ : Pn(R)× Pn(R)×W (R) ∋ (f, g, µ) 7→ ⟨f |g⟩µ ∈ R
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is continuous. Indeed, if fn → f , gn → g in norm, then in particular these
sequences converge pointwise and if also µn → µ almost everywhere, then
by Lebesgue’s dominated convergence theorem∫

R
fngnµndw →

∫
R
fgµdw.

(Remember that all weights are bounded from above and have compact
supports.)
The orthogonal projection of f ̸= 0 ∈ Pn(R) onto g ∈ Pn(R) with respect
to the inner product ⟨·|·⟩µ is given by

P (f, g, µ) :=
⟨f |g⟩µ
⟨g|g⟩µ

g =
Φ(f, g, µ)

Φ(g, g, µ)
g,

so
P : (f, g, µ) 7→ P (f, g, µ) ∈ Pn(R)

is continuous, because scalar multiplication is continuous in any normed
space.
Now let {Ψ1, . . . ,Ψn} be an arbitrary orthonormal basis for Pn(R)
equipped with the inner product ⟨·|·⟩µ0 for some weight µ0. In this case

ϕ1 :=
Ψ1

∥Ψ1∥µ
=

Ψ1√
Φ(Ψ1,Ψ1, µ)

,

ϕk :=
Ψk −

∑k−1
i=1 P (Ψk, ϕi, µ)

∥Ψk −
∑k−1

i=1 P (Ψk, ϕi, µ)∥µ
is an orthonormal basis for Pn(R) equipped with the inner product ⟨·|·⟩µ.
Each element of this basis depends continuously on deformation of an inner
product. Indeed, for

ϕ1 : W (R) ∋ µ 7→ ϕ1(µ) ∈ Pn(R)

we have

ϕ1(µ) :=
Ψ1

∥Ψ1∥µ
=

Ψ1√
Φ(Ψ1,Ψ1, µ)

,

so ϕ1(µ) is continuous, because scalar multiplication in any normed space
is continuous.
Now let k > 1. Then

ϕk : W (R) ∋ µ 7→ ϕk(µ) ∈ Pn(R)

is a continuous function. Indeed, by induction if ϕk−1 is continuous, then
also the value of

Q(µ) := Φ

(
Ψk −

k−1∑
i=1

P (Ψi, ϕi, µ),Ψk −
k−1∑
i=1

P (Ψi, ϕi, µ), µ

)
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depends continuously on µ as a composition and difference of continuous
functions. Therefore also

ϕk(µ) =
Ψk −

∑k−1
i=1 P (Ψi, ϕi, µ)

Q(µ)

is continuous, because addition and scalar multiplication are continuous in
any normed space.
Finally

Kµ(z, ·) :=
n∑

i=1

ϕi(µ)(z)ϕi(µ)(·)

depends continuously on µ, because addition and scalar multiplication are
continuous in any normed space. □

Note that for any z ∈ R there exists a polynomial f of degree at most n
such that f(z) ̸= 0. Therefore by Theorem 1.2, for any weight µ it is always
true that Kµ(z, z) > 0.

Theorem 2.2. Let µ1, µ2 be weights on R, such that µ1 ≤ µ2 a.e. Then
for any z ∈ R we have

Kµ2(z, z) ≤ Kµ1(z, z).

Proof. First let us recall that Kµ1(z, z) and Kµ2(z, z) are greater than 0.
By Theorem 1.1, it is true that

1

Kµ1(z, z)
=

∫
R

∣∣∣∣Kµ1(z, w)

Kµ1(z, z)

∣∣∣∣2 µ1(w)dw ≤
∫
R

∣∣∣∣Kµ2(z, w)

Kµ2(z, z)

∣∣∣∣2 µ1(w)dw.

Since µ1 ≤ µ2,∫
R

∣∣∣∣Kµ2(z, w)

Kµ2(z, z)

∣∣∣∣2 µ1(w)dw ≤
∫
R

∣∣∣∣Kµ2(z, w)

Kµ2(z, z)

∣∣∣∣2 µ2(w)dw.

Because ∫
R

∣∣∣∣Kµ2(z, w)

Kµ2(z, z)

∣∣∣∣2 µ2(w)dw =
1

Kµ2(z, z)
,

in conclusion we have
1

Kµ1(z, z)
≤ 1

Kµ2(z, z)
,

which ends the proof. □

Theorem 2.3. Let Kµ be the reproducing kernel of Pn(R) equipped with the
inner product ⟨·|·⟩µ. Then for any z ∈ R we have

Kµ(z, z) ≥
1∫

R µ(w)dw
.

Proof. It is just a simple consequence of Proposition 1.2. □
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3. Inner product as a sum of products of values in n points. It
is well known that values at any n points define a polynomial of degree at
most n − 1 uniquely. Moreover, a non-zero polynomial of degree at most
n− 1 can have no more than n− 1 zeroes. Therefore the following formula

(2) ⟨f |g⟩x1,x2,...,xn
:=

n∑
i=1

f(xi)g(xi),

for any pairwise different x1, x2, . . . , xn ∈ R is an inner product on Pn−1(R).
The norm generated by this inner product will be denoted by ∥ · ∥x1,x2,...,xn .
Note that although only values at points x1, x2, . . . , xn matter for poly-
nomials, the reproducing kernel is a polynomial of two variables defined for
any (z, w) ∈ R2. In particular we can “reproduce” values of polynomials at
any point z ∈ R, not only at points z ∈ {x1, x2, . . . , xn}.
For example,

φ1(w) :=

√
2

2
,

φ2(w) :=

√
2

|x1 − x2|
w −

√
2

2

(x1 + x2)

|x1 − x2|
is an orthonormal basis for P1(R) equipped with ⟨·|·⟩x1,x2 and therefore the
reproducing kernel of P1(R) is equal to

Kx1,x2(z, w) =
2∑

i=1

φi(z)φi(w)

=
1

2
+

1

|x1 − x2|2

(
2zw − (x1 + x2)(z + w) +

1

2
(x1 + x2)

2

)
.

In fact we can prove

Theorem 3.1. The reproducing kernel of Pn−1(R) equipped with the inner
product (2) is given by

Kx1,x2,...,xn(z, w) =
n∑

i=1

∏
1≤j≤n, j ̸=i

(z − xj)(w − xj)

(xi − xj)2
.

Before we proceed, we will show some lemmas. We will also simplify
notation ⟨·|·⟩x1,x2,...xn to ⟨·|·⟩ and Kx1,x2,...,xn to K when it is not misleading.

Lemma 3.1. Let z, w ∈ {x1, x2, . . . , xn}. Then

Kx1,x2,...,xn(z, w) =

{
1 for z = w;

0 for z ̸= w.

Note that since only values at n points matter for polynomials, we can
treat our space as Rn. The reproducing kernel of Rn is given by the very
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same formula. The reproducing kernel of Pn−1(R), however, is a polynomial
defined for any z, w ∈ R, not only for z, w ∈ {x1, x2, . . . , xn}.

Proof of Lemma 3.1. Let z = xj for some j. By the reproducing prop-
erty, for a polynomial f which takes value 0 at points xi for i ̸= j and
non-zero value at xj , we have

⟨K(z, ·)|f⟩ = f(xj).

On the other hand,

⟨K(z, ·)|f⟩ =
n∑

i=1

K(z, xi)f(xi) = K(z, xj)f(xj).

We conclude that K(z, z) = 1.
Now let us take a polynomial g such that g(xi) ̸= 0 for any xi. By the
reproducing property,

⟨K(z, ·)|g⟩ = g(xj).

On the other hand, since K(z, z) = 1,

⟨K(z, ·)|g⟩ =
n∑

i=1

K(z, xi)g(xi) =
n∑

i=1, i ̸=j

K(z, xi)g(xi) + g(xj)

and since the result does not depend on choice of a polynomial g, we con-
clude that

K(xi, xj) = 0

for i ̸= j. □

Lemma 3.2 (Lagrange interpolation formula). The unique polynomial of
degree at most n − 1 such that f(x1) = y1, . . . , f(xn) = yn for pairwise
different xi ∈ R is given by

f(w) :=
n∑

i=1

 ∏
1≤j≤n, j ̸=i

w − xj
xi − xj

 yi.

For more details see e.g. [3].

Proof of Theorem 3.1. For a given xi, K(xi, ·) is a polynomial of degree
at most n−1. By Lemma 3.1, we know its values at n points {x1, x2, . . . , xn}.
By the Lagrange interpolation formula

Pxi(w) := K(xi, w) =
∏

1≤j≤n, j ̸=i

w − xj
xi − xj

.

Now we can think ofK(z, w) as a polynomial of variable z with values Pz(w)
dependent on w. Since we know values Pz(w) for n different values of z,
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we can find the unique polynomial with these properties. By the Lagrange
interpolation formula again:

K(z, w) =

n∑
i=1

 ∏
1≤j≤n, j ̸=i

z − xj
xi − xj

Pxi(w)

=

n∑
i=1

∏
1≤j≤n, j ̸=i

(z − xj)(w − xj)

(xi − xj)2
. □

Theorem 3.2. Let {x1, x2, . . . , xn, xn+1} ⊂ R be a set of pairwise different
numbers. Let Kx1,x2,...,xn be the reproducing kernel of Pn−1(R) equipped with
the inner product ⟨·|·⟩x1,x2,...,xn and Kx1,x2,...,xn+1 be the reproducing kernel of
Pn(R) equipped with the inner product ⟨·|·⟩x1,x2,...,xn+1. Then for any z ∈ R

Kx1,x2,...,xn(z, z) ≥ Kx1,x2,...,xn+1(z, z).

Proof. By the reproducing property,

1√
Kx1,x2,...,xn(z, z)

=
n∑

i=1

∣∣∣∣Kx1,x2,...,xn(z, xi)

Kx1,x2,...,xn(z, z)

∣∣∣∣2 .
By Theorem 1.1, we have

n∑
i=1

∣∣∣∣Kx1,x2,...,xn(z, xi)

Kx1,x2,...,xn(z, z)

∣∣∣∣2 ≤ n∑
i=1

∣∣∣∣Kx1,x2,...,xn+1(z, xi)

Kx1,x2,...,xn+1(z, z)

∣∣∣∣2 .
Obviously

n∑
i=1

∣∣∣∣Kx1,x2,...,xn+1(z, xi)

Kx1,x2,...,xn+1(z, z)

∣∣∣∣2 ≤ n+1∑
i=1

∣∣∣∣Kx1,x2,...,xn+1(z, xi)

Kx1,x2,...,xn+1(z, z)

∣∣∣∣2 .
By the reproducing property again,

n+1∑
i=1

∣∣∣∣Kx1,x2,...,xn+1(z, xi)

Kx1,x2,...,xn+1(z, z)

∣∣∣∣2 = 1√
Kx1,x2,...,xn+1(z, z)

. □

Theorem 3.3. Let K be the reproducing kernel of Pn−1(R) equipped with
the inner product ⟨·|·⟩x1,x2,...,xn. Then for any z ∈ R we have

K(z, z) ≥ 1

n
.

Proof. It is just a simple consequence of Proposition 1.2. □

4. Inner product as a sum of products of coefficients of the same
power. On the vector space Pn(R) of polynomials of degree at most n over
R we can define the inner product

⟨f |g⟩ :=
n∑

i=0

aibi,
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where

f(x) =

n∑
i=0

aix
i

and

g(x) =
n∑

i=0

bix
i.

As any finite-dimensional topological vector space, this space is complete.
From the definition it follows that〈

aix
i|bjxj

〉
=

{
aibj , i = j;

0, i ̸= j.

In particular, the set {
1, x, x2, . . . , xn

}
is an orthonormal basis and

K(z, w) := 1 + zw + z2w2 + · · ·+ znwn

is the reproducing kernel of Pn(R).
We can also consider weighted inner product, i.e. the inner product〈 n∑

i=0

aix
i

∣∣∣∣ n∑
i=0

bix
j

〉
µ

:=
n∑

i=0

aibiµi

for any vector µ = (µ0, . . . , µ1) ∈ Rn+1 for which µ0, µ1, . . . , µn are positive
numbers. In this case the set{

1
√
µ0

,
x

√
µ1

,
x2
√
µ2

, . . . ,
xn
√
µn

}
is an orthonormal basis and

K(z, w) :=
1

µ0
+

1

µ1
zw +

1

µ2
z2w2 + · · ·+ 1

µn
znwn

is the reproducing kernel of such a space.

5. Concluding remarks. In the paper we have analyzed the Hilbert space
of polynomials of degree at most n with three different inner products. All
these inner products generate the same topology — a sequence of polyno-
mials converges in any one of them if and only if coefficients converge to
corresponding coefficients. Moreover, since in the second and third consid-
ered Hilbert space a polynomial is identified with n numbers, these Hilbert
spaces can be treated as Rn. That is an additional structure — a reproduc-
ing kernel — which makes these three spaces different.
Note also that in any set

Ax := {f ∈ Pn(R) | f(x) = c}, x ∈ R
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there is exactly one element with the minimal norm, no matter what the
inner product is. (See Theorem 1.1 and remember that for any c ̸= 0 the
linear operator Ac := cf is a bijection with the property ∥Acf∥ = |c| · ∥f∥.)
Moreover, such an element “does not change too much” with deformation
of an inner product.
To “reproduce” values of a polynomial using the integral inner product
we need to know its values almost everywhere. To “reproduce” values of a
polynomial of degree at most n − 1 using the inner product defined as the
sum of products of values of polynomials at n points we need only to know
its values at n points. To “reproduce” values of a polynomial using the last
inner product we need to know its coefficients.
Note also that for any point z ∈ R there exists a polynomial f of any
non-negative degree such that f(z) ̸= 0 and therefore by Theorem 1.2,
K(z, z) > 0, no matter what the inner product is.
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