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ABSTRACT. In this paper we study some distance properties of outerplanar
graphs with the Hamiltonian cycle whose all bounded faces are cycles isomor-
phic to the cycle C4. We call this family of graphs quadrangular outerplanar
graphs. We give the lower and upper bound on the double branch weight and
the status for this graphs. At the end of this paper we show some relations
between median and double centroid in quadrangular outerplanar graphs.

1. Introduction. Let G = (V(G), E(G)) be a simple, finite and connected
graph without loops. Let w : V(G) U E(G) — R™ be a weight function.
The pair (G, w) is called a weighted graph. For a path P in G, the weight
length of P, denoted by l,,(P), is defined by

Ww(P)= Y wle).

e€E(P)

For any two vertices z,y € V(G), the weight distance between x and y,
denoted by dy(x,y), is defined as

dy(z,y) = min{l,(P)},

where the minimum is taken over all paths P joining z and y.
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For any vertex = of G, the status of z, denoted by s(x), is defined by

s@= 3 wy)duly,o).

yeV(G)
The status of G, denoted by S(G), is defined as
S(G) = min{s(z) : z € V(G)}.

The median of G, denoted by M;(G), is the set of vertices in G with the
smallest status, i.e.,

Mi(G) = {t € V(G) : s(t) = S(G)}.

The second median of G, denoted by Ma(G), is the set of vertices in G with
the second smallest status, i.e.,

My(G) ={t e V(G) — M1(G) : s(t) < s(z) for all x € V(G) — M1(G)}.
The weight of the graph G, denoted by w(G), is defined by

w(G) = Y w).

zeV(G)

Let S C V(G). By G — S we denote the graph obtained from G by
deleting all vertices of S with the edges incident to S. For notation and
terminology not defined in this paper, the reader is referred to [1].

Authors of the papers [2]-[14] studied medians, centroids and other spe-
cial sets of vertices of graphs. Most of the results they obtained for trees,
unicyclic graphs and some other classes of graphs. The subject is related to
network location problems. First we recall some previous results relevant to
trees. Let (T, w) be a weighted tree. For the tree T we have the following
definitions.

For any vertex x of the weighted tree T', the branch weight of x, denoted
by bw(x), is the maximum weight of any component of T—{x}. The centroid
of T, denoted by C;(T), is the set of vertices in 7" with the smallest branch
weight. The second centroid of T, denoted by Ca(T), is the set of vertices
in T with the second smallest branch weight.

Zelinka in [14] proved the following interesting results.

Theorem 1.1 (Zelinka [14]). A tree has in median either exactly one vertex,
or exactly two vertices joined by an edge.

Theorem 1.2 (Zelinka [14]). Any tree with constant weight function has
its median equal to its centroid.

Kariv and Hakimi studied weighted trees and discovered the following
relation between centroid and branch weight.
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Theorem 1.3 (Kariv, Hakimi [5]). Let (T, w) be a weighted tree and x be
a vertex in T. Then x is in centroid of T if and only if

bw(z) < %w(T).

For unweighted trees the above result was also proved by Szamkotowicz
[12]. Recently Lin and Shang described the property of the second median
and the second centroid in weighted trees.

Theorem 1.4 (Lin, Shang [7]). Let (T, w) be a weighted tree with w(e) = 1
for each e € E(T). Then

Ms(T) = Co(T).

Now we present some interesting result of Lin et al. [8]. They proved the
lower and upper bound on the status of a connected unweighted graph G
in terms of some spanning trees of G. So we need the following notions and
notations.

Let T be a unweighted rooted tree with the root z. In this case w(z) =
w(e) = 1 for each vertex x € V(T') and each edge e € E(T). Then the
height of T is defined as

height(T) = max{d(z,z) : x € V(T)},

where d(z,x) is a distance between z and x.

Let height(T) > 2 and suppose that [ is an integer greater or equal to 2.
The tree T is called a balanced I-tree if degr(x) = for each x € V(T') with
d(z,x) < height(T) — 2. A balanced I-tree of order n is denoted by B, ;.

For integers n > [ > 2, the Il-grass Gy, is the graph with

V(Gng) =A{z1,22,..., 25}
and
E(Gng)={ziziq1:1=1,2,... ., n—0}U{zp_j112j: j=n—14+2,n—1+3,...,n}.
Note that G),; has n vertices and has a vertex with degree ! (more specific
deg(zn—1+1) =1).

Theorem 1.5 (Lin, et al. [8]). Let G be a connected graph of order n and
with maximum degree | > 2. Then

Furthermore, the lower bound is attained if and only if G contains some bal-
anced l-tree By, ; as a spanning subgraph, and if the upper bound is attained,
then G contains the l-grass Gy, ; as a spanning subgraph.

We extend some of the results to a subclass of weighted outerplanar
graphs. For this purpose we define some additional notions and notations.
Let G = (V(G), E(G)) be a weighted outerplanar graph.
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For any two vertices = and y of G, where {z,y} € E(G), we define the
edge double branch weight of an edge {z,y}, denoted by dbw({x,y}), as the
maximum weight of any component of G —{z,y}. The double branch weight
of G, denoted by DBW (G), is defined as

DBW(G) = min{dbw({z,y}) : 2,y € V(G), {z,y} € BG)}.
The vertex double branch weight of a vertex x € V(G) we define as follows
dbw* () = min{dbw({z,y}) : y € V(G),{x,y} € E(G)}-

The double centroid of G, denoted by DC(G), is the set of vertices in G
with the smallest vertex double branch weight. The second double centroid
of G, denoted by DC3(G), is the set of vertices in G with the second smallest
vertex double branch weight. The minimal separator of G, is the subgraph
of G, which is composed of two vertices x,y and the edge {x,y} such that
dbw({z,y}) = DBW(G), where z,y € DC}(G). The union of minimal sep-
arators of G, denoted by M S(G), is the subgraph of G, which is composed of
vertices from DC1(G) and edges {z,y} such that dbw({z,y}) = DBW(QG),
where z,y € DC1(G).

Let us consider the following example to understand the above definitions.

Example 1.6. Consider the weighted outerplanar graph G with 12 vertices,
w(e) = 1 for each e € E(G) and w(z) = 1 for each x € V(G) presented in
Figure 1.

T4 I5
L6
G: (M o7 MS(G) :

11

Ts

T1 T12 11
Z10 9
FIGURE 1. The graph G with M S(G).
We see that

Mi(G) = {x6,x11} and My(G) = {x3,x12},

DCl(G) = {1‘6,1‘11} and DCQ(G) = {1'3,1‘8,1‘12}.
Additionally we have
DBW(G) =6
and M S(G) is a subgraph presented in Figure 1.
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2. Main results for the family of quadrangular outerplanar graphs.
We study some distance properties of weighted outerplanar graphs with the
Hamiltonian cycle whose all bounded faces are cycles isomorphic to the cycle
Cy4. We call these graphs quadrangular outerplanar graphs.

Let (G,w) be a weighted quadrangular outerplanar graph of order n >
3. Notice that n is even for these graphs. We begin this section with
a theorem which states that the set of vertices with the smallest vertex
double branch weight is composed of two, three or four vertices. Next we
prove the lower and upper bound of double branch weight DBW (G) and
give an algorithm for constructing quadrangular outerplanar graphs with
some interesting properties. The last theorem concerns bounds for status
S(G). At the end of this section we define a distance between median and
double centroid and try to find some relations between them in quadrangular
outeplanar graphs.

Let us start from a theorem that the cardinality of double centroid for
quadrangular outerplanar graphs belongs to the set {2,3,4}.

Theorem 2.1. Let (G,w) be a weighted quadrangular outerplanar graph
with n vertices and let w(x) = ¢ for each x € V(G), where ¢ is a constant
positive real number. Then the double centroid of graph G consists of two,
three or four vertices which lie in the same cycle Cy. Moreover, the union
of minimal separators of graph G has one of five possible structures:
(i) a path Ps,
(ii) two disjoint copies of a path Py (both paths lie in the same quadrangle
as proper subgraph of Cy),
(iii) a path Ps (edges lie in the same quadrangle as a proper subgraph of
C4)7
(iv) a path Py (edges lie in the same quadrangle as a proper subgraph of
04);
(v) a cycle Cy.

Proof. Let (G,w) be a weighted quadrangular outerplanar graph with n
vertices, w(z) = ¢ for each z € V(G), where ¢ is a constant positive real
number.

By definition we get that the double centroid of any outerplanar graph
consists of at least two vertices which are adjacent. It is easy to construct
quadrangular outerplanar graph for which the union of minimal separators
has the structure Ps, 2P,, P3, P, or Cy. The five respective constructions are
presented in Figures 2-6, where graphs G, G5 are components constructed
by deleting the cut vertex set {z,y} from the graph G.
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G: 4
)ml DQ(
Gl — — GQ
—k—
vertices

FIGURE 2. Quadrangular outerplanar graph of order n > 6
with the path P» = zy as the union of minimal separators;

_ n—2
k=152,

G :
JE3
G1—> z %GQ
—k—
vertices

FIGURE 3. Quadrangular outerplanar graph of order n >
8 with two disjoint paths P, (xy and zw) as the union of

minimal separators; k = ”7_4
<+ m vertices
. e v
’ > Z <
Yy 64
L
k vertices —

FIGURE 4. Quadrangular outerplanar graph of order n > 8
with the path P; = zyz as the union of minimal separators;
k,m — even natural numbers such that £ > m and n =

2(k+m) + 4.
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k vertices —

m vertices

o

Yy r
L
T
k vertices —

FIGURE 5. Quadrangular outerplanar graph of order n > 10
with the path Py = xyzw as the union of minimal separators;
k,m — even natural numbers such that £ > m and n =

3k+m+4.
<« k vertices
N
MN<~———

L=
) |©

k vertices —

FIGURE 6. Balanced quadrangular outerplanar graph of or-

der n with the cycle Cy as the union of minimal separators.

This structure can be obtained only for n = 4 mod 8; k =
n—4

1 -

Now we prove that the minimal separators of quadrangular outerplanar
graph can not lie in different cycles Cy. It implies the fact that the double
centroid can not be composed of more than four vertices. Observe that for
n > 4 minimal separator can not lie on the Hamiltonian cycle. Consider
two cases.

Case 1. First we show that the minimal separators can not lie in different
cycles Cy and be separable. Assume that it is not true. Let {x,y} and
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{z,w}, where z,y,z,w € V(G), be two minimal separators of graph G such
that
Elp,qE{:c,y,z,w} d(pa Q) > 2bc,

where d(p, q) is the weight distance between vertices p and q.
Now let G1, G2 be components of G — {x,y} and G, G4 be components
of G — {z,w}. Observe that by definition

{z,y} ¢ Gy and {z,w} ¢ Gjy.
Assume, without loss of generality, that
{z,y} € G3 and {z,w} € Gs.

Note that
G1 C G3 and G4 C Gs.
Thus
|Gs| > |G1| + 4 and |Ga| > |G4| + 4.
Since {x,y} and {z,w} are minimal separators, then we have two possibili-
ties
G1| = |Gal or |Ga| = |Gs].
Since both separators are disjoint, then there exists an edge {s,t}, where
s,t € V(QG) such that G5 and G¢ are components of G — {s, ¢} and without

loss of generality « or y € G5 and z or w € Gg. So the following inequalities
are true

(2.1) |G1] < |G5] < |G3],

(2:2) |Ga| < |Gg| < [Gal.

We have to consider two subcases.
Case 1.1. DBW(G) = ¢|G1| = ¢|G4|. Hence |Gi| > |G2| and |G4| >
|G3|. Then we have
o if dbw({s,t}) = ¢|Gs|, then by (2.1) we get |G5| > |G1| = |G4] >
|G3| > |G5], a contradiction,
o if dbw({s,t}) = ¢|Gg|, then by (2.2) we get |Gg| > |G1]| > |Ga| >
|G¢|, a contradiction.
Case 1.2. DBW(G) = ¢|Ga| = ¢|Gs|. Hence |G3| > |G| and |G3| >
|G4]. Then we have
o if dbw({s,t}) = ¢|Gs|, then by (2.1) we get |G5| > |G2| = |G3] >
|G5|, a contradiction,
o if dbw({s,t}) = c|Gg|, then by (2.2) we get |Gg¢| > |Ga| > |Ggl, a
contradiction.
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We obtain a contradiction. Thus our assumption is false.

Case 2. Now we show that the minimal separators which have a common
vertex can not lie in the different cycles Cy. Assume that it is not true. Let
{z,y} and {x, z}, where z,y,z € V(G) be two minimal separators of graph
G such that

{z,y} n{z, 2} = {z}.
As previous, let G1, G2 be components of G — {z,y} and G5, G4 be compo-
nents of G — {z, z}. Observe that by definition

y ¢ G1 and z ¢ Gy.
Assume, without loss of generality, that

y € Gz and z € Gs.

Note that
G1 C G3 and G4 C Gs.
Thus
|G| > |G1]| + 4 and |Ga| > |G4] + 4.
Since {x, y} and {z, z} are minimal separators, then we have two possibilities
|G| =[Gl or |G| = |G3].

Since both separators lie in different cycles C3, then there exists an edge
{z,v}, where v € V(G) such that G5 and G¢ are components of G — {z,v}
and without loss of generality y € G5 and z € Gg. So the following inequal-
ities are true

(2.3) |G| < |G5| < |G3l,

(2.4) |G4| < ‘GG‘ < ’GQ’

We have to consider two subcases, the same as in Case 1.
Case 2.1. DBW(G) = ¢|G1| = ¢|G4|. Hence |Gi| > |G2| and |G4| >
|G3|. Then we have
o if dbw({z,v}) = ¢|Gs|, then by (2.3) we get |G5| > |G1| = |G4] >
|G3| > |G5|, a contradiction,
o if dbw({z,v}) = ¢|Gs|, then by (2.4) we get |Gg| > |G1| > |G| >
|G|, a contradiction.
Case 2.2. DBW(G) = ¢|G2| = ¢|G3|. Hence |G3| > |G| and |G3| >
|G4|. Then we have
o if dbw({z,v}) = ¢|Gs|, then by (2.3) we get |G5| > |G2| = |G3| >
|G5|, a contradiction,
o if dbw({z,v}) = ¢|Gg|, then by (2.4) we get |Gg| > |Ga| > |Gg|, a

contradiction.
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We obtain a contradiction. Thus our assumption is false. All minimal
separators of a quadrangular outerplanar graph have to lie in the same
cycle Cy. O

Now we show and prove the lower and upper bound for the value of
double branch weight of weighted quadrangular outerplanar graph G. We
also give an exemplary algorithm which allows us to construct weighted
quadrangular outerplanar graphs with some properties of DBW(G) and
the union of minimal separators M.S(G).

We start from a definition of an auxiliary function. Let n be a number of
vertices in a quadrangular outerplanar graph and let Ny be a set of natural
even numbers. For n we define a function

¢ : Ng = {0,1},
by the formula

B 1, when n =0 mod 8 Vn = 6 mod 8,
N 0, when n =2 mod 8 Vn =4 mod 8.

Theorem 2.2. Let (G,w) be a weighted quadrangular outerplanar graph
with n vertices, w(x) = ¢ for each x € V(G), where ¢ is a constant real
positive number. Then we have

2 LJ < DBW(G) < (f”; 4J - (b(n)).

Moreover, let

n
sl
‘13

()

and z € {L,L +2¢,L +4c,...,U —2¢,U}.

Then for all values of z there exists a quadrangular outerplanar graph G

such that DBW (G) =

Proof. We will construct graphs which hold the above inequalities. Let
n = 4 and Cy be the smallest weighted quadrangular outerplanar graph. In

this case we have
2 [nJ P g P
c 1= c 1l = c,

(7] ) o[ )

‘We know that

DBW (Cy) = 2c.
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Thus both inequalities hold. Let n > 4. By addition of an even number of
vertices to a graph Cy, we obtain a new weighted quadrangular outerplanar
graph.

Let x and y be vertices in G such that {z,y} € F(G) and dbw({z,y}) <
dbw({z,w}) for each {z,w} € F(G) and let G1, G2 be components in G —
{z,y}. Then we have

w(G) = w(G1) + w(G2) + w(x) + w(y).
By w(z) = w(y) = ¢ we have
(2.5) w(G) = w(G1) + w(Gs2) + 2¢.

Case 1. Consider the situation when subsequent vertices are added to one
or two edges in Cy (see Figures 2 and 3). In this case the value of the double
branch weight of graph G is minimal.

We distinguish two subcases.
Case 1.1. If n is divisible by 4, then w(G1) = w(G2) + 2c and by (2.5) we
have w(G1) = $w(G).
Case 1.2. If n is not divisible by 4, then w(G1) = w(G2) and by (2.5) we
have w(G1) = w(G)—c. Thus DBW(G) = dbw({z,y}) > w(G1) = 2¢[%].
Case 2. Now consider the situation when subsequent vertices are added to
all edges in Cy4 (in balanced way if it is possible; see Figure 7). In this case
the value of the double branch weight of the graph G is maximal.

G1—> %Gg

FiGurE 7. Balanced quadrangular outerplanar graph with
the path P» = zy as a minimal separator.

We distinguish four subcases.
Case 2.1. If n = 0 mod 8, then w(G1) = 3w(G2) —2c and by (2.5) we have
w(Gy) = 3w(G) — 2e.
Case 2.2. If n = 2 mod 8, then w(G1) = 3w(G2) and by (2.5) we have
w(Gy) = 3w(G) — 3.
Case 2.3. If n =4 mod 8, then w(G1) = 3w(G2) +2c and by (2.5) we have
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w(G) = 3w(G) —c.

Case 2.4. If n = 6 mod 8, then w(G1) = 3w(G3) — 4c¢ and by (2.5) we
have w(G1) = 3w(G) — 3¢. Thus DBW(G) = dbw({z,y}) < w(G1) =
c( L%J - ¢(n)) This completes the proof of the inequalities.

Now we prove the second part of Theorem 2.2. Let n > 3 be a posi-
tive even integer. An algorithm for constructing quadrangular outerplanar
graphs with value DBW (G) = z, where z € {L, L+2¢, L+4c¢, ..., U—2¢,U},
is given below. Additionally graphic structure of the union of minimal sep-
arators must be saved. Let as consider four cases.

Case A. Let n =6 mod 8.

Step A.1. Value DBW (G) = L is achieved by arrangement of all vertices
as in Figure 2.

The union of minimal separators of G has structure P». In the graph
G we use two quadrangles, [J; and [y, which have a common edge (see
Figure 2).

Step A.2. To achieve the value DBW (G) = L+ 2c¢ we delete four furthest
vertices from horizontal part of the graph, delete the edges incident to them
and attach these vertices either on the quadrangle [J; or on the quadrangle
Oz as in Figure 8(a).

O
NN

Uy | O

O
D

©&—®

FIGURE 8. Quadrangular outerplanar graph of order n with
the path P» = zy as the union of minimal separators. Cut
the half-circled vertices and edges incident to them, and put
them into circled place up and down the quadrangle ;.
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Step A.3. To achieve next values L 4+ 4c¢,...,U — ¢, U we do the same as
in the step A.2. Precisely, we delete four furthest vertices from the horizon-
tal part, delete the edges connecting them with the graph and tack these
vertices on the vertical part of the graph G (up and down the quadrangle
chosen before, e.i. [J;) as in Figure 8(b).

Case B. Let n =2 mod 8.

Step B.1. To achieve values DBW(G) = L, L + 2¢,...,U — 2c we itera-
tively apply the procedure as in case A.

Step B.2. To achieve value DBW (G) = U we equinumerously add ver-
tices to all edges in the quadrangle Cy (the structure of the union of minimal
separators in this step is changed on the path Pj as in Figure 5).

Case C. Let n =0 mod 8.

Step C.1. Value DBW (G) = L is achieved by arrangement of all vertices
as in Figure 3. The union of minimal separators of G has the structure 2Ps.
In the graph G we have the quadrangle O3 (see Figure 3).

Step C.2. To achieve the value DBW(G) = L + 2c¢ we start from the
configuration presented in step C.1 and move four furthest vertices from
the horizontal part and tack them on the quadrangle [J3 as in Case A.2.

Case C.3. To achieve next values L +4c, ..., U — 2¢,U we iteratively do
the same as in the step C.2. Precisely, we move four furthest vertices and
tack them on the place up and down the quadrangle (3 as in Case A.2.
Case D. Let n =4 mod 8.

Step D.1. To achieve values DBW (G) = L, L+ 2¢,...,U — 2¢ we do the
same as in the case C.

Step D.2. To achieve value DBW (G) = U we do the same as in case B in
the step B.2 (the structure of the union of minimal separators in this step
is changed on the cycle Cy as in Figure 6). O

Remark 2.3. The algorithm presented in the proof of Theorem 2.2 gives
one of many possible ways to construct a weighted quadrangular outerplanar
graph G with the property DBW(G) = z, where z belongs to the set
presented in the Theorem 2.2.

In the next part of the main section we give the lower and upper bound
for the value of status of quadrangular outerplanar graph G. The bounds
presented in Theorem 1.5 depend on the order and maximum degree of the
graph. In our theorem these bounds depend on the order of the graph and
a weight function.

Theorem 2.4. Let (G,w) be a weighted quadrangular outerplanar graph
with n vertices and let w(e) = b for each edge e € E(G), w(x) = ¢ for each
x € V(Q), where b, c are constant positive real numbers. Then

b-c-<gn2> <S(G)<b-c-K,
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where
Z<g+2>, when n =0 mod 4,

L%J (72‘+3> + 1, when n = 2 mod 4.

Proof. Let (G,w) be a weighted quadrangular outerplanar graph with n
vertices and let w(e) = b for each edge e € E(G), w(x) = ¢ for each
z € V(G), b,c € RT. By definition we have S(G) = s(z), where z € M;(G).

First we show the lower bound. Observe that the status S(G) has a
minimum value if vertex = € M;(G) has weight distances dy,(x,v) = b for
4 vertices and dy(x,v) = 2b for § — 1 vertices, where v € V(G) and = # v.
The quadrangular outerplanar which satisfies the condition is presented in
Figure 9.

FIGURE 9. Quadrangular outerplanar graph G of order n
with minimal value of the status S(G) and M;(G) = {x}.

Since s(z) = min{s(y) : y € V(G)} = b-c- (3n—2), then S(G) > s(z) =
b-c- (%n -2).

Now we prove the upper bound. Let us start from the cycle Cy (G = Cy)
with vertices x,y, z,w. It is known that M;(Cy) = V(Cy). For Cy we have
S(Cy) = 4be.

By addition of new vertices to the cycle Cy, we obtain a new quadrangular
outerplanar graph G. Observe that the value of status S(G) is maximal if
new vertices are added symmetrically to two edges of Cy (in horizontal way).
If © € M;(Cy), then by this construction we have x € M;(G). Moreover, x
has maximal weight distances d,(z,v), where v € V(G). Figure 10 presents
this situation. We can split vertices from V(G) — {z} on two sets:

e V,(G) - vertices which are not on the same horizontal line as vertex
x (upper level),

e V;(G) - vertices which are on the same horizontal line as vertex x
(lower level).

We have
(2.6) s(x) = sy(z) + sqa(x),
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+— Vu(G)
G:
. « Va(G)
FiGURE 10. Subdivision of the vertex set of quadrangular
outerplanar graph G of order n at lower V4(G) and upper
Vu(G) horizontal lines.
where

sul@) = Y wy)dw(y,z),

yeVu(G)

sa(@) = Y w(y)du(y, o).
yEVa(G)
We have to distinguish two cases.

Case 1. Let n = 0 mod 4. Then |V,(G)| = § and |V4(G)| = § —1. Thus
n n n/n
su(a:)—bc<1+2—|—-~+1+2+3+-~+<Z+1>)—bcz (Z”)’
2

sd(:c):2bc(1+2+~-+ (%—1)) +bc% —bc(Z) .
Then by (2.6) we obtain

n/n
< = — | = .
S(G) < s(x) bc(4 (2+2>>
Case 2. Let n = 2 mod 4. Then [V, (G)| = § and |V4(G)| = 5 —1. Thus

Su(x):2bc<2+3+- < >>+bc—bc< <ZJ+> >
= 120 (1) ]3] (] 1)

Then by (2.6) we obtain

S(Q) < s(z) = be (m (’; + 3) + 1) .

This completes the proof of inequalities. O

Now let us define a distance between median and double centroid. We
also give some examples of constructions where this distance is equal to 0
or 1.

Let (G,w) be a weighted outerplanar graph with n vertices, w(e) = b for
each e € E(G), w(z) = c for each x € V(G), where b, ¢ are constant positive
real numbers. Let M;(G) be a median of the graph G and DC:(G) be a
double centroid of the graph G.
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Definition 2.5. The distance between median and double centroid of the
graph G, denoted by d*(G), is defined by

e O, Mi(G)NDCi(G) # 0,
@(G) = {d, M, (G) N DCL(G) =0,

where d = min{d,(z,y)}, and the minimum is taken over all weight dis-
tances between z € M;(G) and y € DC1(G).

Example 2.6. Let us consider a weighted quadrangular outerplanar graph
(G, w) with 12 vertices presented in Figure 1. Let w(z) = w(e) = 1 for each
x € V(G) and for each e € E(G). We have M1(G) = {x¢,r11} = DC1(G).
Thus M1(G) N DCy(G) # 0 and d*(G) = 0.

Example 2.7. Let us consider a weighted quadrangular outerplanar graph
(G,w) with n > 32 vertices, n = 0 mod 8, presented in Figure 11, where
k = 7%. Let w(z) = c for each x € V(G), w(e) = b for each e € E(G),
b,c € RT. Notice that M;(G) = {z} and DC1(G) = {y,z,w}. Hence
M,(G) N DCL(G) =0 and d*(G) = 1.

Thus we have a construction where the median and the double centroid
are two disjoint sets.

G: k — 2 vertices

FIGURE 11. Quadrangular outerplanar graph G of order n,
where n = 0 mod 8 and k = %. M;(G) N DC1(G) = 0.

By above examples we have the following corollary.

Corollary 2.8. Let b,c be constant positive real numbers. There exists
a weighted quadrangular outerplanar graph (G,w) with w(e) = b for each
e € E(G) and w(zx) = ¢ for each x € V(G), such that d*(G) € {0,1}.

We conclude with the following problem. Does there exist a weighted
quadrangular outerplanar graph (G,w) with constant weight functions on
vertices and edges, for which d*(G) > 17
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