ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXIX, NO. 1, 2015

SECTIO A

59 - 71

GRZEGORZ DYMEK

On pseudo-BCI-algebras

ABSTRACT. The notion of normal pseudo-BCI-algebras is studied and some characterizations of it are given. Extensions of pseudo-BCI-algebras are also considered.

1. Introduction. Among many algebraic structures, algebras of logic form important class of algebras. Examples of these are (pseudo-)MV-algebras, (pseudo-)BL-algebras, (pseudo-)BCK-algebras, (pseudo-)BCI-algebras and others. They are strongly connected with logic. For example, BCI-algebras introduced in [8] have connections with BCI-logic being the BCI-system in combinatory logic which has application in the language of functional programming.

The notion of pseudo-BCI-algebras has been introduced in [1] as an extension of BCI-algebras. Pseudo-BCI-algebras are algebraic models of some extension of a non-commutative version of the BCI-logic (see [5] for details). These algebras have also connections with other algebras of logic such as pseudo-BCK-algebras, pseudo-BL-algebras and pseudo-MV-algebras. More about those algebras the reader can find in [7].

The paper is devoted to pseudo-BCI-algebras. In Section 2 we give the necessary material needed in the sequel and also some new results concerning p-semisimple part and branches of pseudo-BCI-algebras. In Section 3 we consider normal pseudo-BCI-algebras, that is, pseudo-BCI-algebras X, which are the sum of their pseudo-BCK-part K(X) and p-semisimple part

²⁰¹⁰ Mathematics Subject Classification. 03G25, 06F35.

Key words and phrases. Pseudo-BCI-algebra, normal pseudo-BCI-algebra, extension of pseudo-BCI-algebra.

M(X). We illustrate this notion by interesting examples and give some characterizations of it. In this section we also construct a new pseudo-BCI-algebra being the sum of a pseudo-BCK-algebra and a p-semisimple pseudo-BCI-algebra (Theorem 3.4). Finally, in Section 4 we study extensions of pseudo-BCI-algebras.

2. Preliminaries. A pseudo-BCI-algebra is a structure $(X; \leq, \rightarrow, \sim, 1)$, where \leq is a binary relation on a set X, \rightarrow and \sim are binary operations on X and 1 is an element of X such that for all $x, y, z \in X$, we have

- (a1) $x \to y \le (y \to z) \rightsquigarrow (x \to z), \quad x \rightsquigarrow y \le (y \rightsquigarrow z) \to (x \rightsquigarrow z),$
- (a2) $x \le (x \to y) \leadsto y$, $x \le (x \leadsto y) \to y$,
- (a3) $x \leq x$,
- (a4) if $x \leq y$ and $y \leq x$, then x = y,
- (a5) $x \le y$ iff $x \to y = 1$ iff $x \rightsquigarrow y = 1$.

It is obvious that any pseudo-BCI-algebra $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ can be regarded as a universal algebra $(X; \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 0). Note that every pseudo-BCI-algebra satisfying $x \rightarrow y = x \rightsquigarrow y$ for all $x, y \in X$ is a BCIalgebra.

Every pseudo-BCI-algebra satisfying $x \leq 1$ for all $x \in X$ is a pseudo-BCK-algebra. A pseudo-BCI-algebra which is not a pseudo-BCK-algebra will be called *proper*.

Throughout this paper we will often use X to denote a pseudo-BCIalgebra. Any pseudo-BCI-algebra X satisfies the following, for all $x, y, z \in X$,

(b1) if $1 \le x$, then x = 1, (b2) if $x \le y$, then $y \to z \le x \to z$ and $y \to z \le x \to z$, (b3) if $x \le y$ and $y \le z$, then $x \le z$, (b4) $x \to (y \multimap z) = y \multimap (x \to z)$, (b5) $x \le y \to z$ iff $y \le x \multimap z$, (b6) $x \to y \le (z \to x) \to (z \to y)$, $x \multimap y \le (z \multimap x) \multimap (z \multimap y)$, (b7) if $x \le y$, then $z \to x \le z \to y$ and $z \multimap x \le z \multimap y$, (b8) $1 \to x = 1 \multimap x = x$, (b9) $((x \to y) \multimap y) \to y = x \to y$, $((x \multimap y) \to y) \multimap y = x \multimap y$, (b10) $x \to y \le (y \to x) \multimap 1$, $x \multimap y \le (y \multimap x) \to 1$, (b11) $(x \to y) \to 1 = (x \to 1) \multimap (y \multimap 1)$, $(x \multimap y) \multimap 1 = (x \multimap 1) \to (y \to 1)$, (b12) $x \to 1 = x \multimap 1$.

If $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCI-algebra, then, by (a3), (a4), (b3) and (b1), $(X; \leq)$ is a poset with 1 as a maximal element. Note that a pseudo-BCI-algebra has also other maximal elements.

Proposition 2.1 ([4]). The structure $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCIalgebra if and only if the algebra $(X; \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 0) satisfies the following identities and quasi-identity: $\begin{array}{ll} (\mathrm{i}) & (x \rightarrow y) \rightsquigarrow \left[(y \rightarrow z) \rightsquigarrow (x \rightarrow z)\right] = 1, \\ (\mathrm{ii}) & (x \sim y) \rightarrow \left[(y \sim z) \rightarrow (x \sim z)\right] = 1, \\ (\mathrm{iii}) & 1 \rightarrow x = x, \\ (\mathrm{iv}) & 1 \rightsquigarrow x = x, \\ (\mathrm{v}) & x \rightarrow y = 1 & \& \ y \rightarrow x = 1 \ \Rightarrow \ x = y. \end{array}$

Example 2.2 ([4]). Let $X = \{a, b, c, d, e, f, 1\}$ and define binary operations \rightarrow and \sim on X by the following tables:

\rightarrow	a	b	c	d	e	f	1	\rightsquigarrow	a	b	c	d	e	f	1
a	1	d	e	b	c	a	a	a	1	c	b	e	d	a	a
b	c	1	a	e	d	b	b	b	d	1	e	a	c	b	b
c	e	a	1	c	b	d	d	c	b	e	1	c	a	d	d
d	b	e	d	1	a	c	c	d	e	a	d	1	b	c	c
e	d	c	b	a	1	e	e	e	c	d	a	b	1	e	e
f	a	b	c	d	e	1	1	f	a	b	c	d	e	1	1
1	a	b	c	d	e	f	1	1	a	b	c	d	e	f	1

Then $(X; \rightarrow, \sim, 1)$ is a (proper) pseudo-BCI-algebra. Observe that it is not a pseudo-BCK-algebra because $a \not\leq 1$.

Example 2.3 ([9]). Let $Y_1 = (-\infty, 0]$ and let \leq be the usual order on Y_1 . Define binary operations \rightarrow and \sim on Y_1 by

$$x \to y = \begin{cases} 0 & \text{if } x \le y, \\ \frac{2y}{\pi} \arctan(\ln(\frac{y}{x})) & \text{if } y < x, \end{cases}$$
$$x \to y = \begin{cases} 0 & \text{if } x \le y, \\ y e^{-\tan(\frac{\pi x}{2y})} & \text{if } y < x \end{cases}$$

for all $x, y \in Y_1$. Then $(Y_1; \leq, \rightarrow, \rightsquigarrow, 0)$ is a pseudo-BCK-algebra, and hence it is a nonproper pseudo-BCI-algebra.

Example 2.4 ([3]). Let $Y_2 = \mathbb{R}^2$ and define binary operations \rightarrow and \sim and a binary relation \leq on Y_2 by

$$(x_1, y_1) \to (x_2, y_2) = (x_2 - x_1, (y_2 - y_1)e^{-x_1}),$$

 $(x_1, y_1) \rightsquigarrow (x_2, y_2) = (x_2 - x_1, y_2 - y_1e^{x_2 - x_1}),$

$$(x_1, y_1) \le (x_2, y_2) \Leftrightarrow (x_1, y_1) \to (x_2, y_2) = (0, 0) = (x_1, y_1) \rightsquigarrow (x_2, y_2)$$

for all $(x_1, y_1), (x_2, y_2) \in Y_2$. Then $(Y_2; \leq, \rightarrow, \sim, (0, 0))$ is a proper pseudo-BCI-algebra. Notice that Y_2 is not a pseudo-BCK-algebra because there exists $(x, y) = (1, 1) \in Y_2$ such that $(x, y) \nleq (0, 0)$.

Example 2.5 ([3]). Let Y be the direct product of pseudo-BCI-algebras Y_1 and Y_2 from Examples 2.3 and 2.4, respectively. Then Y is a proper pseudo-BCI-algebra, where $Y = (-\infty, 0] \times \mathbb{R}^2$ and binary operations \rightarrow and

 \rightsquigarrow and binary relation \leq are defined on Y by

$$\begin{aligned} (x_1, y_1, z_1) &\to (x_2, y_2, z_2) = \\ &= \begin{cases} (0, y_2 - y_1, (z_2 - z_1)e^{-y_1}) & \text{if } x_1 \le x_2, \\ (\frac{2x_2}{\pi} \arctan(\ln(\frac{x_2}{x_1})), y_2 - y_1, (z_2 - z_1)e^{-y_1}) & \text{if } x_2 < x_1, \end{cases} \end{aligned}$$

$$(x_1, y_1, z_1) \rightsquigarrow (x_2, y_2, z_2) = = \begin{cases} (0, y_2 - y_1, z_2 - z_1 e^{y_2 - y_1}) & \text{if } x_1 \le x_2, \\ (x_2 e^{-\tan(\frac{\pi x_1}{2x_2})}, y_2 - y_1, z_2 - z_1 e^{y_2 - y_1}) & \text{if } x_2 < x_1, \end{cases}$$

 $(x_1, y_1, z_1) \le (x_2, y_2, z_2) \Leftrightarrow x_1 \le x_2$ and $y_1 = y_2$ and $z_1 = z_2$.

Notice that Y is not a pseudo-BCK-algebra because there exists $(x, y, z) = (0, 1, 1) \in Y$ such that $(x, y, z) \nleq (0, 0, 0)$.

For any pseudo-BCI-algebra $(X; \rightarrow, \rightsquigarrow, 1)$ the set

$$K(X) = \{ x \in X : x \le 1 \}$$

is a subalgebra of X (called pseudo-BCK-part of X). Then $(K(X); \rightarrow, \rightsquigarrow, 1)$ is a pseudo-BCK-algebra. Note that a pseudo-BCI-algebra X is a pseudo-BCK-algebra if and only if X = K(X).

It is easily seen that for the pseudo-BCI-algebras X, Y_1 , Y_2 and Y from Examples 2.2, 2.3, 2.4 and 2.5, respectively, we have $K(X) = \{f, 1\}$, $K(Y_1) = Y_1$, $K(Y_2) = \{(0,0)\}$ and $K(Y) = \{(x,0,0) : x \le 0\}$.

We will denote by M(X) the set of all maximal elements of X and call it the p-semisimple part of X. Obviously, $1 \in M(X)$. Notice that $M(X) \cap K(X) = \{1\}$. Indeed, if $a \in M(X) \cap K(X)$, then $a \leq 1$ and, by the fact that a is maximal, a = 1. Moreover, observe that 1 is the only maximal element of a pseudo-BCK-algebra. Therefore, for a pseudo-BCK-algebra X, $M(X) = \{1\}$. In [2] and [3] there is shown that $M(X) = \{x \in X : x = (x \to 1) \to 1\}$ and it is a subalgebra of X.

Observe that for the pseudo-BCI-algebras X, Y_1, Y_2 and Y from Examples 2.2, 2.3, 2.4 and 2.5, respectively, we have $M(X) = \{a, b, c, d, e, 1\}, M(Y_1) = \{0\}, M(Y_2) = Y_2$ and $M(Y) = \{(0, y, z) : y, z \in \mathbb{R}\}.$

Proposition 2.6. Let X be a pseudo-BCI-algebra. Then

$$M(X) = \{x \to 1 : x \in X\}.$$

Proof. We know that

$$M(X) = \{ x \in X : x = (x \to 1) \to 1 \}.$$

Since, by (b9) and (b12), for any $x \in X$,

$$x \to 1 = ((x \to 1) \to 1) \to 1,$$

we get that $x \to 1 \in M(X)$ for any $x \in X$. Hence,

$$\{x \to 1 : x \in X\} \subseteq M(X).$$

Now, let $a \in M(X)$. Then, $a = (a \to 1) \to 1$. Putting $x = a \to 1 \in X$ we obtain that $a = x \to 1$ for some $x \in X$ and also

$$M(X) \subseteq \{x \to 1 : x \in X\}.$$

Therefore, $M(X) = \{x \to 1 : x \in X\}.$

Let X be a pseudo-BCI-algebra. For any $a \in X$ we define a subset V(a) of X as follows

$$V(a) = \{ x \in X : x \le a \}.$$

Note that V(a) is non-empty, because $a \leq a$ gives $a \in V(a)$. Notice also that $V(a) \subseteq V(b)$ for any $a, b \in X$ such that $a \leq b$.

If $a \in M(X)$, then the set V(a) is called a *branch* of X determined by element a. The following facts are proved in [3]: (1) branches determined by different elements are disjoint, (2) a pseudo-BCI-algebra is a set-theoretic union of branches, (3) comparable elements are in the same branch.

The pseudo-BCI-algebra Y_1 from Example 2.3 has only one branch (as the pseudo-BCK-algebra) and the pseudo-BCI-algebra X from Example 2.2 has six branches: $V(a) = \{a\}, V(b) = \{b\}, V(c) = \{c\}, V(d) = \{d\}, V(e) = \{e\}$ and $V(1) = \{f, 1\}$. Every $\{(x, y)\}$ is a branch of the pseudo-BCI-algebra Y_2 from Example 2.4, where $(x, y) \in Y_2$. For the pseudo-BCI-algebra Y from Example 2.5 the sets $V((0, a_1, a_2)) = \{(x, a_1, a_2) \in Y : x \leq 0\}$, where $(0, a_1, a_2) \in M(X)$, are branches of Y.

Proposition 2.7 ([2]). Let X be a pseudo-BCI-algebra and let $x \in X$ and $a, b \in M(X)$. If $x \in V(a)$, then $x \to b = a \to b$ and $x \rightsquigarrow b = a \rightsquigarrow b$.

Proposition 2.8 ([2]). Let X be a pseudo-BCI-algebra and let $x, y \in X$. The following are equivalent:

- (i) x and y belong to the same branch of X,
- (ii) $x \to y \in K(X)$,
- (iii) $x \rightsquigarrow y \in K(X)$.

Proposition 2.9 ([3]). Let X be a pseudo-BCI-algebra and let $x, y \in X$. If x and y belong to the same branch of X, then $x \to 1 = x \to 1 = y \to 1 = y \to 1$.

We have the following proposition.

Proposition 2.10. Let X be a pseudo-BCI-algebra and let $x, y \in X$. The following are equivalent:

- (i) x and y belong to the same branch of X,
- (ii) $x \to y \in K(X)$,
- (iii) $x \rightsquigarrow y \in K(X)$,

(iv) $x \to 1 = x \rightsquigarrow 1 = y \to 1 = y \rightsquigarrow 1$.

Proof. Let $x, y \in X$. By Propositions 2.8 and 2.9 and (b12) it is sufficient to prove that if $x \to 1 = y \to 1$, then $x \to y \in K(X)$, that is, (iv) \Rightarrow (ii). Assume that $x \to 1 = y \to 1$. Then, by (b11) and (b12), we have $(x \to y) \to 1 = (x \to 1) \rightsquigarrow (y \to 1) = 1$, which means that $x \to y \leq 1$. Hence, $x \to y \in K(X)$ and the proof is complete. \Box

We also have the following proposition.

Proposition 2.11. Let X be a pseudo-BCI-algebra and let $x, y \in X$. The following are equivalent:

- (i) x and y belong to the same branch of X,
- (ii) $x \to a = y \to a$ for all $a \in M(X)$,
- (ii') $x \rightsquigarrow a = y \rightsquigarrow a \text{ for all } a \in M(X),$
- (iii) $x \to a \le y \to a \text{ for all } a \in M(X),$
- (iii') $x \rightsquigarrow a \leq y \rightsquigarrow a \text{ for all } a \in M(X).$

Proof. (i) \Rightarrow (ii): Assume that $x, y \in V(b)$ for some $b \in M(X)$. Then for any $a \in M(X)$, by Proposition 2.7, we get $x \to a = b \to a = y \to a$, that is, (ii) holds.

(ii) \Rightarrow (i): If $x \to a = y \to a$ for all $a \in M(X)$, then putting a = 1 we get $x \to 1 = y \to 1$. Now, by Proposition 2.10, we obtain (i).

(ii) \Rightarrow (iii): Obvious.

(iii) \Rightarrow (ii): Let $x \to a \leq y \to a$ for all $a \in M(X)$. Then, since $x \to a \in M(X)$ by Proposition 2.7, we have that $x \to a = y \to a$ for all $a \in M(X)$. Similarly, we can prove the equivalences (i) \Leftrightarrow (ii') \Leftrightarrow (iii').

Proposition 2.12. Let X be a pseudo-BCI-algebra and let $x \in X$ and $a \in M(X)$. Then the following are equivalent:

- (i) $x \in V(a)$,
- (ii) $x \to b = a \to b$ for all $b \in M(X)$,
- (iii) $x \rightsquigarrow b = a \rightsquigarrow b$ for all $b \in M(X)$.

Proof. (i) \Rightarrow (ii): Follows by Proposition 2.7.

(ii) \Rightarrow (i): Let $x \in X$ and $a \in M(X)$. Assume that $x \to b = a \to b$ for all $b \in M(X)$. Putting b = 1 we get $x \to 1 = a \to 1$. Hence, by Proposition 2.10, x and a are in the same branch of X, that is, $x \in V(a)$.

(i) \Leftrightarrow (iii): Analogous.

Let $(X; \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCI-algebra. Then X is *p*-semisimple if it satisfies for all $x \in X$,

if
$$x \leq 1$$
, then $x = 1$.

Note that if X is a p-semisimple pseudo-BCI-algebra, then $K(X) = \{1\}$. Hence, if X is a p-semisimple pseudo-BCK-algebra, then $X = \{1\}$. Moreover, as it is proved in [3], M(X) is a p-semisimple pseudo-BCI-subalgebra of X and X is p-semisimple if and only if X = M(X).

It is not difficult to see that the pseudo-BCI-algebras X, Y_1 and Y from Examples 2.2, 2.3 and 2.5, respectively, are not p-semisimple, and the pseudo-BCI-algebra Y_2 from Example 2.4 is a p-semisimple algebra.

Proposition 2.13 ([3]). Let X be a pseudo-BCI-algebra. Then, for all $a, b, x, y \in X$, the following are equivalent:

- (i) X is p-semisimple,
- (ii) $(x \to y) \rightsquigarrow y = x = (x \rightsquigarrow y) \to y$,
- (iii) $(x \to 1) \rightsquigarrow 1 = x = (x \rightsquigarrow 1) \to 1$,
- (iv) if $x \to a = x \to b$, then a = b,
- (v) if $x \rightsquigarrow a = x \rightsquigarrow b$, then a = b,
- (vi) if $a \to x = b \to x$, then a = b,
- (vii) if $a \rightsquigarrow x = b \rightsquigarrow x$, then a = b.

3. Normal pseudo-BCI-algebras. A pseudo-BCI-algebra X is called *normal* if $X = K(X) \cup M(X)$. Otherwise, it is called *non-normal*.

Remark. Every pseudo-BCK-algebra and every p-semisimple pseudo-BCI-algebra are normal.

A pseudo-BCI-algebra X is called *strongly normal* if X is normal and $K(X) \neq \{1\}$ and $M(X) \neq \{1\}$.

Example 3.1. It is easy to see that the pseudo-BCI-algebra X from Example 2.2 is strongly normal, and the pseudo-BCI-algebra Y from Example 2.5 is non-normal.

Theorem 3.2. Let X be a pseudo-BCI-algebra. Then the following are equivalent:

- (i) X is normal,
- (ii) $((x \to 1) \to 1) \to x \in \{x, 1\}$ for any $x \in X$,
- (iii) $((x \to 1) \to 1) \rightsquigarrow x \in \{x, 1\}$ for any $x \in X$.

Proof. (i) \Rightarrow (ii): Let X be normal. Then $X = K(X) \cup M(X)$. Let $x \in X$. If $x \in K(X)$, then

$$((x \to 1) \to 1) \to x = 1 \to x = x \in \{x, 1\}.$$

If $x \in M(X)$, then

$$((x \to 1) \to 1) \to x = x \to x = 1 \in \{x, 1\}.$$

(ii) \Rightarrow (i): Let $((x \rightarrow 1) \rightarrow 1) \rightarrow x \in \{x, 1\}$ for any $x \in X$. Take $z \in X$. If $((z \rightarrow 1) \rightarrow 1) \rightarrow z = z$, then, by (b9), b(11) and (b12),

$$\begin{aligned} z \to 1 &= (((z \to 1) \to 1) \to z) \to 1 \\ &= (((z \to 1) \to 1) \to 1) \to (z \to 1) \\ &= (z \to 1) \rightsquigarrow (z \to 1) \\ &= 1 \end{aligned}$$

Hence, $z \leq 1$, that is, $z \in K(X)$. If $((z \to 1) \to 1) \to z = 1$, then, $(z \to 1) \to 1 \leq z$. Hence and by (a2) and (b12),

 $z = (z \to 1) \to 1,$

which means that $z \in M(X)$. Hence, $X = K(X) \cup M(X)$, that is, it is normal.

(i) \Leftrightarrow (iii): Analogously.

In next theorem we construct some strongly normal pseudo-BCI-algebra. But first, we prove the following lemma.

Lemma 3.3. Let X be a pseudo-BCI-algebra. Then

(i) for any
$$x \in X$$
 and $y \in K(X)$,
 $(x \to y) \to (x \to 1) = 1 = ((x \to 1) \to (x \to y)) \to 1$,
 $(x \to y) \rightsquigarrow (x \to 1) = 1 = ((x \to 1) \rightsquigarrow (x \to y)) \to 1$,
 $(x \rightsquigarrow y) \rightsquigarrow (x \rightsquigarrow 1) = 1 = ((x \rightsquigarrow 1) \rightsquigarrow (x \rightsquigarrow y)) \to 1$,
 $(x \rightsquigarrow y) \to (x \rightsquigarrow 1) = 1 = ((x \rightsquigarrow 1) \to (x \rightsquigarrow y)) \to 1$,

(ii) for any $x \in K(X)$ and $a \in M(X)$, $x \to a = a = x \rightsquigarrow a = (a \to x) \to 1 = (a \rightsquigarrow x) \to 1$,

(iii) if $X = K(X) \cup M(X)$, then $a \to x = a \to 1 = a \rightsquigarrow x$ for any $a \in M(X) \setminus \{1\}$ and $x \in K(X)$.

Proof. (i) Let $x \in X$ and $y \in K(X)$. By (b1) and (b6), $(x \to y) \to (x \to 1) = 1$. Then, by (b10), $1 = (x \to y) \to (x \to 1) \le ((x \to 1) \to (x \to y)) \to 1$. Hence, by (b1),

$$(x \to y) \to (x \to 1) = 1 = ((x \to 1) \to (x \to y)) \to 1.$$

Next, by (b4), (b11) and (b12) we have

$$(x \to y) \rightsquigarrow (x \to 1) = x \to ((x \to y) \rightsquigarrow 1)$$
$$= x \to ((x \to 1) \rightsquigarrow (y \to 1))$$
$$= x \to ((x \to 1) \rightsquigarrow 1)$$
$$= (x \to 1) \rightsquigarrow (x \to 1)$$
$$= 1.$$

Now, it is easy to see that

$$(x \to y) \rightsquigarrow (x \to 1) = 1 = ((x \to 1) \rightsquigarrow (x \to y)) \to 1.$$

Similarly, we can prove other equations of (i).

(ii) Let $x \in K(X)$ and $a \in M(X)$. From Proposition 2.12 we immediately have that

$$x \to a = a = x \rightsquigarrow a.$$

Moreover, by (b10) and (b12), $a = x \rightarrow a \leq ((a \rightarrow x) \rightarrow 1 \text{ and } a = x \rightsquigarrow a \leq ((a \rightsquigarrow x) \rightarrow 1. \text{ Since } a \in M(X), \text{ we get (ii)}.$

(iii) Let $X = K(X) \cup M(X)$, $a \in M(X) \setminus \{1\}$ and $x \in K(X)$. By (ii), $(a \to x) \to 1 = a \neq 1$. Hence, $a \to x \notin K(X)$, that is, $a \to x \in M(X) \setminus \{1\}$. Then, $(a \to 1) \to (a \to x) \in M(X)$. But, by (i), $(a \to x) \to (a \to 1) = 1 = ((a \to 1) \to (a \to x)) \to 1$. Thus, $a \to x \leq a \to 1$ and $(a \to 1) \to (a \to x) = 1$, that is, also $a \to 1 \leq a \to x$. Therefore, $a \to x = a \to 1$. Similarly, we prove that $a \rightsquigarrow x = a \to 1$.

Remark. Note that the assumption $X = K(X) \cup M(X)$ in Lemma 3.3 (iii) is valid. Indeed, let Y be the pseudo-BCI-algebra from Example 2.5. We know that $K(Y) = \{(x, 0, 0) : x \leq 0\}$ and $M(Y) = \{(0, y, z) : y, z \in \mathbb{R}\}$. Then for x < 0 and $a_1, a_2 \in \mathbb{R}$ we have

$$(0, a_1, a_2) \to (x, 0, 0) = (0, a_1, a_2) \rightsquigarrow (x, 0, 0) = (x, -a_1, -a_2 e^{-a_1})$$

$$\neq (0, a_1, a_2) \to (0, 0, 0)$$

$$= (0, -a_1, -a_2 e^{-a_1}).$$

Theorem 3.4. Let Y be a pseudo-BCK-algebra, Z be a (proper) p-semisimple pseudo-BCI-algebra and $Y \cap Z = \{1\}$. Then there exists a unique pseudo-BCI-algebra X such that $X = Y \cup Z$, K(X) = Y and M(X) = Z.

Proof. First, the operations on Y and Z we denote by the same symbols \rightarrow and \sim . Define on $X = Y \cup Z$ binary operations \mapsto and \curvearrowright as follows

$$x \mapsto y = \begin{cases} x \to y & \text{if } x, y \in Y \text{ or } x, y \in Z, \\ y & \text{if } x \in Y \text{ and } y \in Z \setminus \{1\}, \\ x \to 1 & \text{if } x \in Z \setminus \{1\} \text{ and } y \in Y \end{cases}$$

and

$$x \sim y = \begin{cases} x \sim y & \text{if } x, y \in Y \text{ or } x, y \in Z, \\ y & \text{if } x \in Y \text{ and } y \in Z \setminus \{1\}, \\ x \sim 1 & \text{if } x \in Z \setminus \{1\} \text{ and } y \in Y. \end{cases}$$

We show that $(X; \mapsto, \uparrow, 1)$ is a pseudo-BCI-algebra. We check the conditions (i)–(v) of Proposition 2.1. Since Y and Z are pseudo-BCI-algebras, we only need checking these conditions for the elements which are not all in Y and not all in Z. Particularly, (iii) and (iv) are satisfied. Now, we prove (v). Let $x \in Y$ and $y \in Z$. Assume that $x \mapsto y = 1 = y \mapsto x$. Then, $y = x \mapsto y = 1$. This means that $x = 1 \mapsto x = 1$, that is, x = y = 1. Thus, (v) is satisfied. Next, we show the identity (i). Let $x, x_1, x_2 \in Y$ and $y, y_1, y_2 \in Z$. Then

- (1) $(x \mapsto y_1) \curvearrowright [(y_1 \mapsto y_2) \curvearrowright (x \mapsto y_2)] = y_1 \rightsquigarrow [(y_1 \to y_2) \rightsquigarrow y_2] = y_1 \rightsquigarrow y_1 = 1,$
- (2) $(y_1 \mapsto x) \curvearrowright [(x \mapsto y_2) \curvearrowright (y_1 \mapsto y_2)] = (y_1 \to 1) \rightsquigarrow [y_2 \rightsquigarrow (y_1 \to y_2)] = (y_1 \to 1) \rightsquigarrow (y_1 \to 1) = 1,$

- (3) $(y_1 \mapsto y_2) \curvearrowright [(y_2 \mapsto x) \curvearrowright (y_1 \mapsto x)] = (y_1 \to y_2) \rightsquigarrow [(y_2 \to 1) \rightsquigarrow (y_1 \to 1)] = 1,$
- (4) $(y \mapsto x_1) \curvearrowright [(x_1 \mapsto x_2) \curvearrowright (y \mapsto x_2)] = (y \to 1) \curvearrowright [(x_1 \to x_2) \curvearrowright (y \to 1)] = (y \to 1) \rightsquigarrow (y \to 1) = 1,$
- (5) $(x_1 \mapsto y) \curvearrowright [(y \mapsto x_2) \curvearrowright (x_1 \mapsto x_2)] = y \curvearrowright [(y \to 1) \curvearrowright (x_1 \to x_2)] = y \curvearrowright [(y \to 1) \rightsquigarrow 1] = y \rightsquigarrow y = 1,$
- (6) $(x_1 \mapsto x_2) \curvearrowright [(x_2 \mapsto y) \land (x_1 \mapsto y)] = (x_1 \to x_2) \land (y \rightsquigarrow y) = y \rightsquigarrow y = 1.$

Thus, (i) is also satisfied. Similarly we can prove (ii). Therefore, $(X; \mapsto, \frown, 1)$ is a pseudo-BCI-algebra.

Now, note that $x \mapsto 1 = x \to 1$ for every $x \in X$. This means that $x \mapsto 1 = 1$ if and only if $x \to 1 = 1$, and $(x \mapsto 1) \mapsto 1 = x$ if and only if $(x \to 1) \to 1 = x$. Hence, K(X) = Y and M(X) = Z.

Finally, we show uniqueness of pseudo-BCI-algebra $(X; \mapsto, \frown, 1)$. Let $(X; \mapsto, \ominus, 1)$ be a pseudo-BCI-algebra such that $X = Y \cup Z$, K(X) = Y and M(X) = Z. If $x, y \in Y$ or $x, y \in Z$, then

$$x \mapsto y = x \to y = x \mapsto y$$
 and $x \oplus y = x \rightsquigarrow y = x \frown y$.

If $x \in Y$ and $y \in Z \setminus \{1\}$, then, by Lemma 3.3,

$$x \mapsto y = y = x \mapsto y$$
 and $x \oplus y = y = x \frown y$.

If $x \in Z \setminus \{1\}$ and $y \in Y$, then, again by Lemma 3.3,

$$x \rightarrowtail y = x \rightarrowtail 1 = x \to 1 = x \mapsto y$$

and

$$x \hookrightarrow y = x \hookrightarrow 1 = x \rightsquigarrow 1 = x \frown y.$$

Therefore, $(X; \rightarrow, \rightarrow, 1) = (X; \rightarrow, \frown, 1)$.

Remark. Notice that a pseudo-BCI-algebra X constructed in Theorem 3.4 is strongly normal.

Example 3.5. Take the following pseudo-BCK-algebra $Y = \{\alpha, \beta, \gamma, 1\}$ equipped with the operations \rightarrow and \sim given by the following tables (see [6]):

\rightarrow	$\mid \alpha$	β	γ	1		\rightsquigarrow	$ \alpha $	β	γ	1
α	1	1	1	1	-	α	1	1	1	1
β	β	1	1	1		β	γ	1	1	1
γ	β	β	1	1		γ	α	β	1	1
1	α	β	γ	1		1	α	β	γ	1

and the following p-semisimple pseudo-BCI-algebra $Z = \{a, b, c, d, e, 1\}$ equipped with the operations \rightarrow and \sim given by the following tables (see [4]):

\rightarrow	a	b	c	d	e	1	\rightsquigarrow	a	b	c	d	e	1
a	1	d	e	b	c	a	a	1	c	b	e	d	a
b	c	1	a	e	d	b	b	d	1	e	a	c	b
				c			c	b	e	1	c	a	d
d	b	e	d	1	a	c	d	e	a	d	1	b	c
e	d	c	b	a	1	e	e	c	d	a	b	1	e
1	a	b	c	d	e	1	1	a	b	c	d	e	1

Then, using Theorem 3.4, we can construct the new pseudo-BCI-algebra $(X; \mapsto, \uparrow, 1)$ such that $X = Y \cup Z$ and the operations \mapsto and \uparrow are as follows:

\mapsto	α	β	γ	a	b	c	d	e	1
α	1	1	1	a	b	c	d	e	1
β	β	1	1	a	b	c	d	e	1
γ	β	β	1	a	b	c	d	e	1
a	a	a	a	1	d	e	b	c	a
b	b	b	b	c	1	a	e	d	b
c	d	d	d	e	a	1	c	b	d
d	c	c	c	b	e	d	1	a	c
e	e	e	e	d	c	b	a	1	e
1	α	β	γ	a	b	c	d	e	1
\frown	$ \alpha $	β	γ	a	b	с	d	e	1
$\frac{\alpha}{\alpha}$	$\frac{\alpha}{1}$	$\frac{\beta}{1}$	$\frac{\gamma}{1}$	$\frac{a}{a}$	b b	с с	$\frac{d}{d}$	e e	1
$\frac{\alpha}{\beta}$		'							
	1	1	1	a	b	c	d	e	1
β	$egin{array}{c} 1 \ \gamma \end{array}$	1 1	1 1	a a	b b	$c \\ c$	d d	e e	1 1
$egin{array}{c} eta \ \gamma \end{array}$	$egin{array}{c} 1 \ \gamma \ lpha \end{array}$	$\begin{array}{c} 1 \\ 1 \\ \beta \end{array}$	1 1 1	$a \\ a \\ a$	b b b	c c c	$egin{array}{c} d \\ d \\ d \end{array}$	$e \\ e \\ e$	1 1 1
$egin{array}{c} eta \ \gamma \ a \end{array}$	$egin{array}{c} 1 \ \gamma \ lpha \ a \end{array}$	$\begin{array}{c} 1 \\ 1 \\ \beta \\ a \end{array}$	$\begin{array}{c}1\\1\\1\\a\end{array}$	$egin{array}{c} a \\ a \\ a \\ 1 \end{array}$	b b b c	$egin{array}{c} c \\ c \\ c \\ b \end{array}$	$egin{array}{c} d \\ d \\ d \\ e \end{array}$	$e \\ e \\ e \\ d$	$\begin{array}{c}1\\1\\1\\a\end{array}$
$\beta\\ \gamma\\ a\\ b$	$\begin{array}{c} 1 \\ \gamma \\ \alpha \\ a \\ b \end{array}$	$\begin{array}{c}1\\1\\\beta\\a\\b\end{array}$	$\begin{array}{c}1\\1\\1\\a\\b\end{array}$	$egin{array}{c} a \\ a \\ 1 \\ d \end{array}$	b b c 1	$egin{array}{c} c \\ c \\ c \\ b \\ e \end{array}$	$egin{array}{c} d \\ d \\ e \\ a \end{array}$	$e \\ e \\ e \\ d \\ c$	$\begin{array}{c}1\\1\\a\\b\end{array}$
$egin{array}{c} eta \ \gamma \ a \ b \ c \end{array}$	$\begin{array}{c}1\\\gamma\\\alpha\\a\\b\\d\end{array}$	$\begin{array}{c}1\\1\\\beta\\a\\b\\d\end{array}$	$\begin{array}{c}1\\1\\a\\b\\d\end{array}$	$egin{array}{c} a \\ a \\ 1 \\ d \\ b \end{array}$	$egin{array}{c} b \ b \ c \ 1 \ e \end{array}$	$egin{array}{c} c \\ c \\ b \\ e \\ 1 \end{array}$	$egin{array}{c} d \\ d \\ e \\ a \\ c \end{array}$	$e \\ e \\ d \\ c \\ a$	$\begin{array}{c}1\\1\\a\\b\\d\end{array}$

and

Obviously, K(X) = Y and M(X) = Z, that is, X is strongly normal.

4. Extensions of pseudo-BCI-algebras. Let X and X^* be pseudo-BCI-algebras. If X is a subalgebra of X^* , then X^* is called an *extension* of X. If X^* is p-semisimple (respectively, strongly normal, non-normal), then X^* is called a *p*-semisimple (respectively, strongly normal, non-normal) extension of X. If $|X^* \setminus X| = 1$, then X^* is called a simple extension of X.

First, we show some simple lemma. Consider the map $p:X\to X$ such that

$$p(x) = x \to 1$$

for all $x \in X$. Obviously, $p(x) = x \rightsquigarrow 1$ for all $x \in X$. Note that Im(p) = M(X), Ker(p) = K(X) and if X is p-semisimple, then p is surjective.

Lemma 4.1. Let X be a p-semisimple pseudo-BCI-algebra. Then, for all $a \in X$, maps $f_a^{\rightarrow}, f_a^{\rightarrow}, g_a^{\rightarrow}, g_a^{\rightarrow} : X \to X$ such that

$$\begin{split} f_a^{\rightarrow}(x) &= x \to a, \\ f_a^{\sim}(x) &= x \rightsquigarrow a, \\ g_a^{\rightarrow}(x) &= a \to x, \\ g_a^{\sim}(x) &= a \to x, \end{split}$$

for all $x \in X$, are injective. Moreover, g_a^{\rightarrow} and g_a^{\rightarrow} are also surjective.

Proof. Since X is p-semisimple, immediately by Proposition 2.13, f_a^{\rightarrow} , f_a^{\sim} , g_a^{\rightarrow} , g_a^{\rightarrow} , g_a^{\sim} are injective. Moreover, for all $x \in X$, by (b4) we have

$$(g_a^{\rightarrow} \circ f_a^{\rightarrow})(x) = g_a^{\rightarrow}(x \rightsquigarrow a) = a \rightarrow (x \rightsquigarrow a)$$
$$= x \rightsquigarrow (a \rightarrow a) = x \rightsquigarrow 1$$
$$= p(x)$$

and

$$\begin{split} (g_a^{\leadsto} \circ f_a^{\rightarrow})(x) &= g_a^{\leadsto}(x \to a) = a \rightsquigarrow (x \to a) \\ &= x \to (a \rightsquigarrow a) = x \to 1 \\ &= p(x) \end{split}$$

Hence, since p is surjective, maps g_a^{\rightarrow} and g_a^{\rightarrow} are surjective.

Remark. Note that $g_a^{\rightarrow} \circ f_a^{\sim} = g_a^{\sim} \circ f_a^{\rightarrow}$ and the map p can be decomposed into an injection and a bijection.

Theorem 4.2. Let X be a p-semisimple pseudo-BCI-algebra. Then

- (i) there is no p-semisimple simple extension of X if $|X| \ge 2$,
- (ii) there is a unique strongly normal simple extension of X.
- (iii) there is no non-normal simple extension of X.

Proof. (i) Let X be a p-semisimple pseudo-BCI-algebra and $|X| \ge 2$. Assume that $X^* = X \cup \{x_0\}$ is a p-semisimple extension of X. Since $|X| \ge 2$, we can take $x \in X \setminus \{1\}$. Now, take the map $g_x^{\rightarrow} : X^* \to X^*$. By Lemma 4.1 we have $g_x^{\rightarrow}(X^*) = X^*$ and $g_x^{\rightarrow}(X) = X$. Note that $g_x^{\rightarrow}(x_0) \in X$. Indeed, if $g_x^{\rightarrow}(x_0) \in X^* \setminus X = \{x_0\}$, then $x \to x_0 = x_0 = 1 \to x_0$ and by Proposition 2.13, x = 1, which is impossible. Hence, $g_x^{\rightarrow}(x_0) \in X$. Thus, $g_x^{\rightarrow}(X^*) = g_x^{\rightarrow}(X) \cup \{g_x^{\rightarrow}(x_0)\} = X$ and we have a contradiction.

(ii) First, there is a unique (pseudo-)BCK-algebra $B_0 = \{0, 1\}$ in which the operation \rightarrow is as follows

$$\begin{array}{c|ccc} \to & 0 & 1 \\ \hline 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}$$

Now, it is sufficient to take a pseudo-BCI-algebra $X^* = B_0 \cup X$ as in Theorem 3.4. Obviously, X^* is the unique strongly normal simple extension of X.

(iii) It follows from (i) and the fact that for any pseudo-BCI-algebra Y we have $K(Y) = \{1\}$ if and only if M(Y) = Y.

Corollary 4.3. If X is a p-semisimple pseudo-BCI-algebra such that $|X| \ge 3$, then X is not a simple extension of any pseudo-BCI-algebra.

For arbitrary pseudo-BCI-algebras we have the following theorem.

Theorem 4.4 ([4]). Any pseudo-BCI-algebra has a simple extension.

Remark. Note that for a pseudo-BCI-algebra X a new element of its simple extension X^* constructed in [4] belongs to K(X). This means that if X is strongly normal (respectively, non-normal), then also X^* is strongly normal (respectively, non-normal).

References

- Dudek, W. A., Jun, Y. B., Pseudo-BCI algebras, East Asian Math. J. 24 (2008), 187–190.
- [2] Dymek, G., Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012), 73–90.
- [3] Dymek, G., p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012), 461–474.
- [4] Dymek, G., On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014), 167–187.
- [5] Dymek, G., Kozanecka-Dymek, A., Pseudo-BCI-logic, Bull. Sect. Logic Univ. Łódź 42 (2013), 33–42.
- [6] Halaš, R., Kühr, J., Deductive systems and annihilators of pseudo-BCK-algebras, Ital. J. Pure Appl. Math. 25 (2009).
- [7] Iorgulescu, A., Algebras of Logic as BCK Algebras, Editura ASE, Bucharest, 2008.
- [8] Iséki, K., An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26–29.
- Jun, Y. B., Kim, H. S., Neggers, J., On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006), 39–46.

Grzegorz Dymek Institute of Mathematics and Computer Science The John Paul II Catholic University of Lublin Konstantynów 1H 20-708 Lublin Poland e-mail: gdymek@o2.pl

Received September 9, 2014