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Solution of a functional equation
on compact groups using Fourier analysis

Abstract. Let G be a compact group, let n ∈ N \ {0, 1} be a fixed element
and let σ be a continuous automorphism on G such that σn = I. Using the
non-abelian Fourier transform, we determine the non-zero continuous solu-
tions f : G→ C of the functional equation

f(xy) +

n−1∑
k=1

f(σk(y)x) = nf(x)f(y), x, y ∈ G,

in terms of unitary characters of G.

1. Introduction. Let G be a group, let n ∈ N \ {0, 1} be a fixed element
and let σ be an automorphism on G such that σn = I, where I denotes the
identity map. We consider the functional equation

(1.1) f(xy) +
n−1∑
k=1

f(σk(y)x) = nf(x)f(y), x, y ∈ G,

where f : G → C is the function to determine. This equation, in the case
where G is abelian, has been studied by many authors (see, e.g., Shin’ya
[14, Corollary 3.12] and Stetkær [18, Theorem 14.9]). Eq. (1.1) is a gener-
alization of the following variant of d’Alembert’s functional equation

(1.2) f(xy) + f(σ(y)x) = 2f(x)f(y), x, y ∈ G,

2010 Mathematics Subject Classification. 39B52, 22C05, 43A30, 22E45.
Key words and phrases. Functional equation, non-abelian Fourier transform, represen-

tation of a compact group.



10 A. Chahbi, B. Fadli and S. Kabbaj

which was introduced and solved on semigroups by Stetkær in [20]. Some in-
formation, applications and numerous references concerning (1.2), d’Alem-
bert’s functional equation

f(x+ y) + f(x− y) = 2f(x)f(y), x, y ∈ R,

and their further generalizations can be found e.g. in ([1]–[12]; [15]–[22]).
The purpose of the present paper is to solve the functional equation

(1.1) in the case where G is a compact group and possibly non-abelian.
Our approach uses the harmonic analysis and the representation theory on
compact groups. We note that the idea of using Fourier analysis for solving
(1.1) goes back to [5].

Throughout the rest of this paper, G is a compact group with identity
element e and σ is a continuous automorphism on G such that σn = I.
By solutions (resp. representations), we always mean continuous solutions
(resp. continuous representations). We mention that also (group) characters
are assumed continuous.

2. Preliminaries. In this section, we set up some notation and conven-
tions and briefly review some fundamental facts in Fourier analysis which
will be used later.

Let dx denote the normalized Haar measure on G. Let Ĝ stand for the
set of equivalence classes of continuous irreducible unitary representations
of G. It is known that for [π] ∈ Ĝ, π is finite dimensional. We denote
its dimension by dπ. Consider Eπ = span{πij : i, j = 1, . . . , dπ} the linear
span of a matrix-valued representative of [π]. For f ∈ L2(G), the Fourier
transform of f is defined by

f̂(π) = dπ

∫
G
f(x)π(x)−1dx ∈Mdπ(C),

for all [π] ∈ Ĝ, where Mdπ(C) is the space of all dπ × dπ complex matrices.
As usual, left and right regular representations of G on L2(G) are defined

by

(Lyf)(x) = f(y−1x), (Ryf)(x) = f(xy),

respectively, for all f ∈ L2(G) and x, y ∈ G. A crucial property of the
Fourier transform is that it converts the regular representations of G into
matrix multiplications.

The following identities will be useful later:

L̂yf(π) = f̂(π)π(y)−1, R̂yf(π) = π(y)f̂(π),

for all x, y ∈ G, and π ∈ Ĝ.
For more information about the topics of this section, refer to [13, Chap-

ter 5].
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3. Main result. In this section, we solve the functional equation (1.1) by
expressing its solutions in terms of unitary characters of G. The following
lemmas derive some properties of the solutions of (1.1).

Lemma 3.1. Let f : G→ C be a non-zero solution of the functional equa-
tion (1.1). Then
(a) f(e) = 1.
(b) f ◦ σ = f .

Proof. (a) Setting y = e in (1.1) gives us nf(x)(f(e)−1) = 0 for all x ∈ G.
Since f 6= 0, then f(e) = 1.
(b) Taking x = e in (1.1), we get that

f(y) +

n−1∑
k=1

f(σk(y)) = nf(y), y ∈ G.

Interchanging y and σ(y) in the last equation, we obtain after a small com-
putation that

f(y) +

n−1∑
k=1

f(σk(y)) = nf(σ(y)), y ∈ G.

So f(σ(y)) = f(y) for all y ∈ G, i.e., f ◦ σ = f . �

Lemma 3.2. Let f : G → C be a non-zero solution of (1.1). There exists
[π] ∈ Ĝ such that f̂(π) is invertible.

Proof. Since f ◦ σ = f and σn = I, we can reformulate (1.1) to

nf(x)f = Lx−1f +
n−1∑
k=1

Rσn−k(x)f = Lx−1f +
n−1∑
l=1

Rσl(x)f, x ∈ G.

Taking the Fourier transform to the last equation and using the identities
given in Section 2, we have

(3.1) f̂(π)π(x) +
n−1∑
k=1

π(σk(x))f̂(π) = nf(x)f̂(π), x ∈ G.

Since f 6≡ 0, there exists [π] ∈ Ĝ with f̂(π) 6= 0. Now, let v be a vector
in ker f̂(π). From (3.1), we infer that f̂(π)π(x)v = 0 for all x ∈ G. So
π(x) ker f̂(π) ⊂ ker f̂(π) for all x ∈ G. Since π is irreducible and f̂(π) 6= 0,

we have kerf̂(π) = {0}. This implies that f̂(π) is bijective, thus invertible
as a matrix. �

With the use of the previous lemmas, we now describe the complete
solution of (1.1) on an arbitrary compact group. It is clear that f ≡ 0 is
a solution of (1.1), so in the following theorem we are only concerned with
the non-zero solutions.
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Theorem 3.3. The non-zero solutions f : G→ C of (1.1) are the functions
of the form

f =
1

n

n−1∑
k=0

χ ◦ σk,

where χ is a unitary character of G.

Proof. Using Lemma 3.2 and equality (3.1), we see that there exists [π] ∈ Ĝ
such that

(3.2) π(x) +

n−1∑
k=1

f̂(π)−1π(σk(x))f̂(π) = nf(x)Idπ , x ∈ G.

Taking the trace on both sides of (3.2), we obtain

tr(π(x)) +

n−1∑
k=1

tr(π(σk(x))) = ndπf(x), x ∈ G,

which abbreviates to

(3.3) f(x) =
1

ndπ

n−1∑
k=0

tr(π(σk(x))), x ∈ G.

Each term on the right hand side of (3.3) is a central function, because
trace is a central function. Hence f is central, which implies that f̂(π) is an
intertwining operator for π. But π is irreducible, so f̂(π) = µIdπ for some
µ ∈ C by Schur’s lemma. Actually µ 6= 0, because f̂(π) 6= 0. Now Eq. (3.2)
coalesces into

(3.4)
n−1∑
k=0

π(σk(x)) = nf(x)Idπ , x ∈ G.

Let (H; 〈, 〉) denote the complex Hilbert space on which the representation
π acts, and consider the set

S = {k ∈ {1, . . . , n− 1} | π ' π ◦ σk}.

We will consider two cases, S is empty or not.
In the first case, from (3.4) we get that

πij(x) +
n−1∑
k=1

(π(σk(x)))ij = 0 for i 6= j, 1 ≤ i, j ≤ dπ, x ∈ G.

Since S = ∅, we have Eπ⊥Eπ◦σk for all k = 1, . . . , n − 1. Hence πij = 0 for
i 6= j, so π is a diagonal matrix. Since π is irreducible we have dπ = 1.

In the second case, i.e. S 6= ∅, we have

(3.5) S = {s0, 2s0, . . . , Ns0} and n = (N + 1)s0,
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where s0 = minS and N = cardS. Indeed, let k ∈ S, there exists (q, r) ∈
N × N such that k = qs0 + r and 0 ≤ r < s0. From π ' π ◦ σs0 we arrive
at π ◦ σr ' π ◦ σqs0+r, so π ◦ σr ' π ◦ σk. This implies that π ' π ◦ σr.
Since 0 ≤ r < s0 and s0 = minS, we have r = 0. Then S is contained in the
set of integer multiples of s0. An additional simple inductive argument is
needed to show that S has the form S = {s0, 2s0, . . . , Ns0}. Furthermore,
π ' π ◦ σs0 is equivalent to π ' π ◦ σn−s0 . From π ' π ◦ σn−s0 we infer
that n − s0 ∈ S. Since n − s0 + s0 = n 6∈ S, we see that n − s0 is the
biggest element in S = {s0, 2s0, . . . , Ns0}, i.e., n − s0 = Ns0 and hence
n = (N + 1)s0. This finishes the proof of (3.5).

Since π ' π ◦ σs0 , there exists a unitary operator T on H such that

π ◦ σs0(x) = T ∗π(x)T, x ∈ G,

which by a simple induction gives us the more general formula

π ◦ σks0(x) = (T k)∗π(x)T k, x ∈ G, k = 1, 2, . . . .

Since T is a unitary matrix, by the spectral theorem for normal operators
applied to T, we infer that T is diagonalizable. Then H has an orthonormal
basis (e1, e2, . . . , edπ) consisting of eigenvectors of T . We write Tei = λiei
where λi ∈ C for i = 1, 2, . . . , dπ. Actually |λi| = 1, because T is unitary.
For any i = 1, 2, . . . , dπ and k = 1, 2, . . . , we compute that

(π ◦ σks0(x))ii =
〈
π ◦ σks0(x)ei, ei

〉
=

〈
(T k)∗π(x)T kei, ei

〉
=

〈
π(x)T kei, T

kei

〉
=

〈
λki π(x)ei, λ

k
i ei

〉
= λki λ

k
i 〈π(x)ei, ei〉 = |λi|

2kπii(x) = πii(x),

for all x ∈ G and k ∈ S. From (3.4), we infer that

(3.6) πii(x) +
N∑
k=1

πii(σ
ks0(x)) +

∑
k∈S

πii(σ
k(x)) = nf(x),

for all i = 1, . . . , dπ and x ∈ G, where S denotes the complement of S in
{1, . . . , n − 1}. Using (3.6) and the fact that (π ◦ σks0)ii = πii for k =
1, . . . , N, we obtain

(N + 1)πii(x) +
∑
k∈S

πii(σ
k(x)) = nf(x),

for all i = 1, . . . , dπ and x ∈ G. Then dπ = 1. Indeed, if dπ > 1, then for all
i = 2, . . . , dπ we have

(N + 1)πii +
∑
k∈S

πii ◦ σk = (N + 1)π11 +
∑
k∈S

π11 ◦ σk,
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so

(3.7) (N + 1)(πii − π11) =
∑
k∈S

(π11 − πii) ◦ σk.

Since π is not equivalent to π ◦ σk for all k ∈ S, we have Eπ⊥Eπ◦σk for all
k ∈ S. Then (3.7) implies that πii = π11 for all i = 2, . . . , dπ. But if you use
Schur’s orthogonality relations which say 1

dπ
πij is an orthonormal basis, we

get a contradiction. Then dπ = 1.
Finally, in view of these cases we deduce that dπ = 1. From dπ = 1 we

see that π is a unitary character, say π = χ, and we deduce from (3.4) that

f =
1

n

n−1∑
k=0

χ ◦ σk.

Conversely, a simple computation proves that the formula above for f
defines a solution of (1.1). �

Corollary 3.4. The non-zero solutions f : G → C of the functional equa-
tion (1.2) are the functions of the form

f =
χ+ χ ◦ σ

2
,

where χ is a unitary character of G.
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