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ABSTRACT. Some inequalities related to Jensen and Ostrowski inequalities
for general Lebesgue integral of differentiable functions whose derivatives in
absolute value are h-convex are obtained. Applications for f-divergence mea-
sure are provided as well.

1. Introduction. Let (2,4, 1) be a measurable space consisting of a set
Q, a o-algebra A of parts of 2 and a countably additive and positive measure
1 on A with values in R U {oo}. Assume, for simplicity, that [, dp = 1.
Consider the Lebesgue space

L(Q,u) = {f:Q—HRfis p-measurable and /Q\f(t)]du(t)<oo}.

For simplicity of notation we write everywhere in the sequel fQ wdp instead
of [w (t)dpu(t).

In order to provide a reverse of the celebrated Jensen’s integral inequality
for convex functions, S. S. Dragomir obtained in 2002 [37] the following
result:
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Theorem 1. Let @ : [m, M] C R = R be a differentiable convex function
on (m, M) and f : Q — [m, M] so that ®of, f, ®'of, (D' o f)-f € L(Qp).

Then we have the inequality:

0§/<I>ofdu—<1></ﬂfdu>
(1.1) /f @' o f)du - /<I>’Ofdﬂ/fdu

<sl@on-em) [ |- [ fdu‘

Corollary 1. Let ® : [m,M] — R be a differentiable convex function on
(m,M). If z; € m,M] and w; >0 (i =1,...,n) with Wy, ==Y 1" jw; =1,

then one has the counterpart of Jensen’s weighted discrete inequality:

0 S i wiq) (xz) - & <i wixi>
i=1 i=1
(1.2) < wi® () i — Y wi® (23) Y wiz;
i=1 i=1 i=1
[<I>/ (M Z w;|T; — Z w;xj|.

Remark 1. We notice that the inequality between the first and the second
term in (1.2) was proved in 1994 by Dragomir & Ionescu, see [49].

In the case of discrete measure, we have:

If f,g:Q — R are p-measurable functions and f, g, fg € L (Q, 1), then
we may consider the Cebysev functional

(1.3) T(f,g) = /Q Fodu — /ﬂ fdu /ﬂ gd.

The following result is known in the literature as the Griss inequality

(14) T(f.0) < (D =)(A=5),

provided

(1.5) —c0 <Y< f(t)<T <00, —c0<d<g(t)<A<oo
for p-a.e. t € Q.

The constant % is sharp in the sense that it cannot be replaced by a
smaller quantity.

If we assume that —oco < v < f(t) < T < oo for p-a.e. t € , then by
the Griiss inequality for ¢ = f and by the Schwarz’s integral inequality, we
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have

o [l foulo< | fra-([n)] <3

On making use of the results (1.1) and (1.6), we can state the following
string of reverse inequalities

0§/<I>ofdu—<1></ﬂfdu>
s/f ¥ o f)du— [ @0 fdp [ fu

an <hwan-voul [ i [ sala

@ (1) l/ P ([ ran) ]

(@ (M) — @ (m)] (M —m),

T=9).

[\ \

-

IN

== N

<

provided that ® : [m,M] C R — R is a differentiable convex function on
(m, M) and f:Q — [m,M] so that Do f, f, ® o f, f- (Do f)e L(Qu),
with [, du = 1.

The following reverse of the Jensen’s inequality also holds [41].

Theorem 2. Let ® : I — R be a continuous convex function on the interval
of real numbers I and m,M € R, m < M with [m,M] C I, where I is the
interior of I. If f: Q0 — R is u-measurable, satisfies the bounds

—oco<m< f(t) <M < oo for p-a.e. t €82
and such that f, ®o f € L(Q, ), then

og/Q@ofdﬂ—q></Qfdﬂ>
I R e =

< 3 (M —m) [2 (M) — @/, (m)],

where ®'_ is the left and @', is the right derivative of the convex function ®.

For other reverse of Jensen inequality and applications to divergence mea-
sures see [41].

In 1938, A. Ostrowski [80], proved the following inequality concerning
the distance between the integral mean ;- f ® (t) dt and the value @ (z),
x € [a,b)].
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For various results related to Ostrowski’s inequality see [13]-[16], [23]—-
[60], [64] and the references therein.

Theorem 3. Let ® : [a,b] — R be continuous on [a,b] and differentiable
on (a,b) such that ®" : (a,b) — R is bounded on (a,b), i.e., ||| =
sup |® (t)| < co. Then

te(a,b)
1 b 1 :c—“TH’ ? ,
(1.9) ‘Cb(x)—b_a/a f(t)dt‘g ) 1l 6w,

for all z € [a,b] and the constant  is the best possible.

Now, for v,I' € C and [a, b] an interval of real numbers, define the sets of
complex-valued functions [45]:

Ua ) (7,T)
= {f: la,b] — C | Re [(F—f(t)) (W—i)] > 0 for ae. ¢ € [a,b]}

and

Ay (1, 1)
= {f:[a,b]—)@] f(t)—% §%|F—'y| for a.e. tE[a,b]}.

The following representation result may be stated [45].

Proposition 1. For any v,I' € C, v # T', we have that UW,] (v,T) and
A[mb] (v,T) are nonempty, conver and closed sets and
(110) U[a,b] (77 F) = A[a,b] (7? F) :

On making use of the complex numbers field properties we can also state
that:

Corollary 2. For any v,I' € C, v # T', we have
U (7.T) = {f :[a,8] = C| (ReT —Re f (¢)) (Re f (t) — Re7)
(1.11) + (ImI —Im f (¢)) (Im £ (t) — Im~) >0
for a.e. t € [a,b]}.
Now, if we assume that Re (') > Re(y) and Im (T') > Im (), then we
can define the following set of functions as well:
Siap) (1,T) = {f :[a,8] = C|Re(I') = Re f (t) > Re (y) and

(1.12) Im (T') > Im f (¢t) > Im (y) for a.e. t € [a,b]}.

One can easily observe that S[mb] (7,T) is closed, convex and

(113) 0 7é S’[a,b] (77 F) - U[a,b} (’77 F) :
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The following result holds [45].

Theorem 4. Let ® : I — C be an absolutely continuous function on [a,b] C
I, the interior of I. For some v, € C, ~ # T, assume that ®' € U[a’b] (v,T)
(= Ay (1,1)). If g: Q@ — [a,b] is Lebesgue pi-measurable on 2 and such
that ®o g, g € L (2, 1), then we have the inequality

AQOQdﬂ_¢<x>_v-;</gdﬂ_x>\

5 F 7!/\9—$!du

(1.14)

[\

for any = € [a,b].
In particular, we have

r
/Cbogdﬂ_@(cﬁb)_w (/gdﬂ_aer)‘
Q 2 2 Q 2

1 b
(1.15) §2|I’—’y|/’g—a; ’dﬂ
Q
<lop-ayr—q
=7 v
and

'/Sfogdu—@(/ﬂgdu)’ *!F 7\/‘ gdu’
(1.16) <2ir—+f (/Qg%lu— (/diu> )1/2

< (b-a)r—1].

el V)

Motivated by the above results, in this paper we provide more upper
bounds for the quantity

, x € [a,b],

/g}@ogdu—@(m)

under various assumptions on the absolutely continuous function ®, which
in the particular case of x = fQ gdp provides some results connected with
Jensen’s inequality while in the general case provides some generalizations
of Ostrowski’s inequality. Applications for divergence measures are provided
as well.
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2. Preliminary Facts.

2.1. Some Identities. The following result holds [45].

Lemma 1. Let ® : I — C be an absolutely continuous function on [a,b] C I,
the interior of I. If g : Q — [a,b] is Lebesque p-measurable on 0 and such
that ®og, g € L(Q, 1), then we have the equality

/Qcpogdu—@(x)—A(/diu—x)
—/Q[(g—w)/ol ((I)/((l—s)x—i-sg)—)\)ds] dp

for any A € C and x € [a,b].
In particular, we have

(2.2) /g)(bogdu—@(x):/g[(g—x)/01¢’((1—s)x+sg)ds] dy,

for any x € [a,b].

(2.1)

Remark 2. With the assumptions of Lemma 1 we have

/Q@ogdu—<1><a—2|—b>
L[l 0ol

Corollary 3. With the assumptions of Lemma 1 we have

/Q(I)ogdu—@</ﬂgdul>
:/Q |:<g—/ggdu>/0 o/ ((1—8)/ﬂgd,u+sg> ds] d.

Proof. We observe that since g : Q — [a,b] and [, dp = 1, then [, gdu €
la,b] and by taking x = [, gdp in (2.2) we get (2.4). O

(2.3)

(2.4)

Corollary 4. With the assumptions of Lemma 1 we have

/Q<I>ogd,u—bi@/j@(w)dw—k(/ﬂgdu—a;—b)
:/Q{bla/ab [(g—x)/ol(@’((1—8)x+sg)—)\)ds} dx}du.

Proof. Follows by integrating the identity (2.1) over z € [a,b], dividing by
b — a > 0 and using Fubini’s theorem. (Il

(2.5)
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Corollafy 5. Let ® : I — C be an absolutely continuous functions on
[a,b] C I, the interior of I. If g,h : Q — [a,b] are Lebesgue p-measurable
on Q and such that ® o g, ®oh, g, h € L(Q, ), then we have the equality

/<I>ogd,u—/<I>ohd,u—)\</gd,u—/hd,u>
Q Q Q

(2.6) 7% 1
:/Q/Q[(g(t)_h(T))/O ((I)’((1—5)h(T)—}—sg(t))_A)ds]du(t)dM(T)

for any A € C and x € [a, ).
In particular, we have

/Cbogdu—/fbohdu
Q

(2.7) @ 1
:/Q/Q [(Q(t) - h(T))/0 '((1 - s)h(r) + sg(t))ds] dp(t)dp(r),

for any x € [a,b].

Remark 3. The above inequality (2.6) can be extended for two measures
as follows

/@ogd,ul—/ (I)Ohd,u,g—)\</ gd,ul—/ hdug)
Q O Qg

(2.8) "™ .
= [, J Lot [ (@@= sat0) -2 ity

for any A € C and = € [a,b] and provided that ® o g, g € L (€, p1) while
doh,he L(QQ,,U,Q).

Remark 4. If w > 0 p-almost everywhere (p-a.e.) on Q with [, wdu > 0,

wdp
Jo wdp

e Lo o [ @@=t~ 2 aw

for any A\ € C and z € [a, b], provided ® o g, g € Ly, (2, ) where

then by replacing dy with in (2.1) we have the weighted equality

(2.9)

Loy (Q, ) = {gl /legldu < OO}-

The other equalities have similar weighted versions. However, the details
are omitted.
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2.2. h-convex functions. We recall here some concepts of convexity that
are well known in the literature.
Let I be an interval in R.

Definition 1 ([61]). We say that ® : I — R is a Godunova-Levin function
or that ® belongs to the class @ (I) if ® is nonnegative and for all x,y € I
and ¢t € (0,1) we have

(2.10) B (tr+(1—t)y) < %@ () + %@ ).

Some further properties of this class of functions can be found in [50], [51],
[53], [79], [83] and [85]. Among others, its has been noted that nonnegative
monotone and nonnegative convex functions belong to this class of functions.

The above concept can be extended for functions ® : C C X — [0,00)
where C' is a convex subset of the real or complex linear space X and the
inequality (2.10) is satisfied for any vectors z,y € C and t € (0,1). If
the function & : C C X — R is nonnegative and convex, then it is of
Godunova—Levin type.

Definition 2 ([53]). We say that a function ® : I — R belongs to the class
P (I) if it is nonnegative and for all z,y € I and ¢ € [0, 1] we have

(2.11) O(te+(1—t)y) <D (z)+(y).

Obviously @ (1) contains P (I) and for applications it is important to note
that also P (I) contains all nonnegative monotone, convex and quasi-convex
functions, i.e. functions satisfying

(2.12) O (tr+ (1 —t)y) <max{P(x),P(y)}

for all z,y € I and ¢t € [0, 1].

For some results on P-functions see [53] and [81] while for quasi-convex
functions, the reader can consult [52].

Ifd:C CX — [0,00), where C is a convex subset of the real or complex
linear space X, then we say that it is of P-type (or quasi-convex) if the
inequality (2.11) (or (2.12)) holds true for z,y € C and t € [0, 1].

Definition 3 ([10]). Let s be a real number, s € (0,1]. A function @ :
[0,00) — [0,00) is said to be s-convex (in the second sense) or Breckner
s-convex if

P(tr+(1—t)y) <t°®(z)+ (1 —1)° D (y)
for all z,y € [0,00) and ¢ € [0, 1].

For some properties of this class of functions see [2], [3], [10], [11], [47],
[48], [63], [73] and [91].

In order to unify the above concepts for functions of real variable,
S. Varosanec introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in R, (0,1) C J and functions h and
® are real nonnegative functions defined in J and I, respectively.
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Definition 4 ([101]). Let h: J — [0,00) with h not identical to 0. We say
that ® : I — [0, 00) is an h-convex function if for all z,y € I we have

(2.13) Ptz+(1—t)y) <h(@t)®(zx)+h(1—-1)P(y)
for all t € (0,1).

For some results concerning this class of functions see [101], [9], [76], [90],
[89] and [99].
We can introduce now another class of functions.

Definition 5. We say that the function ® : I — [0,00) — [0,00) is of
s-Godunova-Levin type, with s € [0,1], if

(2.14) @ 1+ (1~ 1)) < @ (x) + (1_1t)3¢> ),

forallt € (0,1) and x,y € C.

We observe that for s = 0 we obtain the class of P-functions while for s =
1 we obtain the class of Godunova—Levin functions. If we denote by Qs (C)
the class of s-Godunova—Levin functions defined on C', then we obviously
have

P(C)=Qu(C) S Qs (C) CQs, (C) CQ1(C)=Q(C)

for 0 < s1 < s9 < 1.
For different inequalities related to these classes of functions, see [2]-[5],
[9], [13]-[59], [72]-[76] and [81]-[99].

3. Inequalities for |®’| being h-convex, quasi-convex or log-convex.
We use the notations

(ko an <t>)1/p <o,

. > .
HkHQ,p — lfp >1, ke Lp (Q,,u),

esssupycq |k (t)] < oo,
if p=o00, k€ Lo (2, 1)
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and

1/
(Jo 1@ )P ds) " < o,
ifp>1, e L,(0,1);
0111, =
ess suP,eo,1) [P ()] < oo,
if p=o00, ®E Loo (0,1).

The following result holds.

Theorem 5. Let ® : I — C be a differentiable function on IO, the interior
of I and such that |®’| is h-convex on the interval [a,b] C I.Ifg:Q— [a, b]
is Lebesgue p-measurable on 2 and such that ® o g, g € L(Q, ), then we
have the inequality

'/(zq)ogdu—@(x)

,
lg =l [12 @)1+ 1 0 gl -
if @' oge L(Qu);

1 _ q)/ (I)/
< [*hioasd 1o lag 10010l
0

Q
P ogeLy(Qu), p>1, ;+5=1

1
q

lo = @l [19 @)1+ 119" 0 gllo,q0] -
([ if P’ og € Lo (1)

for any x € [a,b].
In particular, we have

'/Qq)ogdu—<1></ﬂgdu)’

lg = Joo 961t |1 (Jiy 918)| + 19" 0 gl
if ®oge L(Qu);

L 19 = Jo 9dul|o, 1@ (Jo 9d)| + 19 o gl »
o RICLER R s B W

l9 = Jo 9d1ll,, [W (Jo gdu)| + 1|@’ ogl\nm} :
if ' 0g € Loo (2, 1)
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and
from—e(*5)
Q 2
Hg - a+bHQoo U(I)/ (%)‘ + (| 0 gl 1]
if®oge L(Qpu);
1 _ a+b P’ a+b + Y ,
S/ h(s) ds Hg ngH\ (45°)[ +1 long‘Q,q
0 Zf(I)OQGLq(QHUJ)ap>175+a:]-7
(33) lg = 22l [ (42)] + 19" 0 gl
if ® 0g € Loo (2, 1)

([l2 (%52)] + 112" 0 gl

" (452) [ + 12" < glllg, -
ifp>1, J+1=1

1
(b—a)/o h(s) ds

N |

[l (52)]+ 1970 gllg |-

Proof. We have from (2.2) that

/w—ﬂ
for any z € [a, b].
Utilising Holder’s inequality for the p-measurable functions F, G : 2 — C,

1/p 1/q
] / FGdu] < ( / IFlpdﬂ) ( / \G!qdu> ,
Q Q Q

p>1,1+ 4 =1, and

(3.4) ‘/‘I)ogdu O (x du,

/ "(1—s)x+sg)ds

/FGd,u‘ < esssup|F(t)|/ |G| dp,
Q teQ Q



28 S. S. Dragomir

we have

B::/\g—xl

esssup\g —z| [q ‘fo ' ((1—s)x+sg) ds)du,

1
O ((1—s)z+sg)ds|du

> (Jolg ==l dﬂ)l/p (fQ ‘fol O ((1—s)x+ sg) ds)qdu> v ,

: 1 1 _ 9.
1fp>17 5_'_6_17

IN

Jolg = =|dp esssup ‘fol ' ((1—s)z+ sg) dS) :
€
for any z € [a, b].

Since |®'| is h-convex on the interval [a, b], then we have for any t € Q
that

1
/@’((1—s)x+sg(t))ds §/ ' (1 —s)x+sg(t)|ds

0
< |# (x \/ (1-s)ds+ | (g y/

=wmwﬂvmwméh@@j

for any z € [a, b].
This implies that

J

dp

1
/0 & ((1—s)z+sg)ds

< [(nas o @+ [ o7og|a
for any x € [a, b)].

We have for any t € Q) that

(3.6)

a r q
< / ‘CD' (1—38)z+sg(t ‘ds}

< H@’(:c)\ﬂé’(g(t))ﬂ/o h(s)ds}
_ /0 h(s)ds} (@' ()] + |@' (g ()]

1
A@«me+wwm3

for any x € [a, b)].
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This implies

(/ )

(3.7) §/01h(3)ds [/Q H@’(m)\ﬂ@’(g(t))uqdu]
:/Olh(s)ds [/Q H‘I)/(:C)‘+’<I>/ogﬂqd,u]l/q

1
/0 ® ((1—38)x+sg)ds

1/q

Also
1
eStSESS;lp /0 O ((1—s)x+sg)ds
1
(3.8) < [‘CI)’ ()| +ests€s§121p‘<1>' (g (t))}]/o h(s)ds

1
[‘@’(m)‘—i—esssup‘@’og@/ h(s)ds
teQ 0

for any = € [a, b].
Making use of (3.6)—(3.8), we get the desired result (3.1). O

Remark 5. With the assumptions of Theorem 5 and if |®’| is convex on the
interval [a, b] , then fol h(s)ds = 1 and the inequalities (3.1)~(3.3) hold with
3 instead of fol h(s)ds. If |®| is of s-Godunova-Levin type, with s € [0,1)

on the interval [a,b], then 01 idt = & and the inequalities (3.1)-(3.3)

hold with - instead of fol h (s) ds.

Following [52], we say that for an interval I C R, the mapping h: [ — R
is quasi-monotone on I if it is either monotone on I = [¢,d] or monotone
nonincreasing on a proper subinterval [¢, /] C I and monotone nondecreas-
ing on [, d].

The class QM (I) of quasi-monotone functions on I provides an immediate
characterization of quasi-convex functions [52].

Proposition 2. Suppose I C R. Then the following statements are equiva-
lent for a function h: I — R:
(a) h € QM(I);
(b) on any subinterval of I, h achieves its supremum at an end point;
(¢) h is quasi-convez.

As examples of quasi-convex functions we may consider the class of mono-
tonic functions on an interval I for the class of convex functions on that
interval.
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Theorem 6. Let ® : I — C be a differentiable function on I, the interior
of I and such that |®'| is quasi-convex on the interval [a,b) C I. If g: Q —
[a,b] is Lebesque p-measurable on Q and such that ® o g, g € L(Q, ) and
®' 0g € Lo (2, 1), then we have the inequality

/@ogd,u O (x
Q

/ lg — x| max { |’ (x

gmax{‘q)

@ o d
(3.9) g‘} 8

@ oguﬂm} lg = =l

for any = € [a,b].
In particular, we have

()
(3.10) S/Q 9- /gd“‘max{‘ < )

< maax (|8 (2)], " 0 gl } o [ o

og|}

and

b
’/@ogdu—®<a+ >'
Q 2
+b +b
(3.11) S/Qg—@2 ‘maX{‘¢’<a2 )‘,}@”og\}du

< maX{‘@ (a;b> |2’ OQHQ,OO} Hg - a;b

Proof. From (3.4) we have

/@ogdﬂ O (x
Q

0,1

)< [lo=at ([ 190 =50+ s0)] ds)

g/Qw—xrmax{\@'(x)

(3.12)

@' ogl|}du,

for any z € [a, b].
Observe that

[(® 0 g) (t)] < H@’ogHQ for almost every t € Q
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and then

)

/ lg — x| max {|®' (z)|, |®" o g|} du
Q

(3.13) </Q|g_x\max{}q>f<x>\,\\@fogum}du

<1>’09HQOO}/ lg — @l dp,
’ Q
for any z € [a, b].

Using (3.12) and (3.13), we get the desired result (3.9). O

= max{‘q)' (z)

)

In what follows, I will denote an interval of real numbers. A function
f I — (0,00) is said to be log-convex or multiplicatively convex if log f
is convex, or, equivalently, if for any =,y € I and ¢t € [0, 1] one has the
inequality

(3.14) fltw+ 1=ty <[F@)[f W

We note that if f and g are convex and g is increasing, then go f is convex,
moreover, since f = exp [log f], it follows that a log-convex function is
convex, but the converse may not necessarily be true. This follows directly
from (3.14) since, by the arithmetic-geometric mean inequality we have

(3.15) F@I @I <tf @)+ 0 -] )

for all z,y € I and t € [0, 1].

Theorem 7. Let ® : I — C be a differentiable function on IO, the interior of
I and such that |®'| is log-convez on the interval [a,b] C I. If g : Q — [a,b]

is Lebesgue p-measurable on Q0 and such that ®og, ® og, g € L (Q, p) then
we have the inequality

/Q@ogd,u—q)(x)

S/ng—wlL(|<I>’og}7}‘1>’(93)!)dﬂ
<3 |19 @ [la=aldu [ lo—al|o o]

(<2 1# @I+ 19 ol 9=ty 7800 ¢ L0

(3.16)

for any x € [a,b], where L (-,-) is the logarithmic mean, namely for a, 5 > 0

a—p3
L(a,B) = Ina—Inp’ a7 B,

a, a=0.
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In particular, we have

A@OMM_¢(AQWN
<ol

)

()

1
<= <I>’</ d>/ —/d‘d +/ —/ d’(ID/o d}
(3.17) _2[ Lo )| | o= | gduldu+ | g QQM| g9l du
1
<§2 [(P’ </ gdu)’ﬂl@’og}lgw} Hg—/gdﬂ
Q ’ Q 0,1
zf@’ogeLoom,u))
and
fromes(:5)
0 9
b5 ()
0 2 2
1 a+b a-+b a+b
< = / . _a=rv /
R G T A A A (LY

1 a+b a+b
(=3 () [+ 1ol -3

if@’ogeLoo(Q,,u)>.

.1

Proof. From (3.4) we have

sAJQ—M(AW®%u—$x+amdeu

1
1—s s
S/ lg — x| </ @' (2)] 7|2 0 g d8> dy,
Q 0
for any z € [a, b].
Since, for any C' > 0, one has

1 C-1
A _
/OCd)\ =

/Qtﬁogd,u—®(x)

(3.19)
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then for any t € 2 we have

[ e o as= o w)] [
M‘,
@' (x)

o] e
3.20 2'(g(t))
( ) In @'%a:) ‘

_ e
In @ (
=L (|9 (g(t

| — 9" (@)
| = n|®" (2)|
12" @),

g(t))
g(t)
)

for any z € [a, b].
Making use of (3.19) and (3.20), we get the first inequality in (3.16).
The second inequality in (3.16) follows by the fact that

a+f

L(a,p) < 5

for any «a, 8 > 0.

The last inequality in (3.16) is obvious. O

4. Inequalities for |®’|? being h-convex or log-convex.
We have:

Theorem 8. Let @ : I — C be a differentiable function on Io, the interior
of I and such that for p > 1, ¢ > 1 with % + % =1, |®'|? is h-convez on the
interval [a,b] C 1.

If g : Q — Ja,b] is Lebesgue p-measurable on Q and such that ® o g,
g€ L(Q,pn) and ® oge Ly (2, 1), then we have the inequality

/Q<I>ogd,u—®(a?)

(41) < </01h(s)ds>l/q\|g—xug,p <}<I>'(x>\q+/ﬂ\q>'og\qdﬂ>l/q
< (/01 h(s) d5> 1/4 lg =zl (10 @)+ @ gl )

for any = € [a,b].
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In particular, we have

/chogdu—(b(/ﬂgdu>‘
([ o)
oo, ()
([ o)

ool ([ 1

(4.2) X

q 1/q
+/ | @’ oglqdu>
Q

X

and
‘/@ogdu—@<a+b)’
Q 2
1 1/q
§</ h(s)d5>
0
q 1/q
(4.3) of PR v (4 +/“1"09\qu

< (['ner) v

X‘g a+b ((I)’(a;b>‘+”®’og”97q>.
Q.,p

2
Proof. From the proof of Theorem 5 we have

‘/(I)ogd,u@(x)

/g—a:|/ (1= 5)x + 5g) ds
(/ |g—x‘pdlu>1/p</ﬂ /01<I>’((1—s)x—l—3g)dsqdu>l/q
< (/Qm—x\pdu)l/p ([([1oa=9z+sppa) du)l/q

forp>1,q>1with]%+%=1and:1;€[a,b].

dp
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Since |®'|? is h-convex on the interval [a, b], then
1
1o @ = s+ sg 0] as

< |® (x) \/ (1—s)ds+|® (g \/
- H@’@)\qﬂ@’(g(w)!q]/ h(s) ds
0

for any x € [a,b] and t € Q.

Therefore
(L(Aw®%u—@x+swwﬁ>mouq
(4.5) S<A;QH#@M“+@%gwﬂﬂljh@ﬁh>mqu
([ roa) (wer [weora)

for any z € [a, b].
This proves the first inequality in (4.1).
Now, we observe that the following elementary inequality holds:

(4.6) (a+8) =2 ()a"+p5"
forany o, >0and r >1 (0 <r<1).

Indeed, if we consider the function f, : [0,00) = R, f. (t) = (t+1)" —¢"
we have f/ (t) = r [(t—i— 1) — t“l}. Observe that for > 1 and t > 0
we have that f/ (¢) > 0 showing that f, is strictly increasing on the interval
[0,00). Now for t = 3 (8 > 0, « > 0) we have f.(t) > f(0) giving that
<% + 1>r — (%)T > 1, i.e., the desired inequality (4.6).

For r € (0,1) we have that f, is strictly decreasing on [0, co) which proves
the second case in (4.6).
Making use of (4.6) for r = 1/q € (0,1), we have

(|<I>’ (a:)‘q+/ﬂ‘q>’og‘qdu)1/q < o) + (/Q\@’Og‘qduy/q

and then we get the second part of (4.1). O
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Finally, we have:

Theorem 9. Let @ : I — C be a differentiable function on f, the interior
of I and such that forp > 1, ¢ > 1 with 1%—}—% =1, |®'|? is log-convex on the

interval [a,b] C I. If g :  — [a,b] is Lebesque p-measurable on Q@ and such
that ®og, g € L(Q,p) and ®" o g € Ly (2, p), then we have the inequality

/Q@ogd,u—q)(x)

<tostan ([ £lost o o)

1 / q ! q 1/
st l9 = alla, |0/ @["+ [ 09" d

1
77 9 = allg,, [|0' @) + 1|2 2 g, ]

A

(4.7)

for any x € [a,b].
In particular, we have

‘A@ogdu—@(/ﬂgdu)‘
ool (oo

q
9

q 1/q
)

v (fom)

(4.8) . / . / q /g
< 57 9—/gdu [(P(/gdu) +/\<I>og\ du]
Q Qp Q Q
1 / / /
< |l9— [ gdp [¢></gdu>‘+ Poyg }
21/q Q Qp Q H Hﬂ,q
and
b
froms(:29)
Q
1
<Hga+b (/L<|<I>’og‘q (I)/<a+b> q>d,u> /q
(4.9) : ? oy Mo | i
' 1 a+b a+b\|? La
< —F — P’ o' q
< g o= 5, o (50 + 1 ool
1 a+b ,(a+b ,
s
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Proof. Since |®’|? is log-convex on the interval [a, b], then
' q ' q(1-s)
[ o= s+ sqten|'as < / \cb’ <x>\ 9 (1) ds
0

= %' ()

@/
— L (e o)
for any = € [a,b] and t € Q.

Then
</Q </01 B =)o+ 59)}qu> du>1/q
< (/QL({@’ogP,}q,/ @[ dﬂ>”q

and by (4.4) we get the first inequality in (4.7).
Since, in general

|®f <f'«“)\q)

for any «a, 8 > 0,

JRACEYINLIE !)du<1/n@'og\q+\q>’ )" d

=3 [\fb’(m)(”/ﬂ\@’w(qdﬂ}

and we get the second inequality in (4.7).
The last part is obvious. g

5. Applications for f-divergence. One of the important issues in many
applications of probability theory is finding an appropriate measure of dis-
tance (or difference or discrimination) between two probability distribu-
tions. A number of divergence measures for this purpose have been pro-
posed and extensively studied by Jeffreys [67], Kullback and Leibler [74],
Rényi [87], Havrda and Charvat [65], Kapur [70], Sharma and Mittal [92],
Burbea and Rao [12], Rao [86], Lin [75], Csiszar [20], Ali and Silvey [1],
Vajda [100], Shioya and Da-Te [94] and others (see for example [77] and the
references therein).

These measures have been applied in a variety of fields such as: anthro-
pology [86], genetics [77], finance, economics, and political science [93], [96],
[97], biology [84], the analysis of contingency tables [62], approximation of
probability distributions [18], [71], signal processing [68], [69] and pattern
recognition [7], [17]. A number of these measures of distance are specific
cases of Csiszar f-divergence and so further exploration of this concept will
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have a flow on effect to other measures of distance and to areas in which
they are applied.

Assume that a set Q2 and the o-finite measure p are given. Consider the
set of all probability densities on p to be

P{plp:a-rp0z0 [pod -1},

The Kullback-Leibler divergence [74] is well known among the information
divergences. It is defined as:

(5.1) Dt (r.0) = [ p(0)1n [{;m du(t), paeP,

where In is to base e.

In information theory and statistics, various divergences are applied in
addition to the Kullback—Leibler divergence. These are: wvariation distance
D, Hellinger distance Dy [66], x2-divergence D, 2, a-divergence D, Bhat-
tacharyya distance Dp [8], Harmonic distance Dyq, Jeffrey’s distance Dy
[67], triangular discrimination Da [98], etc... They are defined as follows:

(5.2) Dy (pg) = /ﬂ p(t) — ()] du(t), p.geP;
(5.3) Dy (p,q) 32/9’\/27@)—\/(1@)‘01#(75)7 p,q €P;

60 Deta = [p0 (L) <10, vz paen

63 Dalrd) =gz |- [ O] 0@ duo)], paer

(5.6) D (p,q) = /Q Vo a@du(t), paeP;
(5.7) Dya (p,q) ¢—/deu (t), p,qe€P;
_ p(t) ,
68 Dilpa)= [ b0 -q@]n [q@)] du(t). p.qcP:
B 2
(5.9) D)= | Wdu t), pgeP.

For other divergence measures, see the paper [70] by Kapur or the online
book [95] by Taneja.
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Csiszéar f-divergence is defined as follows [21]:

(5.10) I (p.q) = /Qp(t)f [;ﬁg;] du(t), p,qeP,

where f is convex on (0,00). It is assumed that f (u) is zero and strictly
convex at © = 1. By appropriately defining this convex function, various
divergences are derived. Most of the above distances (5.1)—(5.9), are partic-
ular instances of Csiszar f-divergence. There are also many others which are
not in this class (see for example [95]). For the basic properties of Csiszar
f-divergence see [21], [22] and [100].

The following result holds:

Proposition 3. Let f: (0,00) — R be a convex function with the property
that f (1) = 0. Assume that p,q € P and there exist constants 0 <r <1 <
R < 00 such that

a(t)

p(t)

If | f'| is h-convex on the interval [r, R], then we have the inequalities

(R—r) [[®" (V) + I (p, )] ,

(5.11) r < < R for p-a.e. t € Q.

(5.12) OSIf(qu)g/lh(s)ds
0 Do (p,) [19 W1+ 1y

Proof. Applying the inequality (3.2), we have

Lépwf<ﬁg>mmw—faﬂ
g/olh(s)ds

ess SUPycq ’Iq% - 1’ [|‘I’/ W+ Jor ()

7 (45) | an )]

la = pllos [12 ()] +esssupiea | (33|

1
S/o h(s)ds
(R—=r) [[®" (V)] + i (p, )],

Dy (p,q) |19/ (1)] + ess supepy | (@)
and the inequality (5.12) is obtained. O

Consider the convex function f(x) = 2% — 1, w > 2. Then f(1) = 0,
f' () = uxz"! and |f’| is convex on the interval [r, R] for any 0 < r < 1 <
R < o0.
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Then by (5.12) we have

(R—r) [1 + Dyu-1 (p, q)] ,

1
(5.13) 0 < Dyu (p,q) < FU
Dy (p,q) (1 +R*71),
provided
TSMSRforu—a.e. te Q.
p(t)
If we consider the convex function f: (0,00) = R, f(¢) = —Int, then
q(t) p(t)
Ip,q::—/ptln[}d,ut:/ptln[ du(t
1o)== [ pOm |28 auw = [ pem |5
= Dkr (p,q) -
We have f’(t) = —1 and |f’| is convex on the interval [r, R] for any 0 < r <

1 < R < oo. If we apply the inequality (5.12) we have

(R_T) [2+DX2 (Q7p)] )

1
(5.14) 0< Dgr(p.q) <5 )
1D, (p.q),
provided
t
Tgﬁngoru—a.e. te.
p(t)
REFERENCES
[1] Ali, S. M., Silvey, S. D., A general class of coefficients of divergence of one distri-

bution from another, J. Roy. Statist. Soc. Sec. B 28 (1966), 131-142.

Alomari, M., Darus, M., The Hadamard’s inequality for s-convexr function, Int. J.
Math. Anal. (Ruse) 2, No. 13-16 (2008), 639-646.

Alomari, M., Darus, M., Hadamard-type inequalities for s-convex functions, Int.
Math. Forum 3, No. 37-40 (2008), 1965-1975.

Anastassiou, G. A., Univariate Ostrowski inequalities, revisited, Monatsh. Math.
135, No. 3 (2002), 175-189.

Barnett, N. S., Cerone, P., Dragomir, S. S., Pinheiro, M. R., Sofo, A., Ostrowski
type inequalities for functions whose modulus of the derivatives are convex and appli-
cations, in Inequality Theory and Applications Vol. 2 (Chinju/Masan, 2001), Nova
Sci. Publ., Hauppauge, NY, 2003, 19-32. Preprint: RGMIA Res. Rep. Coll. 5, No.
2 (2002), Art. 1 [Online http://rgmia.org/papers/vbn2/Paperwapp2q.pdf].
Beckenbach, E. F., Convez functions, Bull. Amer. Math. Soc. 54 (1948), 439-460.
Beth Bassat, M., f-entropies, probability of error and feature selection, Inform.
Control 39 (1978), 227-242.

Bhattacharyya, A., On a measure of divergence between two statistical populations
defined by their probability distributions, Bull. Calcutta Math. Soc. 35 (1943), 99—
109.

Bombardelli, M., VaroSanec, S., Properties of h-convex functions related to the
Hermite—Hadamard—Fejér inequalities, Comput. Math. Appl. 58, No. 9 (2009),
1869-1877.



General Lebesgue integral inequalities... 41

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]
(18]

(19]

Breckner, W. W., Stetigkeitsaussagen fir eine Klasse verallgemeinerter konvexer
Funktionen in topologischen linearen Rdumen, Publ. Inst. Math. (Beograd) (N.S.)
23 (37) (1978), 13—20.

Breckner, W. W., Orbéan, G., Continuity Properties of Rationally s-Convex Map-
pings with Values in an Ordered Topological Linear Space, Universitatea “Babes-
Bolyai”, Facultatea de Matematica, Cluj-Napoca, 1978.

Burbea, 1., Rao, C. R., On the convexity of some divergence measures based on
entropy function, IEEE Trans. Inform. Theory 28 (3) (1982), 489-495.

Cerone, P., Dragomir, S. S., Midpoint-type rules from an inequalities point of view, in
Handbook of Analytic-Computational Methods in Applied Mathematics, Anastassiou,
G. A,, (Ed.), CRC Press, New York, 2000, 135-200.

Cerone, P., Dragomir, S. S., New bounds for the three-point rule involving the
Riemann-Stieltjes integrals, in Advances in Statistics Combinatorics and Related
Areas, Gulati, C., et al. (Eds.), World Science Publishing, River Edge, N.J., 2002,
53-62.

Cerone, P., Dragomir, S. S., Pearce, C. E. M., A generalised trapezoid inequality for
functions of bounded variation, Turkish J. Math. 24 (2) (2000), 147-163.

Cerone, P., Dragomir, S. S., Roumeliotis, J., Some Ostrowski type inequalities for
n-time differentiable mappings and applications, Demonstratio Math. 32 (2) (1999),
697-712.

Chen, C. H., Statistical Pattern Recognition, Hoyderc Book Co., Rocelle Park, New
York, 1973.

Chow, C. K., Lin, C. N., Approzimating discrete probability distributions with de-
pendence trees, IEEE Trans. Inform. Theory 14 (3) (1968), 462-467.

Cristescu, G., Hadamard type inequalities for convolution of h-convex functions,
Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 8 (2010), 3-11.
Csiszar, 1. 1., Information-type measures of difference of probability distributions and
indirect observations, Studia Math. Hungarica 2 (1967), 299-318.

Csiszar, 1. 1., On topological properties of f-divergences, Studia Math. Hungarica 2
(1967), 329-339.

Csiszér, 1. 1., Korner, J., Information Theory: Coding Theorem for Discrete Mem-
oryless Systems, Academic Press, New York, 1981.

Dragomir, S. S., Ostrowski’s inequality for monotonous mappings and applications,
J. KSIAM 3 (1) (1999), 127-135.

Dragomir, S. S., The Ostrowski integral inequality for mappings of bounded variation,
Bull. Austral. Math. Soc. 60 (1) (1999), 495-508.

Dragomir, S. S., The Ostrowski’s integral inequality for Lipschitzian mappings and
applications, Comp. Math. Appl. 38 (1999), 33-37.

Dragomir, S. S., A converse result for Jensen’s discrete inequality via Gruss’ in-
equality and applications in information theory, An. Univ. Oradea Fasc. Mat. 7
(1999,/2000), 178-189.

Dragomir, S. S.; On the midpoint quadrature formula for mappings with bounded
variation and applications, Kragujevac J. Math. 22 (2000), 13-18.

Dragomir, S. S., On the Ostrowski’s inequality for Riemann—Stieltjes integral, Ko-
rean J. Appl. Math. 7 (2000), 477-485.

Dragomir, S. S., On the Ostrowski’s integral inequality for mappings with bounded
variation and applications, Math. Inequal. Appl. 4 (1) (2001), 59-66.

Dragomir, S. S., On the Ostrowski inequality for Riemann—Stieltjes integral
f: f(t)du(t) where f is of Holder type and u is of bounded variation and appli-
cations, J. KSIAM 5 (1) (2001), 35-45.



42

S. S. Dragomir

(31]
(32]

33]

(34]

Dragomir, S. S., On a reverse of Jessen’s inequality for isotonic linear functionals,
J. Ineq. Pure Appl. Math. 2, No. 3, (2001), Art. 36.

Dragomir, S. S., Ostrowski type inequalities for isotonic linear functionals, J. In-
equal. Pure Appl. Math. 3 (5) (2002), Art. 68.

Dragomir, S. S., A refinement of Ostrowski’s inequality for absolutely continu-
ous functions whose derivatives belong to Lo and applications, Libertas Math. 22
(2002), 49-63.

Dragomir, S. S., An inequality improving the first Hermite—Hadamard inequality for
convex functions defined on linear spaces and applications for semi-inner products,
J. Inequal. Pure Appl. Math. 3, No. 2 (2002), Art. 31.

Dragomir, S. S., An inequality improving the second Hermite—Hadamard inequal-
ity for convexr functions defined on linear spaces and applications for semi-inner
products, J. Inequal. Pure Appl. Math. 3, No. 3 (2002), Art. 35.

Dragomir, S. S., Some companions of Ostrowski’s inequality for absolutely continu-
ous functions and applications, Preprint RGMIA Res. Rep. Coll. 5 (2002), Suppl.
Art. 29. [Online http://rgmia.org/papers/v5e/COIACFApp.pdf], Bull. Korean
Math. Soc. 42, No. 2 (2005), 213-230.

Dragomir, S. S., A Griiss type inequality for isotonic linear functionals and applica-
tions, Demonstratio Math. 36, No. 3 (2003), 551-562. Preprint RGMIA Res. Rep.
Coll. 5 (2002), Supl. Art. 12. [Online http://rgmia.org/v5(E) .php|.

Dragomir, S. S., An Ostrowski like inequality for convex functions and applications,
Revista Math. Complutense 16 (2) (2003), 373-382.

Dragomir, S. S., Bounds for the normalised Jensen functional, Bull. Aust. Math.
Soc. 74 (2006), 471-478.

Dragomir, S. S., Bounds for the deviation of a function from the chord generated by
its extremities, Bull. Aust. Math. Soc. 78, No. 2 (2008), 225-248.

Dragomir, S. S., Reverses of the Jensen inequality in terms of the first deriv-
ative and applications, Preprint RGMIA Res. Rep. Coll. 14 (2011), Art. 71
[http://rgmia.org/papers/vi4/vi4aTl.pdf].

Dragomir, S. S., Operator Inequalities of Ostrowski and Trapezoidal Type, Springer,
New York, 2012.

Dragomir, S. S., Perturbed companions of Ostrowski’s inequality for absolutely con-
tinuous functions (I), Preprint RGMIA Res. Rep. Coll. 17 (2014), Art 7. [Online
http://rgmia.org/papers/v17/v17a07.pdf].

Dragomir, S. S., Inequalities of Hermite—Hadamard type for \-convex functions on
linear spaces, Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 13.

Dragomir, S. S., Jensen and Ostrowski type inequalities for general Lebesgue integral
with applications (I), Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 25.
Dragomir, S. S., Cerone, P., Roumeliotis, J., Wang, S., A weighted version of Os-
trowski inequality for mappings of Hélder type and applications in numerical analy-
sis, Bull. Math. Soc. Sci. Math. Romanie 42(90) (4) (1999), 301-314.

Dragomir, S. S., Fitzpatrick, S., The Hadamard inequalities for s-convexr functions
in the second sense, Demonstratio Math. 32, No. 4 (1999), 687-696.

Dragomir, S. S., Fitzpatrick, S., The Jensen inequality for s-Breckner conver func-
tions in linear spaces, Demonstratio Math. 33, No. 1 (2000), 43-49.

Dragomir, S. S., Ionescu, N. M., Some converse of Jensen’s inequality and applica-
tions, Rev. Anal. Numér. Théor. Approx. 23, No. 1 (1994), 71-78.

Dragomir, S. S., Mond, B., On Hadamard’s inequality for a class of functions of
Godunova and Levin, Indian J. Math. 39, No. 1 (1997), 1-9.

Dragomir, S. S., Pearce, C. E., On Jensen’s inequality for a class of functions of
Godunova and Levin, Period. Math. Hungar. 33, No. 2 (1996), 93-100.



General Lebesgue integral inequalities... 43

(52]
(53]
[54]

[55]

[56]

[57]

[59]
(60]

(61]

Dragomir, S. S., Pearce, C. E., Quasi-convex functions and Hadamard’s inequality,
Bull. Aust. Math. Soc. 57 (1998), 377-385.

Dragomir, S. S., Pecarié, J., Persson, L., Some inequalities of Hadamard type, Soo-
chow J. Math. 21, No. 3 (1995), 335-341.

Dragomir, S. S., Pecarié, J., Persson, L., Properties of some functionals related to
Jensen’s inequality, Acta Math. Hungarica 70 (1996), 129-143.

Dragomir, S. S., Rassias, Th. M. (Eds.), Ostrowski Type Inequalities and Applica-
tions in Numerical Integration, Kluwer Academic Publishers, Dordrecht—Boston—
London, 2002.

Dragomir, S. S., Wang, S., A new inequality of Ostrowski’s type in Li-norm and ap-
plications to some special means and to some numerical quadrature rules, Tamkang
J. Math. 28 (1997), 239-244.

Dragomir, S. S., Wang, S., A new inequality of Ostrowski’s type in Lp-norm and
applications to some special means and to some numerical quadrature rules, Indian
J. Math. 40 (3) (1998), 245-304.

Dragomir, S. S., Wang, S., Applications of Ostrowski’s inequality to the estimation
of error bounds for some special means and some numerical quadrature rules, Appl.
Math. Lett. 11 (1998), 105-109.

El Farissi, A., Simple proof and refinement of Hermite—Hadamard inequality, J.
Math. Ineq. 4, No. 3 (2010), 365-369.

Fink, A. M., Bounds on the deviation of a function from its averages, Czechoslovak
Math. J. 42, No. 2 (1992), 298-310.

Godunova, E. K., Levin, V. 1., Inequalities for functions of a broad class that con-
tains convexr, monotone and some other forms of functions, in Numerical Mathe-
matics and Mathematical Physics, Moskov. Gos. Ped. Inst., Moscow, 1985, 138-142
(Russian).

Gokhale, D. V., Kullback, S., Information in Contingency Tables, Marcel Decker,
New York, 1978.

Hudzik, H., Maligranda, L., Some remarks on s-convex functions, Aequationes
Math. 48, No. 1 (1994), 100-111.

Guessab, A.; Schmeisser, G., Sharp integral inequalities of the Hermite—Hadamard
type, J. Approx. Theory 115 (2002), 260—288.

Havrda, J. H., Charvat, F., Quantification method classification process: concept of
structural a-entropy, Kybernetika 3 (1967), 30-35.

Hellinger, E., Neue Bergriirdung du Theorie quadratisher Formerus von
uneudlichvieleu Verdnderlicher, J. Reine Angew. Math. 36 (1909), 210-271.
Jeffreys, H., An invariant form for the prior probability in estimating problems,
Proc. Roy. Soc. London A Math. Phys. Sci. 186 (1946), 453—461.

Kadota, T. T., Shepp, L. A., On the best finite set of linear observables for discrim-
inating two Gaussian signals, IEEE Trans. Inform. Theory 13 (1967), 288-294.
Kailath, T., The divergence and Bhattacharyya distance measures in signal selection,
IEEE Trans. Comm. Technology 15 (1967), 52-60.

Kapur, J. N.;, A comparative assessment of various measures of directed divergence,
Advances in Management Studies 3 (1984), 1-16.

Kazakos, D., Cotsidas, T., A decision theory approach to the approximation of dis-
crete probability densities, IEEE Trans. Perform. Anal. Machine Intell. 1 (1980),
61-67.

Kikianty, E., Dragomir, S. S., Hermite—-Hadamard’s inequality and the p-HH-norm
on the Cartesian product of two copies of a normed space, Math. Inequal. Appl. (in
press).



S. S. Dragomir

Kirmaci, U. S., Klari¢i¢ Bakula, M., E Ozdemir, M., Pecarié¢, J., Hadamard-type
inequalities for s-convex functions, Appl. Math. Comput. 193, No. 1 (2007), 26-35.
Kullback, S., Leibler, R. A.,; On information and sufficiency, Annals Math. Statist.
22 (1951), 79-86.

Lin, J., Divergence measures based on the Shannon entropy, IEEE Trans. Inform.
Theory 37 (1) (1991), 145-151.

Latif, M. A., On some inequalities for h-convex functions, Int. J. Math. Anal. (Ruse)
4, No. 29-32 (2010), 1473-1482.

Mei, M., The theory of genetic distance and evaluation of human races, Japan J.
Human Genetics 23 (1978), 341-369.

Mitrinovié, D. S., Lackovié¢, 1. B., Hermite and convexity, Aequationes Math. 28
(1985), 229-232.

Mitrinovié¢, D. S., Pecari¢, J. E., Note on a class of functions of Godunova and
Levin, C. R. Math. Rep. Acad. Sci. Canada 12, No. 1 (1990), 33-36.

Ostrowski, A., Uber die Absolutabweichung einer differentienbaren Funktionen von
ihren Integralmittelwert, Comment. Math. Helv. 10 (1938), 226-227.

Pearce, C. E. M., Rubinov, A. M., P-functions, quasi-conver functions, and
Hadamard-type inequalities, J. Math. Anal. Appl. 240, No. 1 (1999), 92-104.
Pecarié, J. E., Dragomir, S. S., On an inequality of Godunova—Levin and some refine-
ments of Jensen integral inequality, “Babeg-Bolyai” University, Research Seminars,
Preprint No. 6, Cluj-Napoca, 1989.

Pecarié¢, J., Dragomir, S. S., A generalization of Hadamard’s inequality for isotonic
linear functionals, Radovi Mat. (Sarajevo) 7 (1991), 103-107.

Pielou, E. C., Ecological Diversity, Wiley, New York, 1975.

Radulescu, M., Radulescu, S., Alexandrescu, P., On the Godunova—Levin—Schur
class of functions, Math. Inequal. Appl. 12, No. 4 (2009), 853-862.

Rao, C. R., Diversity and dissimilarity coefficients: a unified approach, Theoretic
Population Biology 21 (1982), 24-43.

Rényi, A., On measures of entropy and information, in Proc. Fourth Berkeley Symp.
Math. Stat. and Prob., Vol. 1, University of California Press, 1961, 547-561.
Roberts, A. W., Varberg, D. E., Convex Functions, Academic Press, New York,
1973.

Sarikaya, M. Z., Saglam, A., Yildirim, H., On some Hadamard-type inequalities for
h-convez functions, J. Math. Inequal. 2, No. 3 (2008), 335-341.

Sarikaya, M. Z., Set, E., Ozdemir, M. E., On some new inequalities of Hadamard
type involving h-convex functions, Acta Math. Univ. Comenian. (N.S.) 79, No. 2
(2010), 265-272.

Set, E., C")zdernir7 M. E., Sarikaya, M. Z., New inequalities of Ostrowski’s type for
s-conver functions in the second sense with applications, Facta Univ. Ser. Math.
Inform. 27, No. 1 (2012), 67-82.

Sharma, B. D., Mittal, D. P., New non-additive measures of relative information, J.
Comb. Inf. Syst. Sci. 2 (4) (1977), 122-132.

Sen, A., On Economic Inequality, Oxford University Press, London, 1973.

Shioya, H., Da-Te, T., A generalisation of Lin divergence and the derivative of a new
information divergence, Electronics and Communications in Japan 78 (7) (1995),
37-40.

Taneja, 1. J., Generalised Information Measures and Their Applications
[http://www.mtm.ufsc.br/ taneja/bhtml/bhtml.html].

Theil, H., Economics and Information Theory, North-Holland, Amsterdam, 1967.
Theil, H., Statistical Decomposition Analysis, North-Holland, Amsterdam, 1972.



General Lebesgue integral inequalities... 45

[98] Topsoe, F., Some inequalities for information divergence and related measures of
discrimination, Preprint RGMIA Res. Rep. Coll. 2 (1) (1999), 85-98.
[99] Tung, M., Ostrowski-type inequalities via h-conver functions with applications to
special means, J. Inequal. Appl. 2013, 2013:326.
[100] Vajda, I., Theory of Statistical Inference and Information, Kluwer Academic Pub-
lishers, Dordrecht—Boston, 1989.
[101] Varosanec, S., On h-convezity, J. Math. Anal. Appl. 326, No. 1 (2007), 303-311.

S. S. Dragomir

Mathematics, College of Engineering & Science
Victoria University, PO Box 14428

Melbourne City, MC 8001

Australia

e-mail: sever.dragomir@vu.edu.au

url: http://rgmia.org/dragomir

School of Computer Science & Applied Mathematics
University of the Witwatersrand

Private Bag 3, Johannesburg 2050

South Africa

Received March 10, 2015



