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On regular local operators
on smooth maps

Abstract. Let X,Y, Z,W be manifolds and π : Z → X be a surjective
submersion. We characterize π-local regular operators A : C∞(X,Y ) →
C∞(Z,W ) in terms of the corresponding maps Ã : J∞(X,Y ) ×X Z → W
satisfying the so-called local finite order factorization property.

Let X,Y, Z,W be smooth (i.e. C∞) manifolds and π : Z → X be a
surjective C∞-submersion. The space of smooth (C∞) maps U → V we
denote by C∞(U, V ).

An operator A : C∞(X,Y ) → C∞(Z,W ) is π-local if for any g1, g2 ∈
C∞(X,Y ) and any x ∈X from germx(g1) = germx(g2) it follows A(g1)|π−1(x)

= A(g2)|π−1(x).
An operator A : C∞(X,Y )→ C∞(Z,W ) is regular if any C∞ parametri-

zed system of maps from C∞(X,Y ) is transformed into a C∞ parametri-
zed system of maps in C∞(Z,W ), i.e. if it satisfies the implication: if g :
X × R → Y is of class C∞, then so is Z × R 3 (z, t) → A(gt)(z) ∈ W ,
where gt = g(−, t).

Let Jr(X,Y ) be the space of r-jets of maps X → Y . Js(X,Y ) is a
finite dimensional manifold if s is finite. J∞(X,Y ) has the inverse limit
topology from · · · → Js(X,Y ) → Js−1(X,Y ) → · · · → J0(X,Y ). Let
πr : J

∞(X,Y )→ Jr(X,Y ) be the jet projection.
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We say that a map Ã : J∞(X,Y ) ×X Z → W satisfies the local finite
order factorization property if for any (κ, z) ∈ J∞(X,Y ) ×X Z there exist
an open neighborhood U ⊂ J∞(X,Y ) ×X Z of (κ, z), a finite number r
and a C∞ (in the classical sense) map Ãr : (πr × idZ)(U) → W such that
Ã = Ãr ◦ (πr × idZ) on U . (We see that (πr × idZ)(U) is an open subset in
finite dimensional manifold Jr(X,Y )×X Z.)

The main result is the following theorem.

Theorem 1. Let X,Y, Z,W be C∞-manifolds and π : Z → X a surjective
C∞-submersion. There is a bijection between the π-local regular operators
A : C∞(X,Y ) → C∞(Z,W ) and the maps Ã : J∞(X,Y ) ×X Z → W with
the local finite order factorization property. Precisely, the correspondence is
given by A(g)(z) = Ã(j∞g(π(z)), z), g ∈ C∞(X,Y ), z ∈ Z.

Proof of Theorem 1. Since operators are local, for the simplicity of con-
siderations we will assume X = Rm and Y = Rn.

From Corollary 19.8 in [1] it follows:

Lemma 1. Any π-local operator A as above is of infinite order, i.e. if
g1, g2 ∈ C∞(Rm,Rn), x ∈ Rn, then from j∞g1(x) = j∞g2(x) it follows
A(g1)|π−1(x) = A(g2)|π−1(x).

From Lemma 19.11 in [1] it follows:

Lemma 2. Let A : C∞(Rm,Rn) → C∞(Z,W ) be a π-local operator. Let
zo ∈ Z be a point, xo := π(zo), f ∈ C∞(Rm,Rn). Let ε : Rm \ {xo} → R,
ε(x) = exp(−|x − xo|−1). There are a neighborhood V of the point zo ∈ Z
and a natural number r such that for every z ∈ V \ π−1(xo) and all maps
g1, g2 ∈ C∞(Rm,Rn) satisfying |∂α(gi − f)(π(z))| ≤ ε(π(z)), i = 1, 2, 0 ≤
|α| ≤ r, the condition jrg1(π(z)) = jrg2(π(z)) implies A(g1)(z) = A(g2)(z).

Similarly as in [2], any regular π-local operator A : C∞(Rm,Rn) →
C∞(Z,W ) defines a π × idR-local operator A<> : C∞(Rm × R,Rn) →
C∞(Z × R,W ), A<>(g)(z, t) := A(gt)(z), where gt : Rm → Rn, gt(x) =
g(x, t).

Applying Lemma 2 to the above operatorA<> (defined byA) and treating
maps h : Rm → Rn as maps h : Rm × R → Rn being independent with
respect to the last argument we get:

Lemma 3. Let A : C∞(Rm,Rn) → C∞(Z,W ) be a regular π-local op-
erator. Let zo ∈ Z be a point, xo := π(zo), f ∈ C∞(Rm,Rn). Let
ε̃ : Rm+1 \ {(xo, 0)} → R, ε̃(x, t) := exp(−|(x − xo, t)|−1). There are a
neighborhood Ṽ of zo ∈ Z, a real number to > 0 and a natural number
r̃ such that for every z ∈ Ṽ and all maps g1, g2 ∈ C∞(Rm,Rn) satisfy-
ing |∂α(gi − f)(π(z))| ≤ ε̃(π(z), to), i = 1, 2, 0 ≤ |α| ≤ r̃, the condition
j r̃g1(π(z)) = j r̃g2(π(z)) implies A(g1)(z) = A(g2)(z).
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We see that to ≤ |(π(z) − xo, to)| for any z. Then 2ηo := ε̃(xo, to) ≤
ε̃(π(z), to). So, from Lemma 3, we have:

Lemma 4. Let A : C∞(Rm,Rn) → C∞(Z,W ) be a regular π-local op-
erator. Let zo ∈ Z be a point, xo := π(zo), f ∈ C∞(Rm,Rn). There
are a neighborhood Ṽ of zo ∈ Z, a real number ηo > 0 and a natural
number r̃ such that for every z ∈ Ṽ and all maps g1, g2 ∈ C∞(Rm,Rn)
satisfying |∂α(gi − f)(π(z))| ≤ 2ηo, i = 1, 2, 0 ≤ |α| ≤ r̃, the condition
j r̃g1(π(z)) = j r̃g2(π(z)) implies A(g1)(z) = A(g2)(z).

Taking (eventually) smaller Ṽ such that |∂αf(π(z)) − ∂αf(π(zo))| ≤ ηo
for z ∈ Ṽ , 0 ≤ |α| ≤ r̃, we get:

Lemma 5. Let A : C∞(Rm,Rn) → C∞(Z,W ) be a regular π-local oper-
ator. Let zo ∈ Z be a point, xo := π(zo), f ∈ C∞(Rm,Rn). There are
a neighborhood Ṽ of zo ∈ Z, a real number ηo > 0 and a natural num-
ber r̃ such that for all z ∈ Ṽ and for all g1, g2 ∈ C∞(Rm,Rn) satisfy-
ing |∂αgi(π(z)) − ∂αf(π(zo))| < ηo, i = 1, 2, 0 ≤ |α| ≤ r̃, the condition
j r̃g1(π(z)) = j r̃g2(π(z)) implies A(g1)(z) = A(g2)(z).

Thus Lemma 5 can be reformulated as follows.

Lemma 6. Let A : C∞(Rm,Rn) → C∞(Z,W ) be a regular π-local op-
erator. Let zo ∈ Z be a point, xo := π(zo), f ∈ C∞(Rm,Rn), κo :=
j∞f(π(zo)). There are a natural number r and an open neighborhood V ⊂
Jr(Rm,Rn) ×Rm Z of (πr(κo), zo) such that for any g1, g2 ∈ C∞(Rm,Rn)
and z with (jrgi(π(z)), z) ∈ V , i = 1, 2, the condition jrg1(π(z))=jrg2(π(z))
implies A(g1)(z) = A(g2)(z).

Any map Ã : J∞(Rm,Rn) ×Rm Z → W satisfying the local finite order
factorization property defines a regular π-local operator A : C∞(Rm,Rn)→
C∞(Z,W ). Namely, we have

Example 1. Let Ã : J∞(Rm,Rn)×RmZ →W be a map satisfying the local
finite order factorization property. Define an operator A : C∞(Rm,Rn)→
WZ by

A(f)(z) := Ã(j∞f(π(z)), z) .

Clearly, A is π-local. Consider a smoothly parametrized family of maps
ft ∈ C∞(Rn,Rn), to ∈ R and zo ∈ Z. By the local finite order factor-
ization property, there are natural number r, an open neighborhood U r of
(jrfto(π(zo)), zo) in Jr(Rm,Rn) ×Rm Z and a smooth map Ãr : U r → W

such that A(ft)(z) = Ãr(jrft(π(z)), z) for (t, z) from some neighborhood of
(to, zo). That is why, A has values in C∞(Z,W ) and it is regular.

Conversely, we have:
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Example 2. Let A : C∞(Rm,Rn)→ C∞(Z,W ) be a regular π-local oper-
ator. We have a function Ã : J∞(Rm,Rn)×Rm Z →W by

Ã(κ, z) := A(g)(z) ,

where κ = j∞g(π(z)), g ∈ C∞(Rm,Rn). (By Lemma 1, the definition is
independent of the choice of g.)

Lemma 7. Ã satisfies the local finite order factorization property.

Proof. Consider (κo, zo) ∈ J∞(Rm,Rn) ×Rm Z, xo = π(zo). Choose f ∈
C∞(Rm,Rn) such that κo = j∞f(π(zo)). Let r and V be as in Lemma
6 for zo, xo, f as above. Put U := (πr × idZ)

−1(V ). Define Ãr : V =
(πr × idZ)(U)→W by

Ãr(ρ, z) := A(g)(z) ,

where ρ = jrg(π(z)), g ∈ C∞(Rm,Rn). (By Lemma 6, the definition is in-
dependent of the choice of g.) For any smooth curve γ in V , γ(t) = (ρt, zt) ∈
V , t ∈ R, there is a smoothly parametrized family gt ∈ C∞(Rm,Rn) with
ρt = jrgt(π(zt)). Then Ãr ◦ γ(t) = A(gt)(zt). Then the regularity of A
implies Ãr ◦ γ is of C∞ (for any smooth curve γ in V ). Then Ãr is of C∞

because of the well-known Boman theorem. Clearly Ã = Ãr ◦ (πr × idZ)
on U . �

Summing up, we have proved Theorem 1. �
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