I. R. KAYUMOV

Estimates of L_{p} norms for sums of positive functions

Abstract. We present new inequalities of L_{p} norms for sums of positive functions. These inequalities are useful for investigation of convergence of simple partial fractions in $L_{p}(\mathbb{R})$.

Let p_{n} be a polynomial of degree n with zeros $z_{1}, z_{2}, \ldots, z_{n}$. The logarithmic derivative of p_{n}

$$
g_{n}(t)=\frac{p_{n}^{\prime}(t)}{p_{n}(t)}=\sum_{k=1}^{n} \frac{1}{t-z_{k}}
$$

is called a simple partial fraction.
Let $z_{k}=x_{k}+i y_{k}$. V. Yu. Protasov [1] showed that if

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{\left|y_{k}\right|^{1 / q}}<+\infty, \frac{1}{p}+\frac{1}{q}=1, \tag{1}
\end{equation*}
$$

then the series

$$
g_{\infty}(t)=\sum_{k=1}^{\infty} \frac{1}{t-z_{k}}
$$

converges in $L_{p}(\mathbb{R})$.
In [1] the problem to find necessary and sufficient conditions for convergence of the series g_{∞} in $L_{p}(\mathbb{R})$ was posed. Protasov proved that if g_{∞}

[^0]converges in $L_{p}(\mathbb{R})$ and all z_{k} lie in the angle $|z| \leq C|y|$ with a fixed C, then for all $\varepsilon>0$ the following condition holds:
\[

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{\left|y_{k}\right|^{1 / q+\varepsilon}}<+\infty \tag{2}
\end{equation*}
$$

\]

Therefore, we see that the sufficient condition (1) is quite close to the necessary condition (2).

In the paper [2] we proved the following theorem.
Theorem 1. Let $p>1$. If

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{k^{p-1}}{\left|y_{k}\right|^{p-1}}<+\infty, \tag{3}
\end{equation*}
$$

then the series

$$
g_{\infty}(t)=\sum_{k=1}^{\infty} \frac{1}{t-z_{k}}
$$

converges in $L_{p}(\mathbb{R})$. Conversely, if $g_{\infty}(t)$ converges in $L_{p}(\mathbb{R})$, the sequence $\left|y_{n}\right|$ is increasing and $\left|z_{k}\right| \leq C\left|y_{k}\right|$, then the condition (3) holds.

The proof of Theorem 1 is based on the following fact.
For any $p \geq 2$ there exists a positive constant C_{p} depending only on p such that the following inequality holds

$$
\int_{-\infty}^{+\infty}\left(\sum_{k=1}^{n} \frac{y_{k}}{\left(t-x_{k}\right)^{2}+y_{k}^{2}}\right)^{p} d t \leq C_{p} \sum_{k=1}^{n}\left|\frac{k}{y_{k}}\right|^{p-1} .
$$

It turns out that there exists a nontrivial generalization of this result for arbitrary positive functions from arbitrary measurable space.

To be precise, let X be a measurable space with positive measure μ. Suppose that $f_{k} \in L_{1}(X, \mu) \cap L_{\infty}(X, \mu)$ and $f_{k} \geq 0, k=1,2, \ldots, n$.

We set

$$
\begin{gathered}
L=\max _{1 \leq k \leq n} \int_{X} f_{k} d \mu \\
M_{k}=\left\|f_{k}\right\|_{\infty}
\end{gathered}
$$

The aim of the present paper is the following theorem.
Theorem 2. If $p \in(1,2]$, then there exists C_{p} such that

$$
\begin{equation*}
\int_{X}\left(\sum_{k=1}^{n} f_{k}\right)^{p} d \mu \leq C_{p} L \sum_{j=1}^{n}\left(\sum_{k=j}^{n} M_{k}\right)^{p-1} . \tag{4}
\end{equation*}
$$

If $p \in[2,+\infty)$, then there exists C_{p} such that

$$
\begin{equation*}
\int_{X}\left(\sum_{k=1}^{n} f_{k}\right)^{p} d \mu \leq C_{p} L \sum_{k=1}^{n}\left(k M_{k}\right)^{p-1} . \tag{5}
\end{equation*}
$$

To prove Theorem 2 we need the following
Lemma. For any natural p the following inequality holds

$$
\begin{equation*}
\int_{X}\left(\sum_{k=1}^{n} f_{k}\right)^{p} d \mu \leq p!(p-1)!L \sum_{k=1}^{n}\left(k M_{k}\right)^{p-1} . \tag{6}
\end{equation*}
$$

Proof. We multiply out and then integrate term by term:

$$
\begin{aligned}
& \int_{X}\left(\sum_{k=1}^{n} f_{k}\right)^{p} d \mu \\
&=\sum_{k_{1}, k_{2}, \ldots, k_{p}} \int_{X} f_{k_{1}} f_{k_{2}} \cdots f_{k_{p}} d \mu \\
& \leq p!\sum_{k_{1} \geq k_{2} \geq \cdots \geq k_{p}} \int_{X} f_{k_{1}} f_{k_{2}} \cdots f_{k_{p}} d \mu \\
& \leq p!\sum_{k_{1} \geq k_{2} \geq \cdots \geq k_{p}} \int_{X} M_{k_{1}} M_{k_{2}} \cdots M_{k_{p-1}} f_{k_{p}} d \mu \\
&=p!\sum_{k_{1} \geq k_{2} \geq \cdots \geq k_{p-1}} M_{k_{1}} M_{k_{2}} \cdots M_{k_{p-1}} \sum_{k_{p}=1}^{k_{p-1}} \int_{X} f_{k_{p}} d \mu \\
& \quad \leq p!L \sum_{k_{1} \geq k_{2} \geq \cdots \geq k_{p-1}} M_{k_{1}} M_{k_{2}} \cdots M_{k_{p-2}} k_{p-1} M_{k_{p-1}} .
\end{aligned}
$$

In these inequalities the indexes $k_{1}, k_{2}, \ldots, k_{p}$ are varying from 1 to n. We note that for $p=1$ the last sum is equal to $n \pi$. For $p=2$ that sum is equal to $2 \pi \sum_{k=1}^{n} k M_{k}$.

It is clear that to prove (6) it is enough to show that

$$
\sum_{k_{1}=1}^{n} M_{k_{1}} \sum_{k_{2}=1}^{k_{1}} M_{k_{2}} \cdots \sum_{k_{p-2}=1}^{k_{p-3}} M_{k_{p-2}} \sum_{k_{p-1}=1}^{k_{p-2}} M_{k_{p-1}} k_{p-1} \leq(p-1)!\sum_{k=1}^{n}\left(k M_{k}\right)^{p-1} .
$$

This inequality was established in the paper [2]. Lemma is proved.
Proof of Theorem 2. We have

$$
\int_{X}\left(\sum_{k=1}^{n} f_{k}\right)^{p} d \mu=\int_{X}\left(\sum_{k=1}^{n} f_{k}\right)\left(\sum_{k=1}^{n} f_{k}\right)^{p-1} d \mu \leq 2^{p-1}\left(I_{1}+I_{2}\right),
$$

where

$$
\begin{aligned}
I_{1} & =\int_{X} \sum_{j=1}^{n} f_{j}\left(\sum_{k=1}^{j} f_{k}\right)^{p-1} d \mu \\
I_{2} & =\int_{X} \sum_{j=1}^{n} f_{j}\left(\sum_{k=j+1}^{n} f_{k}\right)^{p-1} d \mu
\end{aligned}
$$

Here we have used the classical inequality $(a+b)^{\alpha} \leq 2^{\alpha}\left(a^{\alpha}+b^{\alpha}\right)$ which holds for all positive a, b, α.

It is easy to see that

$$
\begin{equation*}
I_{2} \leq \int_{X} \sum_{j=1}^{n} f_{j}\left(\sum_{k=j+1}^{n} M_{k}\right)^{p-1} d \mu \leq L \sum_{j=1}^{n}\left(\sum_{k=j+1}^{n} M_{k}\right)^{p-1} . \tag{7}
\end{equation*}
$$

Further we shall consider the cases $p \leq 2$ and $p>2$ separately.
Case $p \in(1,2]$.
To get an upper estimate for I_{1} we use the Hölder inequality

$$
I_{1} \leq \sum_{j=1}^{n}\left(\int_{X} f_{j}^{\alpha} d \mu\right)^{1 / \alpha}\left(\int_{X}\left(\sum_{k=1}^{j} f_{k}\right)^{(p-1) \beta} d \mu\right)^{1 / \beta}
$$

with parameters $\alpha=1 /(2-p), \beta=1 /(p-1)$. Therefore,

$$
\begin{aligned}
I_{1} & \leq \sum_{j=1}^{n}\left(\int_{X} f_{j}^{\alpha} d \mu\right)^{2-p}\left(\int_{X} \sum_{k=1}^{j} f_{k} d \mu\right)^{p-1} \\
& =\sum_{j=1}^{n}\left(\int_{X} f_{j}^{\alpha-1} f_{j} d \mu\right)^{2-p}\left(\int_{X} \sum_{k=1}^{j} f_{k} d \mu\right)^{p-1} \\
& \leq \sum_{j=1}^{n}\left(M_{j}^{\alpha-1} L\right)^{2-p}(j L)^{p-1}=L \sum_{j=1}^{n}\left(j M_{j}\right)^{p-1} .
\end{aligned}
$$

Applying Copson's inequality ([3], Theorem 344)

$$
\sum_{n=1}^{\infty}\left(a_{n}+a_{n+1}+\cdots\right)^{p-1}>(p-1)^{p-1} \sum_{n=1}^{\infty}\left(n a_{n}\right)^{p-1}
$$

we get

$$
I_{1} \leq L \sum_{j=1}^{n}\left(\sum_{k=j}^{n} M_{k}\right)^{p-1}
$$

This inequality together with (7) gives us desired estimate (4) which proves Theorem 2 in case when $p \leq 2$.

Case $p \in(2,+\infty)$.
It follows from Copson's inequality ([3], Theorem 331)

$$
\sum_{n=1}^{\infty}\left(a_{n}+a_{n+1}+\cdots\right)^{p-1} \leq(p-1)^{p-1} \sum_{n=1}^{\infty}\left(n a_{n}\right)^{p-1}
$$

that

$$
\begin{equation*}
I_{2} \leq L(p-1)^{p-1} \sum_{j=1}^{n} j^{p-1} M_{j}^{p-1} \tag{8}
\end{equation*}
$$

To estimate I_{1} we again use the Hölder inequality

$$
I_{1} \leq \sum_{j=1}^{n}\left(\int_{X} f_{j}^{\alpha} d \mu\right)^{1 / \alpha}\left(\int_{X}\left(\sum_{k=1}^{j} f_{k}\right)^{(p-1) \beta} d \mu\right)^{1 / \beta}
$$

with parameters $\alpha=m /(m+1-p), \beta=m /(p-1)$ where m is the integer part of p. Further, Lemma and Hölder's inequality yield the following estimates

$$
\begin{aligned}
I_{1} \leq & \sum_{j=1}^{n} L^{1 / \alpha} M_{j}^{(\alpha-1) / \alpha}\left(\int_{X}\left(\sum_{k=1}^{j} f_{k}\right)^{m} d \mu\right)^{(p-1) / m} \\
\leq & L \sum_{j=1}^{n} M_{j}^{(p-1) / m}\left(\pi m!(m-1)!\sum_{k=1}^{j}\left(k M_{k}\right)^{m-1}\right)^{(p-1) / m} \\
= & L C(m, p) \sum_{j=1}^{n}\left(j M_{j}\right)^{(p-1) / m}\left(\frac{1}{j} \sum_{k=1}^{j}\left(k M_{k}\right)^{m-1}\right)^{(p-1) / m} \\
\leq & L C(m, p)\left(\sum_{j=1}^{n}\left(j M_{j}\right)^{\alpha_{1}(p-1) / m}\right)^{1 / \alpha_{1}} \\
& \times\left(\sum_{j=1}^{n}\left(\frac{1}{j} \sum_{k=1}^{j}\left(k M_{k}\right)^{m-1}\right)^{\beta_{1}(p-1) / m}\right)^{1 / \beta_{1}}
\end{aligned}
$$

Setting $\alpha_{1}=m, \beta_{1}=m /(m-1)$, we obtain

$$
\begin{aligned}
I_{1} \leq L C(m, p) & \left(\sum_{j=1}^{n}\left(j M_{j}\right)^{p-1}\right)^{1 / m} \\
& \times\left(\sum_{j=1}^{n}\left(\frac{1}{j} \sum_{k=1}^{j}\left(k M_{k}\right)^{m-1}\right)^{(p-1) /(m-1)}\right)^{(m-1) / m}
\end{aligned}
$$

Applying Hardy's inequality ([3], Theorem 326)

$$
\sum_{n=1}^{\infty}\left(\frac{a_{1}+a_{2}+\cdots+a_{k}}{k}\right)^{s} \leq\left(\frac{s}{s-1}\right)^{s} \sum_{k=1}^{\infty} a_{k}^{s}
$$

with $s=(p-1) /(m-1)$ and $a_{k}=\left(k M_{k}\right)^{m-1}$ we see that

$$
\begin{aligned}
I_{1} & \leq L C(m, p)\left(\sum_{j=1}^{n}\left(j M_{j}\right)^{p-1}\right)^{1 / m}\left(s^{s}(s-1)^{-s} \sum_{j=1}^{n}\left(j M_{j}\right)^{p-1}\right)^{(m-1) / m} \\
& =L C_{1}(m, p) \sum_{j=1}^{n}\left(j M_{j}\right)^{p-1}
\end{aligned}
$$

This estimate together with (8) proves (5). Theorem 2 is proved.
Let us remark that the inequalities (4) and (5) are sharp up to some absolute constant depending on p only. This can be easily seen by setting $f_{j} \equiv 1$ on X. Other examples can be constructed as follows: $X=\mathbb{R}$ and

$$
f_{k}(t)=\frac{y_{k}}{\left(t-x_{k}\right)^{2}+y_{k}^{2}}
$$

In case when $\left|y_{k}\right|$ is increasing sequence, it was proved in the paper [2] that the sign \leq in the inequalities (4) and (5) can replaced by \geq with some other absolute constant $c_{p}>0$ depending on p only.
Acknowledgement. I would like to thank the Organizers of the XVIth Conference on Analytic Functions and Related Topics (Chełm, Poland, 2011) for their warm hospitality.

References

[1] Protasov, V. Yu., Approximation by simple partial fractions and the Hilbert transform, Izv. Math. 73 (2) (2009), 333-349.
[2] Kayumov, I. R., Convergence of simple partial fractions in $L_{p}(\mathbb{R})$, Sb. Math. 202 (10) (2011), 1493-1504.
[3] Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities, Cambridge University Press, Cambridge, 1934.

Ilgiz Kayumov
Kazan Federal University
Russia
e-mail: ikayumov@ksu.ru

Received September 18, 2011

[^0]: 2010 Mathematics Subject Classification. 28B05.
 Key words and phrases. Simple partial fractions, L_{p} estimates.
 This work was supported by RFBR (11-01-00762).

