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Properties of functions concerned with
Carathéodory functions

Abstract. Let Pn denote the class of analytic functions p(z) of the form
p(z) = 1 + cnz

n + cn+1z
n+1 + . . . in the open unit disc U. Applying the

result by S. S. Miller and P. T. Mocanu (J. Math. Anal. Appl. 65 (1978),
289–305), some interesting properties for p(z) concerned with Carathéodory
functions are discussed. Further, some corollaries of the results concerned
with the result due to M. Obradović and S. Owa (Math. Nachr. 140 (1989),
97–102) are shown.

1. Introduction. Let An denote the class of functions f(z) of the form

(1.1) f(z) = z +
∞∑

k=n+1

akz
k (n = 1, 2, 3, . . . )

which are analytic in the open unit disc U = {z ∈ C | |z| < 1}. If a function
f(z) ∈ An satisfies

(1.2) Re

(
zf ′(z)

f(z)

)
> 0 (z ∈ U),

then f(z) is said to be starlike with respect to the origin in U. We denote
by S∗n the subclass of An consisting of functions f(z) which are starlike with
respect to the origin in U. From the definition of the class S∗n, we see that
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if f(z) ∈ An satisfies

(1.3)
∣∣∣∣zf ′(z)f(z)

− 1

∣∣∣∣ < 1 (z ∈ U),

then f(z) ∈ S∗n. We denote by T ∗n the subclass of S∗n consisting of f(z)
satisfying (1.3).

Obradović and Owa [5] have shown the following result:

Theorem A. If f(z) ∈ A1 satisfies f(z)f ′(z) 6= 0 for 0 < |z| < 1 and

(1.4)
∣∣∣∣1 + zf ′′(z)

f ′(z)

∣∣∣∣ < 5

4

∣∣∣∣zf ′(z)f(z)

∣∣∣∣ (z ∈ U),

then f(z) ∈ T ∗1 .

In order to discuss our results, we have to recall here the following lemma
due to Miller and Mocanu [3] (also due to Jack [2]):

Lemma 1.1. Let

w(z) = anz
n + an+1z

n+1 + . . . (an 6= 0)

be analytic in U. If there exists a point z0 ∈ U on the circle |z| = r < 1
such that

(1.5) max
|z|≤|z0|

|w(z)| = |w(z0)|,

then we can write

(1.6) z0w
′(z0) = mw(z0),

where m is real and m ≥ n.

Example 1.1. We consider the function w(z) given by

(1.7) w(z) = zn +
eiθ

n+ 1
zn+1 (n = 1, 2, 3, . . . ).

Then, it follows that

(1.8) max
|z|≤|z0|

|w(z)| = max
|z|≤|z0|

|z|n
∣∣∣∣1 + eiθz

n+ 1

∣∣∣∣ ≤ rn(1 + r

n+ 1

)
for z0 = re−iθ ∈ U. This shows that |w(z)| attains its maximum value at a
point z0 ∈ U on the circle |z| = r. For such a point z0 = re−iθ, we have that

(1.9)
z0w

′(z0)

w(z0)
=

zn0 (n+ eiθz0)

zn0

(
1 +

eiθz0
n+ 1

) =
(n+ 1)(n+ r)

n+ 1 + r
= m ≥ n.
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Let Pn be the class of functions p(z) of the form

(1.10) p(z) = 1 +

∞∑
k=n

ckz
k (cn 6= 0)

which are analytic in U. We also denote by Qn the subclass of Pn consisting
of f(z) which satisfy

(1.11) |p(z)− 1| < 1 (z ∈ U).

Since p(z) ∈ Qn shows that Re p(z) > 0 (z ∈ U), p(z) ∈ Qn is said to be a
Carathéodory function in U (see Carathéodory [1]).

2. Conditions for the classes Qn and T ∗
n . Applying Lemma 1.1, we

discuss some conditions for p(z) ∈ Pn to be in the class Qn.

Theorem 2.1. If p(z) ∈ Pn satisfies

(2.1) Re

(
p(z) + α

zp′(z)

p(z)

)
<
√
αn|p(z)| (z ∈ U)

for some real α > 0, then p(z) ∈ Qn.

Proof. Note that p(z) 6= 0 (z ∈ U) with the condition (2.1). Let us define
the function w(z) by

(2.2) p(z) = 1 + w(z) (z ∈ U)

for p(z) ∈ Pn. Then w(z) is analytic in U and

(2.3) w(z) = cnz
n + cn+1z

n+1 + . . . .

It follows that

(2.4) p(z) + α
zp′(z)

p(z)
= 1 + w(z) +

αzw′(z)

1 + w(z)

and that

1

|p(z)|
Re

(
p(z) + α

zp′(z)

p(z)

)
=

1

|1 + w(z)|
Re

(
1 + w(z) +

αzw′(z)

1 + w(z)

)
<
√
αn

(2.5)

for z ∈ U.
We suppose that there exists a point z0 ∈ U such that

(2.6) max
|z|≤|z0|

|w(z)| = |w(z0)| = 1.
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Then, Lemma 1.1 gives us that w(z0) = eiθ and z0w
′(z0) = meiθ (m ≥ n).

For such a point z0, we have that

1

|p(z0)|
Re

(
p(z0) + α

z0p
′(z0)

p(z0)

)
=

1

|1 + eiθ|
Re

(
1 + eiθ +

αmeiθ

1 + eiθ

)
=

1√
2(1 + cos θ)

(
1 + cos θ +

αm

2

)
=

1√
2

(√
1 + cos θ +

αm

2
√
1 + cos θ

)
≥
√
αm ≥

√
αn.

(2.7)

This contradicts the condition (2.1). Therefore, there is no such point z0 ∈
U. This means that p(z) ∈ Qn. �

Corollary 2.1. If f(z) ∈ An satisfies f(z)f ′(z) 6= 0 for 0 < |z| < 1 and

(2.8) Re

{
(1− α)zf

′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)}
<
√
αn

∣∣∣∣zf ′(z)f(z)

∣∣∣∣ (z ∈ U)

for some real α > 0, then f(z) ∈ T ∗n .

Proof. Letting p(z) = zf ′(z)
f(z) in Theorem 2.1, we have that

p(z) + α
zp′(z)

p(z)
= (1− α)zf

′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
.

The proof of the corollary follows from the above. �

Next we derive

Theorem 2.2. If p(z) ∈ Pn satisfies Re p(z) 6= 0 (z ∈ U) and

(2.9) Re

(
p(z) + α

zp′(z)

p(z)

)
<
(
1 +

αn

4

)
Re p(z) (z ∈ U)

for some real α > 0, then p(z) ∈ Qn.

Proof. Define the function w(z) by (2.2) for p(z) ∈ Pn. Then, w(z) is
analytic in U,

w(z) = cnz
n + cn+1z

n+1 + . . . ,

and

(2.10)
Re

(
p(z) + α

zp′(z)

p(z)

)
Re p(z)

=

Re

(
1 + w(z) +

αzw′(z)

1 + w(z)

)
Re(1 + w(z))

< 1 +
αn

4

(z ∈ U). If we suppose that there exists a point z0 ∈ U on the circle
|z| = r < 1 such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1,
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we can write that w(z0) = eiθ and z0w
′(z0) = meiθ. This shows that

(2.11)
Re

(
p(z0) + α

z0p
′(z0)

p(z0)

)
Re p(z0)

=
1 + cos θ +

αm

2
1 + cos θ

≥ 1 +
αm

4
≥ 1 +

αn

4
.

Since (2.11) contradicts our condition (2.9), |w(z)| < 1 for all z ∈ U. This
means that p(z) ∈ Qn. �

If we take p(z) = zf ′(z)
f(z) in Theorem 2.2, we have

Corollary 2.2. If f(z) ∈ An satisfies Re
(
zf ′(z)
f(z)

)
6= 0 (z ∈ U) and

(2.12) Re

{
(1− α)zf

′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)}
<
(
1 +

αn

4

)
Re

(
zf ′(z)

f(z)

)
(z ∈ U) for some real α > 0, then f(z) ∈ T ∗n .

Corollary 2.3. If f(z) ∈ An satisfies

(2.13) Re

(
zf ′′(z)

f ′(z)

)
< Re

(
zf ′(z)

f(z)

)
+
n− 2

n
(z ∈ U),

then f(z) ∈ T ∗n .

Proof. If we write

zf ′(z)

f(z)
= 1 + w(z) (f(z) ∈ An),

we see that w(z) is analytic in U and

w(z) = cnz
n + cn+1z

n+1 + . . . .

For such a function w(z), we see that

(2.14) Re

(
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
= Re

(
zw′(z)

1 + w(z)
− 1

)
<
n− 2

2
(z ∈ U).

Supposing that there exists a point z0 ∈ U on the circle |z| = r < 1 such
that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1,

we can write that w(z0) = eiθ and z0w
′(z0) = meiθ. Therefore, we have

(2.15) Re

(
z0f
′′(z0)

f ′(z0)
− z0f

′(z0)

f(z0)

)
= Re

(
keiθ

1 + eiθ
− 1

)
=
k

2
− 1 ≥ n− 2

2
,

which contradicts the condition (2.13). This implies that f(z) ∈ T ∗n . �
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Example 2.1. Let us consider the function p(z) given by

(2.16) p(z) = 1 + anz
n (z ∈ U)

for some n ∈ N = {1, 2, 3, . . . }, where an satisfies

a3n + 2an − 1 ≤ 0 (0 < an < 1).

Then p(z) ∈ Pn and p(z) 6= 0 (z ∈ U). It is clear that p(z) satisfies the
condition (2.9) in Theorem 2.2 for z = 0.

Let us put z = eiθ for p(z). Then we see that

(2.17) Re

(
p(z) + α

zp′(z)

p(z)

)
= 1 + an cosnθ +

αnan(an + cosnθ)

a2n + 1 + 2an cosnθ

and

(2.18)
(
1 +

αn

4

)
Re p(z) =

(
1 +

αn

4

)
(1 + an cosnθ).

This gives us that(
1 +

αn

4

)
Re p(z)− Re

(
p(z) + α

zp′(z)

p(z)

)
=
αn(1 + 2an cosnθ + a3n cosnθ + 2a2n cos

2 nθ)

4(a2n + 1 + 2an cosnθ)

≥ αn(1− 2an − a3n)
4(a2n + 1 + 2an cosnθ)

≥ 0.

(2.19)

Therefore, the function p(z) satisfies the condition (2.9) for all z ∈ U. In-
deed, we see that

|p(z)− 1| = |anzn| < an < 1 (z ∈ U).
Furthermore, if we define the function f(z) ∈ An by

(2.20)
zf ′(z)

f(z)
= 1 + anz

n

with some real an (0 < an < 1) satisfying

a3n + 2an − 1 ≤ 0,

then we have that

(2.21) f(z) = ze
an
n
zn

which satisfies the condition (2.12) in Corollary 2.2.
If we consider the function

g(x) = x3 + 2x− 1 (0 < x < 1),

we see that g(0) = −1 < 0 and g
(
1
2

)
= 1

8 > 0. Therefore, there exists some
real x (0 < x < 1) such that g(x) ≤ 0. Indeed, we see that

0.4533 < x < 0.4534.
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3. Properties for the classes Pn and An. We discuss some properties
for functions in the classes Pn and An.

Theorem 3.1. If p(z) ∈ Pn satisfies

(3.1)
∫
|z|=r

∣∣∣∣Re(zp′(z)p(z)

)∣∣∣∣ dθ < π

for z = reiθ (0 < r < 1), then Re p(z) > 0 (z ∈ U).

Proof. It follows from (3.1) that

(3.2)
∫
|z|=r

∣∣∣∣Re(zp′(z)p(z)

)∣∣∣∣ dθ=∫ 2π

0

∣∣∣∣d arg p(z)dθ

∣∣∣∣ dθ=∫
|z|=r

|d arg p(z)| < π.

This implies that Re p(z) > 0 for |z| = r < 1. Applying the maximum
principle for harmonic functions, we obtain that Re p(z) > 0 (z ∈ U). �

From Theorem 3.1, we have

Corollary 3.1. If f(z) ∈ An satisfies

(3.3)
∫
|z|=r

∣∣∣∣Re(1 + zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)∣∣∣∣ dθ < π

for z = reiθ (0 < r < 1), then f(z) ∈ S∗n.

Further, applying the same method as the proof by Umezawa [5] and
Nunokawa [3], we derive the following result:

Theorem 3.2. If f(z) ∈ A1 satisfies

(3.4) − β

4β − 1
< Re

(
zf ′′(z)

f ′(z)

)
< β (z ∈ U)

for some real β ≥ 1
4 , then Re f ′(z) > 0 (z ∈ U).

Proof. We note that if f ′(z0) = 0 for some z0 ∈ U, then f(z) does not
satisfy the condition (3.4). This shows that f ′(z) 6= 0 for all z ∈ U. Applying
the same method by Umezawa [5] and Nunokawa [3], we have that

(3.5)
∫
|z|=r

zf ′′(z)

f ′(z)
dθ =

∫
|z|=r

zf ′′(z)

f ′(z)

dz

iz
= −i

∫
|z|=r

zf ′′(z)

f ′(z)
dz = 0.

We denote by C1 the part of the circle |z| = r on which

(3.6) Re

(
zf ′′(z)

f ′(z)

)
≥ 0

and

(3.7)
∫
C1
d arg z = x.
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On the other hand, let us denote by C2 the part of the circle |z| = r on
which

(3.8) Re

(
zf ′′(z)

f ′(z)

)
< 0

and

(3.9)
∫
C2
d arg z = 2π − x.

Putting

(3.10) y1 =

∫
C1

Re

(
zf ′′(z)

f ′(z)

)
dθ =

∫
C1

(
d arg f ′(z)

dθ

)
dθ

and

(3.11) −y2 =
∫
C2

Re

(
zf ′′(z)

f ′(z)

)
dθ =

∫
C2

(
d arg f ′(z)

dθ

)
dθ,

we have that y1 − y2 = 0.
In view of the condition (3.4), we obtain that

y1 < βx and y2 <
β

4β − 1
(2π − x).

If y1 ≥ π
2 , then y2 = y1 ≥ π

2 and π
2 < βx. On the other hand, we have that

(3.12) y2 <
β

4β − 1
(2π − x) <

2πβ − π

2
4β − 1

=
π

2
.

This contradicts the inequality y2 ≥ π
2 . Therefore, y1 = y2 <

π
2 . Conse-

quently, we obtain that

(3.13) y1 + y2 =

∫
|z|=r

∣∣∣∣Re(zf ′′(z)f ′(z)

)∣∣∣∣ dθ = ∫
|z|=r

|d arg f ′(z)| < π,

which implies that Re f ′(z) > 0 (z ∈ U). �

Finally, letting β → ∞, β = 1
4 and β = 1

2 in Theorem 3.2, we have the
following corollary.

Corollary 3.2. If f(z) ∈ A1 satisfies one of the following conditions

(3.14) Re

(
zf ′′(z)

f ′(z)

)
> −1

4
(z ∈ U),

(3.15) Re

(
zf ′′(z)

f ′(z)

)
<

1

4
(z ∈ U),

(3.16)
∣∣∣∣Re(zf ′′(z)f ′(z)

)∣∣∣∣ < 1 (z ∈ U),

then Re f ′(z) > 0 (z ∈ U).
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