ANNALES
UNIVERSITATIS MARIAE CURIE-SKもODOWSKA

MAMORU NUNOKAWA and JANUSZ SOKÓモ

Strongly gamma-starlike functions of order alpha

Abstract

In this work we consider the class of analytic functions $\mathcal{G}(\alpha, \gamma)$, which is a subset of gamma-starlike functions introduced by Lewandowski, Miller and Złotkiewicz in Gamma starlike functions, Ann. Univ. Mariae CurieSkłodowska, Sect. A 28 (1974), 53-58. We discuss the order of strongly starlikeness and the order of strongly convexity in this subclass.

1. Introduction. Let \mathcal{H} denote the class of analytic functions in the unit disc $\mathbb{D}=\{z:|z|<1\}$ on the complex plane \mathbb{C}. For $a \in \mathbb{C}$ and $n \in \mathbb{N}$ we denote by

$$
\mathcal{H}[a, n]=\left\{f \in \mathcal{H}: f(z)=a+a_{n} z^{n}+\ldots\right\}
$$

and

$$
\mathcal{A}_{n}=\left\{f \in \mathcal{H}: f(z)=z+a_{n+1} z^{n+1}+\ldots\right\},
$$

so $\mathcal{A}=\mathcal{A}_{1}$. Let \mathcal{S} be the subclass of \mathcal{A} whose members are univalent in \mathbb{D}. The class \mathcal{S}_{α}^{*} of starlike functions of order $\alpha<1$ may be defined as

$$
\mathcal{S}_{\alpha}^{*}=\left\{f \in \mathcal{A}: \mathfrak{R e} \frac{z f^{\prime}(z)}{f(z)}>\alpha, z \in \mathbb{D}\right\} .
$$

[^0]The class \mathcal{S}_{α}^{*} and the class \mathcal{K}_{α} of convex functions of order $\alpha<1$

$$
\begin{aligned}
\mathcal{K}_{\alpha} & :=\left\{f \in \mathcal{A}: \mathfrak{R e}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in \mathbb{D}\right\} \\
& =\left\{f \in \mathcal{A}: z f^{\prime} \in \mathcal{S}_{\alpha}^{*}\right\}
\end{aligned}
$$

were introduced by Robertson in [6], see also [2]. If $\alpha \in[0 ; 1)$, then a function in either of these sets is univalent, if $\alpha<0$ it may fail to be univalent. In particular we denote $\mathcal{S}_{0}^{*}=\mathcal{S}^{*}, \mathcal{K}_{0}=\mathcal{K}$, the classes of starlike and convex functions, respectively. Furthermore, note that if $f \in \mathcal{K}_{\alpha}$, then $f \in \mathcal{S}_{\delta(\alpha)}^{*}$, see [9], where

$$
\delta(\alpha)= \begin{cases}\frac{1-2 \alpha}{2^{2-2 \alpha}-2} & \text { for } \alpha \neq \frac{1}{2} \tag{1.1}\\ \frac{1}{2 \log 2} & \text { for } \alpha=\frac{1}{2}\end{cases}
$$

Let $\mathcal{S S}^{*}(\beta)$ denote the class of strongly starlike functions of order β, $0<\beta<2$,

$$
\begin{equation*}
\mathcal{S S}^{*}(\beta):=\left\{f \in \mathcal{A}:\left|\operatorname{Arg} \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\beta \pi}{2}, \quad z \in \mathbb{D}\right\} \tag{1.2}
\end{equation*}
$$

which was introduced in [8] and [1]. Furthermore,

$$
\mathcal{S K}(\beta)=\left\{f \in \mathcal{A}: z f^{\prime} \in \mathcal{S} \mathcal{S}^{*}(\beta)\right\}
$$

denotes the class of strongly convex functions of order β. Analogously to (1.1), in the work [5] it was proved that if $\beta \in(0,1)$ and $f \in \mathcal{S K}(\alpha(\beta))$, then $f \in \mathcal{S S}(\beta)$, where

$$
\begin{equation*}
\alpha(\beta)=\beta+\frac{2}{\pi} \tan ^{-1}\left(\frac{\beta n(\beta) \sin (\pi(1-\beta) / 2)}{m(\beta)+\beta n(\beta) \cos (\pi(1-\beta) / 2)}\right), \tag{1.3}
\end{equation*}
$$

and where

$$
m(\beta)=(1+\beta)^{(1+\beta) / 2}, \quad n(\beta)=(1-\beta)^{(\beta-1) / 2} .
$$

The class $\mathcal{G}(\alpha, \gamma), \gamma>0,0<\alpha \leq 1$ of γ-strongly starlike functions of order α consists of functions $f \in \mathcal{A}$ satisfying

$$
\begin{equation*}
\left|\operatorname{Arg}\left\{\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\right\}\right|<\frac{\alpha \pi}{2}, \quad z \in \mathbb{D}, \tag{1.4}
\end{equation*}
$$

and such that

$$
\begin{equation*}
f(z) f^{\prime}(z)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \neq 0, \quad z \in \mathbb{D} \backslash\{0\} \tag{1.5}
\end{equation*}
$$

Note that Lewandowski, Miller and Złotkiewicz, 1974 [3] have introduced the class of γ-starlike functions, denoted here by $\mathcal{G}(1, \gamma)$, which satisfy (1.5) and such that

$$
\begin{equation*}
\mathfrak{R e}\left\{\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\right\}>0, \quad z \in \mathbb{D} . \tag{1.6}
\end{equation*}
$$

2. Preliminaries. To prove the main results, we need the following Nunokawa's Lemma.

Lemma 2.1 ([4], [5]). Let p be an analytic function in $|z|<1$ with $p(0)=1$, $p(z) \neq 0$. If there exists a point $z_{0},\left|z_{0}\right|<1$, such that

$$
|\operatorname{Arg}\{p(z)\}|<\frac{\pi \alpha}{2} \text { for }|z|<\left|z_{0}\right|
$$

and

$$
\left|\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}\right|=\frac{\pi \alpha}{2}
$$

for some $\alpha>0$, then we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \alpha
$$

where

$$
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \quad \text { when } \operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=\frac{\pi \alpha}{2}
$$

and

$$
k \leq-\frac{1}{2}\left(a+\frac{1}{a}\right) \quad \text { when } \operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=-\frac{\pi \alpha}{2}
$$

where

$$
\left\{p\left(z_{0}\right)\right\}^{1 / \alpha}= \pm i a, \quad \text { and } \quad a>0
$$

Moreover,

$$
\begin{equation*}
\operatorname{Arg}\left\{1+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p^{2}\left(z_{0}\right)}\right\} \geq \tan ^{-1}\left(\frac{\alpha n(\alpha) \sin (\pi(1-\alpha) / 2)}{m(\alpha)+\alpha n(\alpha) \cos (\pi(1-\alpha) / 2)}\right) \tag{2.1}
\end{equation*}
$$

where

$$
m(\alpha)=(1+\alpha)^{(1+\alpha) / 2} \quad n(\alpha)=(1-\alpha)^{(\alpha-1) / 2}
$$

3. Main result.

Theorem 3.1. Let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ be an analytic function in \mathbb{D}. Suppose also that $0<\alpha \leq 1$ and γ is a positive real number such that f satisfies

$$
\begin{equation*}
\left|\operatorname{Arg}\left\{\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\right\}\right|<\frac{\alpha \pi}{2} \quad \text { for } \quad|z|<1 \tag{3.1}
\end{equation*}
$$

If the equation, with respect to x,

$$
\begin{equation*}
x+\frac{2 \gamma}{\pi} \tan ^{-1}\left(\frac{x n(x) \sin (\pi(1-x) / 2)}{m(x)+x n(x) \cos (\pi(1-x) / 2)}\right)=\alpha \tag{3.2}
\end{equation*}
$$

where

$$
m(x)=(1+x)^{(1+x) / 2}, \quad n(x)=(1-x)^{(x-1) / 2}
$$

has a solution $\beta \in(0,1]$, then f is strongly starlike of order β.

Proof. Let us put

$$
\begin{equation*}
p(z)=\frac{z f^{\prime}(z)}{f(z)}, p(0)=1,(z \in \mathbb{D}) \tag{3.3}
\end{equation*}
$$

Then we have

$$
f(z) f^{\prime}(z)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \neq 0 \text { for } 0<|z|<1
$$

because of the assumption (3.1). Moreover,

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}=p(z)\left(1+\frac{z p^{\prime}(z)}{p^{2}(z)}\right)^{\gamma} \tag{3.4}
\end{equation*}
$$

If there exists a point $z_{0},\left|z_{0}\right|<1$, such that

$$
|\operatorname{Arg}\{p(z)\}|<\frac{\pi \beta}{2} \quad \text { for } \quad|z|<\left|z_{0}\right|
$$

and

$$
\left|\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}\right|=\frac{\pi \beta}{2},
$$

then by Nunokawa's Lemma 2.1, we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i \beta k
$$

where

$$
k \geq 1 \quad \text { when } \quad \operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=\frac{\pi \beta}{2}
$$

and

$$
k \leq-1 \quad \text { when } \operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=-\frac{\pi \beta}{2}
$$

For the case $\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=\pi \beta / 2$, we have from (3.4) and (2.1)

$$
\begin{aligned}
\operatorname{Arg} & \left\{\left(\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right)^{1-\gamma}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right)^{\gamma}\right\} \\
& =\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}+\gamma \operatorname{Arg}\left\{1+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p^{2}\left(z_{0}\right)}\right\} \\
& \geq \frac{\pi \beta}{2}+\gamma \tan ^{-1}\left(\frac{\beta n(\beta) \sin (\pi(1-\beta) / 2)}{m(\beta)+\beta n(\beta) \cos (\pi(1-\beta) / 2)}\right) \\
& =\frac{\alpha \pi}{2}
\end{aligned}
$$

because β is the solution of (3.2). For the case $\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=-\pi \beta / 2$, applying the same method as the above, we have

$$
\operatorname{Arg}\left\{\left(\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right)^{1-\gamma}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right)^{\gamma}\right\}<-\frac{\alpha \pi}{2} .
$$

In both of the above cases we have

$$
\left|\operatorname{Arg}\left\{\left(\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right)^{1-\gamma}\left(1+\frac{\left.z_{0} f^{\prime \prime}()^{\prime} z\right)}{f^{\prime}\left(z_{0}\right)}\right)^{\gamma}\right\}\right| \geq \frac{\alpha \pi}{2}
$$

for $z_{0} \in \mathbb{D}$, which contradicts hypothesis (3.1) of the theorem and therefore,

$$
|\operatorname{Arg}\{p(z)\}|<\frac{\pi \beta}{2} \quad \text { for } \quad|z|<1
$$

which completes the proof.
Theorem 3.1 says that a function in the class $\mathcal{G}(\alpha, \gamma)$, see (1.4), of γ strongly starlike functions of order α is strongly starlike function, see (1.2), of order at least β, where β is the solution of (3.2). Note that if $f \in \mathcal{G}(\alpha, 0)$, then f is strongly starlike of order α. For a related result we refer to [7]. If $\alpha=1$, then Theorem 3.1 becomes the following result on the class $\mathcal{G}(\gamma, 1)$ introduced by Lewandowski, Miller and Złotkiewicz [3].

Corollary 3.1. Assume that $f \in \mathcal{G}(\gamma, 1)$ or that f satisfies (1.5) and (1.6). If the equation

$$
x+\frac{2 \gamma}{\pi} \tan ^{-1}\left(\frac{x n(x) \sin (\pi(1-x) / 2)}{m(x)+x n(x) \cos (\pi(1-x) / 2)}\right)=1
$$

has a solution $\beta \in(0,1]$, then f is strongly starlike of order β.
In the corollary below there are examples of the choice α, γ and β which satisfies Corollary 3.1 or Theorem 3.1.

Corollary 3.2. If $f \in \mathcal{G}\left(\gamma_{(1 ; 1 / 2)}, 1\right)$, then $f \in \mathcal{S S}^{*}(1 / 2)$, where

$$
\gamma_{(1 ; 1 / 2)}=\frac{\pi}{4 \tan ^{-1}\left(\frac{1}{3 \sqrt[4]{4 / 3}+1}\right)} \approx 3.378
$$

If $f \in \mathcal{G}\left(\gamma_{(3 / 4 ; 1 / 2)}, 3 / 4\right)$, then $f \in \mathcal{S S}^{*}(1 / 2)$, where

$$
\gamma_{(3 / 4 ; 1 / 2))}=\frac{\pi}{8 \tan ^{-1}\left(\frac{1}{3 \sqrt[4]{4 / 3}+1}\right)} \approx 1.689
$$

If $f \in \mathcal{G}\left(\gamma_{(3 / 5 ; 1 / 2)}, 3 / 5\right)$, then $f \in \mathcal{S S}^{*}(1 / 2)$, where

$$
\gamma_{(3 / 5 ; 1 / 2)}=\frac{\pi}{20 \tan ^{-1}\left(\frac{1}{3 \sqrt[4]{4 / 3}+1}\right)} \approx 0.675
$$

If $f \in \mathcal{G}\left(\gamma_{(3 / 4 ; 2 / 3)}, 3 / 4\right)$, then $f \in \mathcal{S S}^{*}(2 / 3)$, where

$$
\gamma_{(3 / 4 ; 2 / 3)}=\frac{\pi}{8 \tan ^{-1}\left(\frac{\sqrt[6]{3}}{3(5 / 3)^{5 / 3}+\sqrt[6]{81}}\right)} \approx 1.481
$$

If $\alpha=\beta$, then from (3.2) we get $\gamma=0$, and $\mathcal{G}(0, \alpha) \subset \mathcal{S S}^{*}(\alpha)$, but this case is trivial. In the next theorem we consider the order of strongly starlikeness for functions, in some sense, in the class $\mathcal{G}(\alpha, \gamma)$ of negative order γ.

Theorem 3.2. Let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ be an analytic function in \mathbb{D}. Suppose also that γ is a negative real number such that f satisfies

$$
\begin{equation*}
\left|\operatorname{Arg}\left\{\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\right\}\right|<\frac{\alpha \pi}{2} \quad \text { for } \quad|z|<1, \tag{3.5}
\end{equation*}
$$

where $0<\alpha \leq 1$ and suppose that β is the root of the equation

$$
\begin{equation*}
\beta+\gamma(1-\beta)=\alpha \tag{3.6}
\end{equation*}
$$

in the interval $(0,1]$. Then we have

$$
\left|\operatorname{Arg}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right|<\frac{\beta \pi}{2} \quad \text { for } \quad|z|<1
$$

Proof. In the first part of the proof we apply the same method as in the proof of Theorem 3.1. Let us put

$$
p(z)=\frac{z f^{\prime}(z)}{f(z)}, p(0)=1,(z \in \mathbb{D}) .
$$

If there exists a point $z_{0} \in \mathbb{D}$ such that

$$
\begin{equation*}
\left|\operatorname{Arg}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right|<\frac{\pi \beta}{2} \quad \text { for }|z|<\left|z_{0}\right| \tag{3.7}
\end{equation*}
$$

and

$$
\left|\operatorname{Arg}\left\{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right\}\right|=\frac{\pi \beta}{2},
$$

then by Nunokawa's Lemma 2.1, we have

$$
\begin{equation*}
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i \beta k \tag{3.8}
\end{equation*}
$$

where

$$
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \quad \text { when } \operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=\frac{\pi \alpha}{2}
$$

and

$$
k \leq-\frac{1}{2}\left(a+\frac{1}{a}\right) \quad \text { when } \operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=-\frac{\pi \alpha}{2},
$$

where

$$
\begin{equation*}
\left\{p\left(z_{0}\right)\right\}^{1 / \beta}= \pm i a, \quad \text { and } a>0 \tag{3.9}
\end{equation*}
$$

For the case $\left\{p\left(z_{0}\right)\right\}^{1 / \beta}=i a, a>0$, we have from (3.8) and (3.9)

$$
\begin{aligned}
\operatorname{Arg} & \left\{\left(\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right)^{1-\gamma}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right)^{\gamma}\right\} \\
& =\operatorname{Arg}\left\{p\left(z_{0}\right)\left(1+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p^{2}\left(z_{0}\right)}\right)^{\gamma}\right\} \\
& =\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}+\gamma \operatorname{Arg}\left\{1+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p^{2}\left(z_{0}\right)}\right\} \\
& =\frac{\pi \beta}{2}+\gamma \operatorname{Arg}\left\{1+\frac{i \beta k}{(i a)^{\beta}}\right\} \\
& =\frac{\pi \beta}{2}+\gamma \operatorname{Arg}\left\{1+\frac{\beta k}{a^{\beta}} e^{i \frac{\pi(1-\beta)}{2}}\right\} \\
& \geq \frac{\pi \beta}{2}+\gamma \frac{\pi(1-\beta)}{2} \\
& =\frac{\alpha \pi}{2}
\end{aligned}
$$

because β is the solution of (3.6). For the case $\operatorname{Arg}\left\{p\left(z_{0}\right)\right\}=-\pi \beta / 2$, applying the same method as the above, we have

$$
\operatorname{Arg}\left\{\left(\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right)^{1-\gamma}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right)^{\gamma}\right\} \leq-\frac{\alpha \pi}{2}
$$

The above cases show that

$$
\left|\operatorname{Arg}\left\{\left(\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right)^{1-\gamma}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right)^{\gamma}\right\}\right| \geq \frac{\alpha \pi}{2}, \quad z_{0} \in \mathbb{D},
$$

which contradicts hypothesis (3.5) of the theorem and therefore,

$$
|\operatorname{Arg}\{p(z)\}|<\frac{\pi \beta}{2} \quad \text { for } \quad|z|<1
$$

which completes the proof.
Theorem 3.3. Let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ be an analytic function in \mathbb{D}. Suppose also that $0<\alpha \leq 1$ and $0<\gamma \leq 1$ are such that f satisfies (3.1). If the equation (3.2) has a solution $\alpha_{0} \in(0,1]$, then f is strongly convex of order $\left\{(1-\gamma) \alpha_{0}+\alpha\right\} / \gamma$.

Proof.

$$
\begin{aligned}
& \left|\operatorname{Arg}\left\{\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\right\}\right|-\left|\operatorname{Arg}\left\{\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\right\}\right| \\
& \quad \leq\left|\operatorname{Arg}\left\{\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\right\}\right|<\frac{\alpha \pi}{2} \text { for }|z|<1 .
\end{aligned}
$$

Then by Theorem 3.1 we have

$$
\begin{aligned}
\mid \operatorname{Arg} & \left.\left\{\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\right\} \right\rvert\, \\
& \leq\left|\operatorname{Arg}\left\{\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\right\}\right|+\frac{\alpha \pi}{2} \\
& <\frac{\pi(1-\gamma) \alpha_{0}}{2}+\frac{\alpha \pi}{2}
\end{aligned}
$$

and so

$$
\left|\operatorname{Arg}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right|<\frac{\pi\left\{(1-\gamma) \alpha_{0}+\alpha\right\}}{2 \gamma} \text { for }|z|<1
$$

Theorem 3.4. Assume that the equation (3.2) has a solution $\alpha_{0}, 0<\alpha_{0}<$ $\alpha \leq 1$. If $0<\delta<\gamma$, then $\mathcal{G}(\alpha, \gamma) \subset \mathcal{G}(\alpha, \delta)$.
Proof. Let us suppose that f is a member of $\mathcal{G}(\alpha, \gamma)$ and let us put

$$
A=\left\{B^{1-\delta} C^{\delta}\right\}^{\gamma / \delta}
$$

where

$$
B=z f^{\prime}(z) / f(z) \text { and } C=1+z f^{\prime \prime}(z) / f^{\prime}(z)
$$

Then we have

$$
A=B^{1-\gamma} C^{\gamma} B^{\gamma / \delta-1}
$$

and by Theorem 3.1 we obtain

$$
\begin{aligned}
|\operatorname{Arg}\{A\}| & =\frac{\gamma}{\delta}\left|\operatorname{Arg}\left\{B^{1-\delta} C^{\delta}\right\}\right| \\
& =\left|\operatorname{Arg}\left\{B^{1-\gamma} C^{\gamma}\right\}+\operatorname{Arg}\left\{B^{\gamma / \delta-1}\right\}\right| \\
& <\frac{\alpha \pi}{2}+\left(\frac{\gamma}{\delta}-1\right) \frac{\alpha_{0} \pi}{2} \\
& <\frac{\alpha \pi}{2}+\left(\frac{\gamma}{\delta}-1\right) \frac{\alpha \pi}{2} \\
& \leq \frac{\gamma}{\delta} \frac{\alpha \pi}{2}
\end{aligned}
$$

This shows that

$$
\left|\operatorname{Arg}\left\{B^{1-\delta} C^{\delta}\right\}\right|<\frac{\alpha \pi}{2} \quad z_{0} \in \mathbb{D}
$$

Therefore, $f \in \mathcal{G}(\alpha, \delta)$.

References

[1] Brannan, D. A., Kirwan, W. E., On some classes of bounded univalent functions, J. London Math. Soc. 1 (2) (1969), 431-443.
[2] Lewandowski, Z., Sur l'identité de certaines classes de fonctions univalentes, II, Ann. Univ. Mariae Curie-Skłodowska Sect. A 14 (1960), 19-46.
[3] Lewandowski, Z., Miller, S., Złotkiewicz, E., Gamma starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 28 (1974), 53-58.
[4] Nunokawa, M., On properties of non-Carathéodory functions, Proc. Japan Acad. Ser. A 68 (6) (1992), 152-153.
[5] Nunokawa, M., On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A 69 (7) (1993), 234-237.
[6] Robertson, M. S., On the theory of univalent functions, Ann. Math. 37 (1936), 374408.
[7] Sokól, J., On sufficient condition to be in a certain subclass of starlike functions defined by subordination, Appl. Math. Comp. 190 (2007), 237-241.
[8] Stankiewicz, J., Quelques problèmes extrèmaux dans les classes des fonctions α angulairement ètoilèes, Ann. Univ. Mariae Curie-Skłodowska Sect. A 20 (1966), 59-75.
[9] Wilken, D. R., Feng, J, A remark on convex and starlike functions, J. London Math. Soc. 21 (2) (1980), 287-290.

Mamoru Nunokawa
University of Gunma
Hoshikuki-cho 798-8
Chuou-Ward, Chiba, 260-0808
Japan
e-mail: mamoru_nuno@doctor.nifty.jp

Janusz Sokół
Department of Mathematics
Rzeszów University of Technology
Al. Powstańców Warszawy 12
35-959 Rzeszów
Poland
e-mail: jsokol@prz.edu.pl

Received August 3, 2012

[^0]: 2000 Mathematics Subject Classification. Primary 30C45, Secondary 30C80.
 Key words and phrases. Strongly starlike functions of order alpha, convex functions of order alpha, strongly starlike functions of order alpha, gamma-starlike functions, Nunokawa's Lemma.

