ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXVII, NO. 2, 2013

SECTIO A

53_58

NICOLETA ULARU and NICOLETA BREAZ

An integral operator on the classes $S^*(\alpha)$ and $CVH(\beta)$

ABSTRACT. The purpose of this paper is to study some properties related to convexity order and coefficients estimation for a general integral operator. We find the convexity order for this operator, using the analytic functions from the class of starlike functions of order α and from the class $\mathcal{CVH}(\beta)$ and also we estimate the first two coefficients for functions obtained by this operator applied on the class $\mathcal{CVH}(\beta)$.

1. Preliminary and definitions. We consider the class of analytic functions f(z), in the open unit disk, $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$, having the form:

(1.1)
$$f(z) = z + \sum_{j=2}^{\infty} a_j z^j, \quad z \in \mathcal{U}.$$

This class is denoted by \mathcal{A} . By \mathcal{S} we denote the class of all functions from \mathcal{A} which are univalent in \mathcal{U} .

We denote by $\mathcal{K}(\alpha)$ the class of all convex functions of order α ($0 \le \alpha < 1$) that satisfy the inequality:

$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)}+1\right)>\alpha,\quad z\in\mathcal{U}.$$

 $^{2000\} Mathematics\ Subject\ Classification.\ 30C45.$

Key words and phrases. Analytic function, integral operator, starlike function, convex function, coefficients estimation.

A function $f \in \mathcal{A}$ is in the class $\mathcal{S}^*(\alpha)$, of starlike functions of order α if

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \quad z \in \mathcal{U}.$$

These classes were introduced by Robertson in [4] and studied by many other authors.

We also consider the class $\mathcal{CVH}(\beta)$ which was introduced by Acu and Owa in [1]. An analytic function f is in the class $\mathcal{CVH}(\beta)$ with $\beta > 0$ if we have the following inequality:

$$(1.2) \left| \frac{zf''(z)}{f'(z)} - 2\beta(\sqrt{2} - 1) + 1 \right| < \operatorname{Re}\left(\sqrt{2}\frac{zf''(z)}{f'(z)}\right) + 2\beta(\sqrt{2} - 1) + \sqrt{2},$$

where $z \in \mathcal{U}$.

Remark 1. This class is well defined for Re $\left(\sqrt{2}\frac{zf''(z)}{f'(z)}\right) > 2\beta(1-\sqrt{2}) - \sqrt{2}$.

For this class the following result was proved by Acu and Owa in [1].

Theorem 1.1. If $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$ belongs to the class $\mathcal{CVH}(\beta)$, $\beta > 0$, then

$$|a_2| \le \frac{1+4\beta}{2(1+2\beta)}, \ |a_3| \le \frac{(1+4\beta)(3+16\beta+24\beta^2)}{12(1+2\beta)^3}.$$

For the analytic functions f_i and g_i we consider the operator

(1.3)
$$K(z) = \int_{0}^{z} \prod_{i=1}^{n} (g_i'(t))^{\eta_i} \cdot \left(\frac{f_i(t)}{t}\right)^{\gamma_i} dt,$$

for $\gamma_i, \eta_i > 0$ with $i = \overline{1, n}$. This operator was studied by Pescar in [3] and Ularu in [5].

We study the properties of this operator on the classes $\mathcal{CVH}(\beta)$ and $\mathcal{S}^*(\alpha)$. The idea of this paper was given by an open problem considered by N. Breaz, D. Breaz and Acu in [2].

2. Main results. Let

$$\phi = 1 - \sum_{i=1}^{n} \eta_i - (2 - \sqrt{2}) \sum_{i=1}^{n} \eta_i \beta_i + \sum_{i=1}^{n} \gamma_i (\alpha_i - 1),$$

where $\beta_i > 0$, $\alpha_i \in [0,1)$ and $\eta_i, \gamma_i > 0$ for all $i = \overline{1,n}$. For

(2.1)
$$\sum_{i=1}^{n} \eta_i + (2 - \sqrt{2}) \sum_{i=1}^{n} \eta_i \beta_i + \sum_{i=1}^{n} \gamma_i (\alpha_i - 1) \le 1$$

we have that $0 \le \phi < 1$.

Theorem 2.1. If $f_i \in S^*(\alpha_i)$ and $g_i \in CVH(\beta_i)$, with $\beta_i > 0$, $0 \le \alpha_i < 1$ and $\eta_i, \gamma_i > 0$ for all $i = \overline{1, n}$ satisfying the condition (2.1), then the integral operator K(z) defined by (1.3) is in the class $K(\phi)$, $0 \le \phi < 1$ where

$$\phi = 1 - \sum_{i=1}^{n} \eta_i - (2 - \sqrt{2}) \sum_{i=1}^{n} \eta_i \beta_i + \sum_{i=1}^{n} \gamma_i (\alpha_i - 1).$$

Proof. From the definition of K(z) we obtain:

$$\frac{zK''(z)}{K'(z)} = \sum_{i=1}^{n} \left(\eta_i \frac{zg_i''(z)}{g_i'(z)} \right) + \sum_{i=1}^{n} \left[\gamma_i \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right) \right].$$

Further we have:

$$\sqrt{2}\operatorname{Re}\left(\frac{zK''(z)}{K'(z)} + 1\right) = \operatorname{Re}\sum_{i=1}^{n} \sqrt{2}\eta_{i} \frac{zg_{i}''(z)}{g_{i}'(z)} + \sqrt{2} + \sqrt{2}\operatorname{Re}\sum_{i=1}^{n} \gamma_{i} \frac{zf_{i}'(z)}{f_{i}(z)} - \sqrt{2}\operatorname{Re}\sum_{i=1}^{n} \gamma_{i}.$$

We use the fact that f_i are starlike functions of order α_i and $g_i \in \mathcal{CVH}(\beta_i)$ for $i = \overline{1, n}$:

$$\sqrt{2}\operatorname{Re}\left(\frac{zK''(z)}{K'(z)} + 1\right) > \sum_{i=1}^{n} \eta_{i} \left| \frac{zg_{i}''(z)}{g_{i}'(z)} - 2\beta_{i}(\sqrt{2} - 1) + 1 \right|
- \sum_{i=1}^{n} \left(2\eta_{i}\beta_{i}(\sqrt{2} - 1) + \eta_{i}\sqrt{2}\right) + \sqrt{2}
+ \sqrt{2} \sum_{i=1}^{n} \gamma_{i}\alpha_{i} - \sqrt{2} \sum_{i=1}^{n} \gamma_{i}
> - \sqrt{2} \sum_{i=1}^{n} \eta_{i} - 2(\sqrt{2} - 1) \sum_{i=1}^{n} \eta_{i}\beta_{i} + \sqrt{2}
+ \sqrt{2} \sum_{i=1}^{n} \gamma_{i}\alpha_{i} - \sqrt{2} \sum_{i=1}^{n} \gamma_{i}.$$

From these inequalities we obtain that:

$$\operatorname{Re}\left(\frac{zK''(z)}{K'(z)} + 1\right) > 1 - \sum_{i=1}^{n} \eta_i - (2 - \sqrt{2}) \sum_{i=1}^{n} \eta_i \beta_i + \sum_{i=1}^{n} \gamma_i (\alpha_i - 1).$$

So we obtain the convexity order for the operator K(z) for functions in the classes $S^*(\alpha_i)$ and $\mathcal{CVH}(\beta_i)$ for $i = \overline{1, n}$.

For $\eta_1 = \eta_2 = \cdots = \eta_n = 1$ and $\gamma_1 = \gamma_2 = \cdots = \gamma_n = 1$ in the definition of K(z) given by (1.3) we obtain:

$$K_1(z) = \int_0^z \prod_{i=1}^n g_i'(t) \cdot \frac{f_i(t)}{t} dt$$

for $i = \overline{1, n}$.

Corollary 2.2. If $f_i \in S^*(\alpha_i)$ and $g_i \in CVH(\beta_i)$, for $\beta_i > 0$, $0 \le \alpha_i < 1$ for all $i = \overline{1, n}$, then the integral operator

$$K_1(z) = \int_0^z \prod_{i=1}^n g_i'(t) \cdot \frac{f_i(t)}{t} dt$$

is convex of order ϕ , where

$$\phi = 1 - n - (2 - \sqrt{2}) \sum_{i=1}^{n} \beta_i + \sum_{i=1}^{n} (\alpha_i - 1),$$

for $0 \le \phi < 1$.

Next we will obtain the estimation for the coefficients of the operator $K_1(z)$ defined above.

Theorem 2.3. Let $f_i \in \mathcal{CVH}(\gamma_i)$, $g_i \in \mathcal{CVH}(\beta_i)$, with $\beta_i, \gamma_i > 0$ and $g_i(z) = z + \sum_{j=2}^{\infty} a_{i,j} z^j$, $f_i(z) = z + \sum_{j=2}^{\infty} b_{i,j} z^j$ for all $i = \overline{1, n}$. If $K_1(z) = z + \sum_{j=2}^{\infty} c_j z^j$, then we obtain:

$$|c_2| \le \frac{1}{2} \left(\sum_{i=1}^n \frac{1+4\gamma_i}{2(1+2\gamma_i)} + \sum_{i=1}^n \frac{1+4\beta_i}{1+2\beta_i} \right)$$

and

$$|c_3| \le \frac{1}{3} \left[\sum_{i=1}^n \frac{(1+4\gamma_i)(3+16\gamma_i+24\gamma_i^2)}{12(1+2\gamma_i)^3} + \sum_{k=1}^{n-1} \left(\frac{1+4\gamma_k}{2(1+2\gamma_k)} \sum_{i=k+1}^n \frac{1+4\gamma_i}{2(1+2\gamma_i)} \right) \right]$$

$$+ \sum_{i=1}^n \frac{(1+4\beta_i)(3+16\beta_i+24\beta_i^2)}{12(1+2\beta_i)^3}$$

$$+ \frac{2}{3} \left[2 \sum_{k=1}^{n-1} \left(\frac{1+4\beta_k}{2(1+2\beta_k)} \sum_{i=k+1}^n \frac{1+4\beta_i}{2(1+4\beta_i)} \right) + \left(\sum_{i=1}^n \frac{1+4\beta_i}{2(1+2\beta_i)} \right) \left(\sum_{i=1}^n \frac{1+4\gamma_i}{2(1+2\gamma_i)} \right) \right].$$

Proof. From the definition of $K_1(z)$ we obtain:

$$K_1'(z) = \prod_{i=1}^n g_i'(z) \cdot \frac{f_i(z)}{z}$$

and further we get that:

$$1 + \sum_{j=2}^{\infty} j c_j z^{j-1} = \left(1 + \sum_{j=2}^{\infty} j a_{1,j} z^{j-1}\right) \dots \left(1 + \sum_{j=2}^{\infty} j a_{n,j} z^{j-1}\right) \times \left(1 + \sum_{j=2}^{\infty} b_{1,j} z^{j-1}\right) \dots \left(1 + \sum_{j=2}^{\infty} b_{n,j} z^{j-1}\right).$$

After some computation from the above relation we obtain:

(2.2)
$$c_2 = \frac{1}{2} \sum_{i=1}^{n} b_{i,2} + \sum_{i=1}^{n} a_{i,2}$$

and

(2.3)
$$c_{3} = \frac{1}{3} \sum_{i=1}^{n} b_{i,3} + \sum_{i=1}^{n} a_{i,3} + \frac{1}{3} \sum_{k=1}^{n-1} \left(b_{k,2} \sum_{i=k+1}^{n} b_{i,2} \right) + \frac{4}{3} \sum_{k=1}^{n-1} \left(a_{k,2} \sum_{i=k+1}^{n} a_{i,2} \right) + \frac{2}{3} \left(\sum_{i=1}^{n} a_{i,2} \right) \left(\sum_{i=1}^{n} b_{i,2} \right).$$

From Theorem 1.1 we have the following inequalities for the coefficients:

$$|a_{i,2}| \le \frac{1+4\beta_i}{2(1+2\beta_i)}$$

$$|a_{i,3}| \le \frac{(1+4\beta_i)(3+16\beta_i+24\beta_i^2)}{12(1+2\beta_i)^3}$$

$$|b_{i,2}| \le \frac{1+4\gamma_i}{2(1+2\gamma_i)}$$

and

$$|b_{i,2}| \le \frac{2(1+2\gamma_i)}{2(1+2\gamma_i)}$$
$$|b_{i,3}| \le \frac{(1+4\gamma_i)(3+16\gamma_i+24\gamma_i^2)}{12(1+2\gamma_i)^3}$$

for $i = \overline{1,n}$. Now we will use the inequalities in (2.2) and (2.3) and we obtain:

$$|c_2| \le \frac{1}{2} \sum_{i=1}^n |b_{i,2}| + \sum_{i=1}^n |a_{i,2}|$$

$$\le \frac{1}{2} \left(\sum_{i=1}^n \frac{1+4\gamma_i}{2(1+2\gamma_i)} + \sum_{i=1}^n \frac{1+4\beta_i}{1+2\beta_i} \right)$$

and

$$\begin{split} |c_3| &\leq \frac{1}{3} \sum_{i=1}^n |b_{i,3}| + \sum_{i=1}^n |a_{i,3}| + \frac{1}{3} \sum_{k=1}^{n-1} \left(|b_{k,2}| \sum_{i=k+1}^n |b_{i,2}| \right) \\ &+ \frac{4}{3} \sum_{k=1}^{n-1} \left(|a_{k,2}| \sum_{i=k+1}^n |a_{i,2}| \right) + \frac{2}{3} \left(\sum_{i=1}^n |a_{i,2}| \right) \left(\sum_{i=1}^n |b_{i,2}| \right) \\ &\leq \frac{1}{3} \left[\sum_{i=1}^n \frac{(1+4\gamma_i)(3+16\gamma_i+24\gamma_i^2)}{12(1+2\gamma_i)^3} \right. \\ &+ \left. \sum_{k=1}^{n-1} \left(\frac{1+4\gamma_k}{2(1+2\gamma_k)} \sum_{i=k+1}^n \frac{1+4\gamma_i}{2(1+2\gamma_i)} \right) \right] \\ &+ \sum_{i=1}^n \frac{(1+4\beta_i)(3+16\beta_i+24\beta_i^2)}{12(1+2\beta_i)^3} \\ &+ \frac{2}{3} \left[2 \sum_{k=1}^{n-1} \left(\frac{1+4\beta_k}{2(1+2\beta_k)} \sum_{i=k+1}^n \frac{1+4\beta_i}{2(1+4\beta_i)} \right) \right. \\ &+ \left. \left(\sum_{i=1}^n \frac{1+4\beta_i}{2(1+2\beta_i)} \right) \left(\sum_{i=1}^n \frac{1+4\gamma_i}{2(1+2\gamma_i)} \right) \right], \end{split}$$

hence the proof is complete.

References

- [1] Acu, M., Owa, S., Convex functions associated with some hyperbola, J. Approx. Theory Appl. 1 (1) (2005), 37–40.
- [2] Breaz, N., Breaz, D., Acu, M., Some properties for an integral operator on the CVH(β)-class, IJOPCA 2 (1) (2010), 53–58.
- [3] Pescar, V., The univalence of an integral operator, Gen. Math. 19 (4) (2011), 69-74.
- [4] Robertson, M. S., Certain classes of starlike functions, Michigan Math. J. 76 (1) (1954), 755–758.
- [5] Ularu, N., Convexity properties for an integral operator, Acta Univ. Apulensis Math. Inform. 27 (2011), 115–120.

Nicoleta Ularu University of Piteşti Târgul din Vale Str., No. 1 110040 Piteşti, Argeş

Romania

e-mail: nicoletaularu@yahoo.com

Nicoleta Breaz

"1 Decembrie 1918" University of Alba Iulia

N. Iorga Str., No. 11–13 510009 Alba Iulia, Alba

Romania

e-mail: nbreaz@uab.ro

Received September 7, 2012