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The constructions of general connections
on second jet prolongation

Abstract. We determine all natural operators D transforming general con-
nections Γ on fibred manifolds Y → M and torsion free classical linear con-
nections ∇ on M into general connections D(Γ,∇) on the second order jet
prolongation J2Y → M of Y → M .

1. Introduction. The concept of r-th order connections was firstly intro-
duced on groupoids by C. Ehresmann in [2] and next by I. Kolář in [3] for
arbitrary fibred manifolds.
Let us recall that an r-th order connection on a fibred manifold p : Y →

M is a section Θ: Y → JrY of the r-jet prolongation β : JrY → Y of
p : Y → M . A general connection on p : Y → M is a first order connection
Γ: Y → J1Y or (equivalently) a lifting map

Γ: Y ×M TM → TY.

By Con(Y → M) we denote the set of all general connections on a fibred
manifold p : Y → M .
If p : Y → M is a vector bundle and an r-th order connection Θ: Y →

JrY is a vector bundle morphism, then Θ is called an r-th order linear
connection on p : Y → M .
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An r-th order linear connection on M is an r-th order linear connection
Λ: TM → JrTM on the tangent bundle πM : TM → M of M . By Qr(M)
we denote the set of all r-th order linear connections on M .
A classical linear connection on M is a first order linear connection

∇ : TM → J1TM or (equivalently) a covariant derivative ∇ : X(M) ×
X(M) → X(M). A classical linear connection ∇ on M is called torsion
free if its torsion tensor T (X,Y ) = ∇XY −∇Y X − [X,Y ] is equal to zero.
By Qτ (M) we denote the set of all torsion free classical linear connections
on M .
Let FM denote the category of fibred manifolds and their fibred maps
and let FMm,n ⊂ FM be the (sub)category of fibred manifolds with m-
dimensional bases and n-dimensional fibres and their local fibred diffeomor-
phisms. Let Mfm denote the category of m-dimensional manifolds and
their local diffeomorphisms. Let F : FMm,n → FM be a bundle functor
on FMm,n of order r in the sense of [4]. Let Γ: Y ×M TM → TY be the
lifting map of a general connection on an object p : Y → M of FMm,n.
Let Λ: TM → JrTM be an r-th order linear connection on M . The flow
operator F of F transforming projectable vector fields η on p : Y → M
into vector fields Fη := ∂

∂t |t=0
F (Flηt ) on FY is of order r. In other words,

the value Fη(u) at every u ∈ FyY, y ∈ Y depends only on jryη. There-
fore, we have the corresponding flow morphism F̃ : FY ×Y JrTY → TFY ,
which is linear with respect to JrTY . Moreover, F̃(u, jryη) = Fη(u), where
u ∈ FyY, y ∈ Y . LetXΓ be the Γ-lift of a vector fieldX onM to Y , i.e.XΓ is
a projectable vector field on p : Y → M defined by XΓ(y) = Γ(y,X(x)), y ∈
Yx, x = p(y) ∈ M . Then the connection Γ can be extended to a morphism
Γ̃ : Y ×M JrTM → JrTY by the following formula Γ̃(y, jrxX) = jry(X

Γ).
By applying F , we obtain a map F(Γ̃) : FY ×M JrTM → TFY defined by
F(Γ̃)(u, jrxX) = F̃(u, jry(XΓ)) = FXΓ(u). Further the composition

F(Γ,Λ) := F(Γ̃) ◦ (idFY × Λ): FY ×M TM → TFY

is the lifting map of a general connection on FY → M . The connection
F(Γ,Λ) is called F -prolongation of Γ with respect to Λ and was discovered
by I. Kolář [5].
Let∇ be a torsion free classical linear connection onM . For every x ∈ M ,
the connection ∇ determines the exponential map exp∇x : TxM → M (of ∇
in x), which is diffeomorphism of some neighbourhood of the zero vector at
x onto some neighbourhood of x. Every vector v ∈ TxM can be extended to
a vector field ṽ on a vector space TxM by ṽ(w) = ∂

∂t |t=0
[w+tv]. Then we can

construct an r-th order linear connection Er(∇) : TM → JrTM , which is
given by Er(∇)(v) = jrx((exp

∇
x )∗ṽ). This connection is called an exponential

extension of ∇ and was presented by W. Mikulski in [9]. Another equivalent
definition (for corresponding principal connections in the r-frame bundles)
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of the exponential extension was independently introduced by I. Kolář in [6].
Hence given a general connection Γ on Y → M and a torsion free classical
linear connection ∇ on M , we have the general connection

F(Γ,∇) := F(Γ, Er(∇)) : FY ×M TM → TFY.

The canonical character of construction of this connection can be de-
scribed by means of the concept of natural operators. The general concept
of natural operators can be found in [4]. In particular, we have the following
definitions.

Definition 1. Let F : FMm,n → FM be a bundle functor of order r on a
category FMm,n. An FMm,n-natural operator D : J1 ×Qτ (B)� J1(F →
B) transforming general connections Γ on fibred manifolds p : Y → M
and torsion free classical linear connections ∇ on M into general con-
nections D(Γ,∇) : FY → J1FY on FY → M is a system of regular
operators DY : Con(Y → M) × Qτ (M) → Con(FY → M), (p : Y →
M) ∈ Obj(FMm,n) satisfying the FMm,n-invariance condition: for any
Γ ∈ Con(Y → M), Γ1 ∈ Con(Y1 → M1), ∇ ∈ Qτ (M) and ∇1 ∈ Qτ (M1)
such that if Γ is f -related to Γ1 by an FMm,n-map f : Y → Y1 cover-
ing f : M → M1 (i.e. J1f ◦ Γ = Γ1 ◦ f) and ∇ is f -related to ∇1 (i.e.
J1Tf ◦ ∇ = ∇1 ◦ Tf), then DY (Γ,∇) is Ff -related to DY1(Γ1,∇1) (i.e.
J1Ff ◦DY (Γ,∇) = DY1(Γ1,∇1)◦Ff). Equivalently the FMm,n-invariance
means that for any Γ ∈ Con(Y → M),Γ1 ∈ Con(Y1 → M1),∇ ∈ Qτ (M)
and ∇1 ∈ Qτ (M1) if diagrams

J1Y
J1f �� J1Y1

Y

Γ

��

f �� Y1

Γ1

�� J1TM
J1Tf

�� J1TM1

TM

∇
��

Tf
�� TM1

∇1

��

commute for a FMm,n-map f : Y → Y1 covering f : M → M1, then the
diagram

J1FY
J1Ff �� J1FY1

FY

DY (Γ,∇)

��

Ff �� FY1

DY1
(Γ1,∇1)

��

commutes. We say that the operator DY is regular if it transforms smoothly
parametrized families of connections into smoothly parametrized ones.

Definition 2. A Mfm-natural operator A : Qτ � Qr extending torsion
free classical linear connections ∇ on m-dimensional manifolds M into r-th
order linear connections A(∇) : TM → JrTM on M is a system of regular
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operators AM : Qτ (M) → Qr(M),M ∈ Obj(Mfm) satisfying the Mfm-
invariance condition: if ∇ ∈ Qτ (M) and ∇1 ∈ Qτ (M1) are f -related by a
Mfm-map f : M → M1 (i.e. J1Tf ◦ ∇ = ∇1 ◦ Tf), then A(∇) and A(∇1)
are f -related, too (i.e. JrTf ◦ A(∇) = A(∇1) ◦ Tf). In other words, the
Mfm-invariance means that if for any ∇ ∈ Qτ (M), ∇1 ∈ Qτ (M1) the
diagram

J1TM
J1Tf �� J1TM1

TM

∇
��

Tf �� TM1

∇1

��

commutes for aMfm-map f : M → M1, then the following diagram

JrTM
JrTf �� JrTM1

TM

A(∇)

��

Tf �� TM1

A(∇1)

��

commutes, too. The regularity means that every AM transforms smoothly
parametrized families of connections into smoothly parametrized ones.

Thus the construction F(Γ,Λ) can be considered as the FMm,n-natural
operator F : J1 × Qτ (B) � J1(F → B). Similarly, the correspondence
Er : Qτ � Qr is theMfm-natural operator.
In [4], the authors described all FMm,n-natural operators D : J1×Qτ (B)

� J1(F → B) for a bundle functor F = J1 : FMm,n → FM. They
constructed an additional FMm,n-natural operator P and proved that all
FMm,n-natural operators D : J1 × Qτ (B) � J1(J1 → B) form the one
parameter family tP + (1− t)J 1, t ∈ R.
In this paper we determine all FMm,n-natural operators D : J1 ×Qτ (B)

� J1(J2 → B). We assume that all manifolds and maps are smooth, i.e. of
class C∞.

2. Quasi-normal fibred coordinate systems. Let Γ: Y → J1Y be a
general connection on a fibred manifold p : Y → M with dim(M) = m and
dim(Y ) = m + n,∇ be a torsion free classical linear connection on M and
y0 ∈ Y be a point with x0 = p(y0) ∈ M .
In [8] W. Mikulski presented a concept of (Γ,∇, y0, r)-quasi-normal fi-
bred coordinate systems on Y for any r. For r = 3 this concept can be
equivalently defined in the following way.

Definition 3. A (Γ,∇, y0, 3)-quasi-normal fibred coordinate system on Y
is a fibred chart ψ on Y with ψ(y0) = (0, 0) ∈ Rm,n covering a chart ψ on
M with centre x0 if the map idRm is a ψ∗∇-normal coordinate system with
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centre 0 ∈ Rm and an element j2(0,0)(ψ∗Γ) ∈ J2
(0,0)(J

1Rm,n → Rm,n) is of
the form

j2(0,0)(ψ∗Γ) = j2(0,0)

(
Γ0 +

m∑
i,j,k=1

n∑
p=1

apkijx
kxidxj ⊗ ∂

∂yp

+
m∑

i,j=1

n∑
p,q=1

bpqijy
qxidxj ⊗ ∂

∂yp
+

m∑
i,j=1

n∑
p=1

cpijx
idxj ⊗ ∂

∂yp

)(1)

for some (uniquely determined) real numbers apkij , b
p
qij and c

p
ij satisfying

apkij − apikj = 0

apkij + apkji + apikj + apijk + apjik + apjki = 0

bpqij + bpqji = 0

cpij + cpji = 0,

(2)

where Γ0 =
∑m

i=1 dx
i ⊗ ∂

∂xi is the trivial general connection on Rm,n and
x1, . . . , xm, y1, . . . , yn are the usual fibred coordinates on Rm,n.

In [8] W. Mikulski proved an important proposition ([8], Proposition 2.2)
concerning (Γ,∇, y0, r)-quasi-normal fibred coordinate systems. Below we
recall this result for r = 3. A fibred-fibred manifold version of Proposition
2.2 from [8] for r = 1 is presented in [7].

Proposition 1. Let Γ: Y → J1Y be a general connection on a fibred mani-
fold p : Y → M with dim(M) = m and dim(Y ) = m+n,∇ be a torsion free
classical linear connection onM and y0 ∈ Y be a point with x0 = p(y0) ∈ M .
Then:
(i) There exists a (Γ,∇, y0, 3)-quasi-normal fibred coordinate system ψ on Y .
(ii) If ψ1 is another (Γ,∇, y0, 3)-quasi-normal fibred coordinate system, then

(3) j3y0ψ
1 = j3y0((B ×H) ◦ ψ)

for a linear map B ∈ GL(m) and diffeomorphism H : Rn → Rn preser-
ving 0.

From the proof of Proposition 2.2 from [8] it follows that (B × H) ◦ ψ
is a (Γ,∇, y0, 3)-quasi-normal fibred coordinate system for any B ∈ GL(m)
and any diffeomorphism H : Rn → Rn preserving 0. In other words, the
FMm,n-maps of the form B × H for B ∈ GL(m) and diffeomorphisms
H : Rn → Rn preserving 0 ∈ Rn transform quasi-normal fibred coordinate
systems into quasi-normal ones.
From now on we will usually work in (Γ,∇, y0, 3)-quasi-normal fibred
coordinates for considered Γ and ∇. If coordinates are not necessarily quasi-
normal, the reader will be informed.
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3. Constructions of connections. Let Γ: Y → J1Y be a general con-
nection on an FMm,n-object p : Y → M and let ∇ : TM → J1TM be a
torsion free classical linear connection on M .

Example 1. Let A : Qτ � Q2 be a Mfm-natural operator and let Λ =
A(∇) : TM → J2TM be a second order linear connection onM canonically
depending on ∇. Then from Introduction for a functor F = J2, we have a
general connection

(4) J 2
(A)(Γ,∇) := J 2(Γ, A(∇)) : J2Y → J1J2Y

on J2Y → M canonically depending on Γ and ∇.
Because of the canonical character of the construction J 2

(A)(Γ,∇) we ob-
tain the following proposition.

Proposition 2. The family J 2
(A) : J

1 ×Qτ (B)� J1(J2 → B) of functions
J 2
(A) : Con(Y → M)×Qτ (M)→ Con(J2Y → M)

for all FMm,n-objects Y → M is an FMm,n-natural operator.

Example 2. For every torsion free classical linear connection ∇ on a man-
ifold M we have a canonical vector bundle isomorphism ψ∇ : J2TM →
⊕2

k=0S
kT ∗M ⊗ TM given by a formula

ψ∇(τ) = ⊕2
k=0S

kT ∗
0ϕ

−1 ⊗ T0ϕ
−1(I(J2Tϕ(τ))),

where τ ∈ J2
xTM, x ∈ M,ϕ is a ∇-normal coordinate system on M with

centre x and I : J2
0TR

m → ⊕2
k=0S

kT ∗
0R

m⊗T0Rm is the usual identification.
In the main result of [9], W. Mikulski showed thatMfm-natural operators

A : Qτ � Q2 are in bijection with Mfm-natural operators A0 ≡ 0: Qτ �
T ∗ ⊗ T,A1 : Qτ � T ∗ ⊗ T ∗ ⊗ T and A2 : Qτ � T ∗ ⊗ S2T ∗ ⊗ T . In other
words, the second order linear connections Λ = A(∇) : TM → J2TM on M
canonically depending on ∇ are in bijection with the tensor fields A0(∇) ≡
0: M → T ∗M ⊗ TM,A1(∇) : M → T ∗M ⊗ T ∗M ⊗ TM and A2(∇) : M →
T ∗M ⊗ S2T ∗M ⊗ TM on M canonically depending on ∇.
Now by means of ψ∇, A1(∇) ≡ 0 and A2(∇) we can define a second order
linear connection A(∇) : TM → J2TM on M by

(5) A(∇)(v) = ψ−1
∇ (v, 0, < A2(∇)(x), v >), v ∈ TxM,x ∈ M

In particular, for A2(∇) ≡ 0: M → T ∗M ⊗ S2T ∗M ⊗ TM we obtain

(6) Aexp
2 (∇)(v) = ψ−1

∇ (v, 0, 0) : TM → J2TM,

On the other hand, from [9] it follows that

Aexp
2 (∇)(v) = E2(∇)(v).

It means that Aexp
2 (∇) is the second order exponential extension of ∇.
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Finally, in the accordance with Example 1 we have a general connection

(7) J 2
(Aexp

2 )(Γ,∇) := J 2(Γ, Aexp
2 (∇)) : J2Y → J1J2Y

on J2Y → M canonically depending on Γ and ∇.
Example 3. Let ρ ∈ (J2Y )y0 , y0 ∈ Yx0 , x0 ∈ M and consider a (Γ,∇, y0, 3)-
quasi-normal fibred coordinate system ψ on Y . Then

j2(0,0)(ψ∗Γ) = j2(0,0)

(
Γ0 +

m∑
i,j,k=1

n∑
p=1

apkijx
kxidxj ⊗ ∂

∂yp

+
m∑

i,j=1

n∑
p,q=1

bpqijy
qxidxj ⊗ ∂

∂yp
+

m∑
i,j=1

n∑
p=1

cpijx
idxj ⊗ ∂

∂yp

)

for unique real numbers apkij , b
p
qij and c

p
ij satisfying (2). Denote

Γ[1] = Γ0 +

m∑
i,j,k=1

n∑
p=1

apkijx
kxidxj ⊗ ∂

∂yp
,

Γ[2] = Γ0 +
m∑

i,j=1

n∑
p,q=1

bpqijy
qxidxj ⊗ ∂

∂yp
+

m∑
i,j=1

n∑
p=1

cpijx
idxj ⊗ ∂

∂yp
.

(8)

Now we define general connections J 2
[1](Γ,∇) : J2Y →J1J2Y and J 2

[2](Γ,∇) :
J2Y → J1J2Y on J2Y → M by

J 2
[1](Γ,∇)(ρ) := J1J2(ψ−1)(J 2

(Aexp)(Γ
[1],∇0)(J2ψ(ρ))),

J 2
[2](Γ,∇)(ρ) := J1J2(ψ−1)(J 2

(Aexp)(Γ
[2],∇0)(J2ψ(ρ))),

(9)

where ∇0 is the usual flat classical linear connection on Rm.

Because of the canonical character of the construction J 2
[i](Γ,∇) for i =

1, 2 we have the following proposition.

Proposition 3. The family J 2
[i] : J

1 ×Qτ (B)� J1(J2 → B) of functions
J 2
[i] : Con(Y → M)×Qτ (M)→ Con(J2Y → M)

for all FMm,n-objects Y → M is an FMm,n-natural operator.

4. The main result. We can consider the first jet prolongation functor
J1 as an affine bundle functor on the category FMm,n. The corresponding
vector bundle functor is T ∗B ⊗ V , where B : FMm,n → Mfm is a base
functor and V is a vertical tangent functor. For this reason, for any fibred
manifold p : Y → M from the category FMm,n, the first jet prolongation
J1Y → Y is the affine bundle with the corresponding vector bundle T ∗M ⊗
V Y . Therefore, J1J2Y → J2Y is the affine bundle with corresponding
vector bundle T ∗M ⊗ V J2Y . Thus the set of all FMm,n-natural operators
D : J1 ×Qτ (B)� J1(J2 → B) possesses the affine space structure.
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The following theorem classifies all FMm,n-natural operators D : J1 ×
Qτ (B)� J1(J2 → B).
Theorem 1. Let D : J1 × Qτ (B) � J1(J2 → B) be an FMm,n-natural
operator transforming general connections Γ: Y → J1Y on FMm,n-objects
Y → M and torsion free classical linear connections ∇ on M into general
connections D(Γ,∇) : J2Y → J1J2Y on J2Y → M .
If m ≥ 2, then there exist uniquely determined real numbers t0, t1, t2 with

t0 + t1 + t2 = 1 and Mfm-natural operator A : Qτ � Q2 transforming
torsion free classical linear connections ∇ on Mfm-objects M into second
order linear connections A(∇) : TM → J2TM on M such that

(10) D(Γ,∇) = t0J 2
(A)(Γ,∇) + t1J 2

[1](Γ,∇) + t2J 2
[2](Γ,∇)

for any FMm,n-object Y → M , any general connection Γ on Y → M and
any torsion free classical linear connection ∇ on M . Besides, if t0 �= 0,
then A is uniquely determined (else A can be arbitrary).
In the case m = 1, D = J 2.

In the proof we use methods for finding natural operators presented in
[4] and lemmas from [1].

Proof. Let xi, yp be the usual fibred coordinates on Rm,n,

ypi =
∂yp

∂xi
, ypij = ypji =

∂2yp

∂xi∂xj

be the additional coordinates on J2Rm,n and

Y p = dyp, Y p
i = dypi , Y p

ij = Y p
ji = dypij

be the essential coordinates on the vertical bundle V J2Rm,n of J2Rm,n →
Rm, where i, j = 1, . . . ,m and p = 1, . . . , n.
On J2

0 (J
1Rm,n) we have the coordinates

Γp
i , Γp

ij =
∂Γp

i

∂xj
, Γp

iq =
∂Γp

i

∂yq
, Γp

ijk =
∂2Γp

i

∂xj∂xk
,

Γp
iqr =

∂2Γp
i

∂yq∂yr
, Γp

ijq =
∂2Γp

i

∂xj∂yq
.

The standard coordinates on J1
0 (Qτ (Rm)) are ∇i

jk = ∇i
kj and ∇i

jkl = ∇i
kjl,

where i, j, k, l = 1, . . . ,m.
Let ωk be the usual coordinates on T ∗Rm. Then the induced coordinates
on the tensor product (T ∗Rm ⊗ V J2Rm,n)0 are

Zp
k = Y pωk, Zp

i;k = Y p
i ωk, Zp

ij;k = Y p
ijωk.

Let D : J1×Qτ (B)� J1(J2 → B) be an FMm,n-natural operator trans-
forming general connections Γ: Y → J1Y on FMm,n-objects Y → M and
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torsion free classical linear connections ∇ on M into general connections
D(Γ,∇) : J2Y → J1J2Y on J2Y → M .
Since J1J2Y → J2Y is the affine bundle with the corresponding vector
bundle T ∗M ⊗ V J2Y , we have the corresponding FMm,n-natural operator

ΔD : J
1 ×Qτ (B)� (J2, T ∗B ⊗ V J2).

It transforms a general connection Γ: Y → J1Y on an FMm,n-object Y →
M and a torsion free classical linear connection ∇ on M into a fibred map
(11) ΔD(Γ,∇) := D(Γ,∇)− J 2

(Aexp
2 )(Γ,∇) : J2Y → T ∗M ⊗ V J2Y.

Of course, the operatorD is fully determined byΔD asD(Γ,∇) = ΔD(Γ,∇)
+J 2

(Aexp
2 )

(Γ,∇) for every Γ ∈ Con(Y → M),∇ ∈ Qτ (M). In other words

D = ΔD + J 2
(Aexp

2 )
, so it is sufficient to investigate the operator ΔD.

Using the invariance of ΔD with respect to the homotheties ψt = tidRm,n

covering ψ
t
= tidRm for t > 0, we have the homogeneous conditions

(T ∗(tidRm)⊗ V J2(tidRm,n))(ΔD(Γ,∇)(ρ))
= (ΔD((tidRm,n)∗Γ, (tidRm)∗∇))(J2(tidRm,n)(ρ))

for any general connection Γ on Rm,n, any torsion free classical linear con-
nection ∇ on Rm and any ρ ∈ (J2Rm,n)(0,0). Using the general theory and
the above local coordinates, the above condition can be written as the sys-
tem of homogeneous conditions. Now, by the non-linear Peetre theorem [4]
we obtain that the operator ΔD is of finite order r in Γ and of order s in
∇. Having the natural operator ΔD of order r in Γ and of finite order s in
∇, we shall deduce that r = 2 and s = 1.
The operators ΔD of order 2 in Γ and of order 1 in ∇ are in bijection
with G3

m,n-invariant maps of standard fibres f : S1 × Λ × S0 → Z over
f = idS0 , where S1 = J2

0 (J
1Rm,n),Λ = J1

0 (Qτ (Rm)), S0 = J2
0R

m,n, Z =

(T ∗Rm ⊗ V J2Rm,n)0. This map is of the form

Zp
k = fp

k (Γ
p
i ,Γ

p
ij ,Γ

p
iq,Γ

p
ijk,Γ

p
iqr,Γ

p
ijq,∇i

jk,∇i
jkl, y

p
i , y

p
ij)

Zp
i;k = fp

i;k(Γ
p
i ,Γ

p
ij ,Γ

p
iq,Γ

p
ijk,Γ

p
iqr,Γ

p
ijq,∇i

jk,∇i
jkl, y

p
i , y

p
ij)

Zp
ij;k = fp

ij;k(Γ
p
i ,Γ

p
ij ,Γ

p
iq,Γ

p
ijk,Γ

p
iqr,Γ

p
ijq,∇i

jk,∇i
jkl, y

p
i , y

p
ij).

The group G3
m,n acts on the standard fibre S0 in the form

ypi = apqy
q
j ã

j
i + apj ã

j
i

ypij = apqy
q
klã

k
i ã

l
j + apqry

q
ky

r
l ã

k
i ã

l
j + apqky

q
l ã

k
i ã

l
j + apqly

q
kã

k
i ã

l
j

+ apqy
q
kã

k
ij + apkã

k
ij + apklã

k
i ã

l
j
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and on the fibre S1 by the formula

Γ
p
i = apqΓ

q
j ã

j
i + apj ã

j
i

Γ
p
ij = apqΓ

q
klã

k
i ã

l
j + apqrΓ

q
kΓ

r
l ã

k
i ã

l
j + apqkΓ

q
l ã

k
i ã

l
j + apqlΓ

q
kã

k
i ã

l
j + apqΓ

q
kã

k
ij

+ apkã
k
ij + apklã

k
i ã

l
j

Γ
p
iq = aprΓ

r
jsã

s
qã

j
i + aprsΓ

r
j ã

s
qã

j
i + aprj ã

r
qã

j
i

Γ
p
ijk = [(apqn + apqrΓ

r
n)Γ

q
lm + (apnqr + apqrsΓ

s
n)Γ

q
lΓ

r
m + apqΓ

q
lmn

+ apqr(Γ
q
lnΓ

r
m + Γq

lΓ
r
mn) + (apqln + apqrlΓ

r
n)Γ

q
m + apqlΓ

q
mn

+ (apqmn + apqrmΓ
r
n)Γ

q
l + apqmΓ

q
ln + aplmn + aplmqΓ

q
n]ã

l
iã

m
j ãnk

+ (apqΓ
q
lm + apqrΓ

q
lΓ

r
m + apqlΓ

q
m + apqmΓ

q
l + aplm)(ã

l
ikã

m
j + ãliã

m
jk)

+ [(apqn + apqrΓ
r
n)Γ

q
l + apqΓ

q
ln + apln + apqlΓ

q
n]ã

l
ij ã

n
k + (apqΓ

q
l + apl )ã

l
ijk

Γ
p
iqr = (apsuΓ

s
jt + apsΓ

s
jtu + apstuΓ

s
j + apstΓ

s
ju + apjtu)ã

j
i ã

t
qã

u
r

Γ
p
ijq = (aprtΓ

r
kl + aprΓ

r
klt + aprstΓ

r
kΓ

s
l + aprsΓ

r
ktΓ

s
l + aprsΓ

r
kΓ

s
lt + aprktΓ

r
l

+ aprkΓ
r
lt + aprltΓ

r
k + aprlΓ

r
kt + apklt)ã

k
i ã

l
j ã

t
q

+ (aprtΓ
r
k + aprΓ

r
kt + apkt)ã

k
ij ã

t
q.

The action on Λ is

∇i
jk = ail∇l

mnã
m
j ãnk + ailmãlj ã

m
k

∇i
jkl = aip∇p

mnqã
q
l ã

n
k ã

m
j + aip∇p

smãml ãsjk + aips∇p
mnã

n
l ã

m
j ãsk + aips∇s

nmãml ãpj ã
n
k

+ aimnqã
q
l ã

m
k ãnj + aismãskj ã

m
l .

Finally, the group G3
m,n acts on Z in the form

Z
p
k = apqZ

q
l ã

l
k

Z
p
i;k = apqrY

ryqjωlã
j
i ã

l
k + apqZ

q
j;lã

j
i ã

l
k + apqjZ

q
l ã

j
i ã

l
k

Z
p
ij;k = apqrY

ryqlmωnã
l
iã

m
j ãnk + apqZ

q
lm;nã

l
iã

m
j ãnk + apqrsY

syql y
r
mωnã

l
iã

m
j ãnk

+ apqr(Y
q
l y

r
m + yql Y

r
m)ωnã

l
iã

m
j ãnk + apqrlY

ryqmωnã
l
iã

m
j ãnk

+ apqlZ
q
m;nã

l
iã

m
j ãnk + apqrmY ryql ωnã

l
iã

m
j ãnk + apqmZq

l;nã
l
iã

m
j ãnk

+ apqrY
ryql ωnã

l
ij ã

n
k + apqZ

q
l;nã

l
ij ã

n
k + apqlZ

q
nã

l
ij ã

n
k + apqlmZq

nã
l
iã

m
j ãnk .

Now we want to show that every FMm,n-natural operator ΔD : J
1 ×

Qτ (B)� (J2, T ∗B ⊗ V J2) is of order 2 in Γ and of order 1 in ∇. Using the
general theory, the operators in question are in bijection withGq

m,n-invariant
maps

f : Jr
0 (J

1Rm,n)× Js
0(Qτ (Rm))× J2

0R
m,n → (T ∗Rm ⊗ V J2Rm,n)0,
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where q = max{rank(JrJ1), rank(JsQτ ), rank(J
2), rank(T ∗), rank(V J2)} =

max{r + 1, s+ 2, 2, 1, 3} = max{r + 1, s+ 2, 3} ≥ 3.
We shall investigate these maps. Let α and γ be multi indices in xi and

β be a multi index in yp. This associated map of our operator has the form

Zp
k = fp

k ((Γ
p
i )αβ , (∇i

jk)γ , y
p
i , y

p
ij)

Zp
i;k = fp

i;k((Γ
p
i )αβ , (∇i

jk)γ , y
p
i , y

p
ij)

Zp
ij;k = fp

ij;k((Γ
p
i )αβ , (∇i

jk)γ , y
p
i , y

p
ij),

where |α|+ |β| ≤ r and |γ| ≤ s.
Using the homotheties

ãij = tδij , ãpq = δpq , api = 0, apqr = 0, apqi = 0, ãkij = 0, apij = 0, apqri = 0,

apqrs = 0, apqij = 0, apijk = 0, ãlijk = 0,

we obtain
tfp

k = fp
k (t

1+|α|(Γp
i )αβ , t

1+|γ|(∇i
jk)γ , ty

p
i , t

2ypij).

From the homogeneous function theorem we deduce that fp
k is linear in

(Γp
i )β ,∇i

jk, y
p
i and is independent of y

p
ij and of the variables with |α| > 0 or

|γ| > 0. Therefore,

(12) fp
k = fp

k ((Γ
p
i )β ,∇i

jk, y
p
i ).

Considering invariance of (12) with respect to the homotheties

ãij = δij , apq = tδpq , api = 0, apqr = 0, apqi = 0, ãkij = 0, apij = 0, apqri = 0,

apqrs = 0, apqij = 0, apijk = 0, ãlijk = 0,

we get the condition

tfp
k = fp

k (t
1−|β|(Γp

i )β ,∇i
jk, ty

p
i ).

Using again the homogeneous function theorem, we see that fp
k is indepen-

dent of (Γp
i )β with |β| > 1.

For fp
i;k, the homotheties

ãij = tδij , ãpq = δpq , api = 0, apqr = 0, apqi = 0, ãkij = 0, apij = 0, apqri = 0,

apqrs = 0, apqij = 0, apijk = 0, ãlijk = 0,

yield
t2fp

i;k = fp
i;k(t

1+|α|(Γp
i )αβ , t

1+|γ|(∇i
jk)γ , ty

p
i , t

2ypij)

so that fp
i;k is a polynomial independent of the variables with |α| > 1 or

|γ| > 1. In other words,

(13) fp
i;k = fp

i;k((Γ
p
i )αβ , (∇i

jk)γ , y
p
i , y

p
ij)

for |α| ≤ 1 and |γ| ≤ 1.
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The homotheties
ãij = δij , apq = tδpq , api = 0, apqr = 0, apqi = 0, ãkij = 0, apij = 0, apqri = 0,

apqrs = 0, apqij = 0, apijk = 0, ãlijk = 0,

imply
tfp

i;k = fp
i;k(t

1−|β|(Γp
i )αβ , (∇i

jk)γ , ty
p
i , ty

p
ij)

for |α| ≤ 1 and |γ| ≤ 1. Therefore we deduce that fp
i;k is independent of

(Γp
i )αβ for |α|+ |β| > 2 and (∇i

jk)γ for |γ| > 1.

Now invariance of fp
ij;k with respect to the homotheties

ãij = tδij , ãpq = tδpq , api = 0, apqr = 0, apqi = 0, ãkij = 0, apij = 0, apqri = 0,

apqrs = 0, apqij = 0, apijk = 0, ãlijk = 0,

gives
t2fp

ij;k = fp
ij;k(t

|α|+|β|(Γp
i )αβ , t

1+|γ|(∇i
jk)γ , y

p
i , ty

p
ij).

So fp
ij;k is a polynomial independent of (Γ

p
i )αβ for |α|+ |β| > 2 and (∇i

jk)γ
for |γ| > 1. Hence the associated map of our operator is independent of
(Γp

i )αβ for |α|+ |β| > 2 and (∇i
jk)γ for |γ| > 1. This completes the proof of

the fact that FMm,n-natural operator ΔD : J
1×Qτ (B)� (J2, T ∗B⊗V J2)

is of order 2 in Γ and of order 1 in ∇. In other words it means that
the value ΔD(Γ,∇)(ρ) is determined by j2(0,0)Γ and j10(∇) and ρ for any

Γ ∈ Con(Rm,n),∇ ∈ Qτ (Rm) and ρ ∈ (J2Rm,n)(0,0).
In the rest of the proof, we shall use (Γ,∇, y0, 3)-quasi-normal fibred
coordinate systems,only. Consider the case m ≥ 2.
Since ΔD is invariant with respect to (Γ,∇, y0, 3)-quasi-normal fibred co-
ordinate systems, ΔD is determined by the contractions 〈ΔD(Γ,∇)(ρ), v〉 ∈
VρJ

2Rm,n for all ρ ∈ (J2Rm,n)(0,0), all v ∈ T0Rm, all general connections
Γ on Rm,n and all torsion free classical linear connections ∇ on Rm such
that ψ = idRm,n is a (Γ,∇, (0, 0), 3)-quasi-normal fibred coordinate system
on Rm,n over ψ = idRm .
For vector bundles E → M we have the standard identification V E =

E×M E which is a vector bundle isomorphism. As Rm,n is a vector bundle
and J2Rm,n is a vector bundle we can write that VρJ

2Rm,n ∼=ρ J2
0R

m,n.
This identification∼=ρ isGL(m)×GL(n)-invariant but not FMm,n-invariant.
Next we use the usual GL(m)×GL(n)-invariant identification

J2
0R

m,n ∼= ⊕2
k=0S

kRm∗ ⊗Rn

(it is not FMm,n-invariant). Therefore, the values 〈ΔD(Γ,∇)(ρ), v〉 are
determined by the values ψk

Γ,∇(ρ, v) ∈ SkRm∗ ⊗Rn for k = 0, 1, 2 obtained
by composing the values 〈ΔD(Γ,∇)(ρ), v〉 with the respective projections.
So we can write

〈ΔD(Γ,∇)(ρ), v〉 ∼= ψ0
Γ,∇(ρ, v)⊕ ψ1

Γ,∇(ρ, v)⊕ ψ2
Γ,∇(ρ, v),
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where ψ0
Γ,∇(ρ, v) ∈ Rn, ψ1

Γ,∇(ρ, v) ∈ Rm∗ ⊗Rn, ψ2
Γ,∇(ρ, v) ∈ S2Rm∗ ⊗Rn.

Now the values ψk
Γ,∇(ρ, v) ∈ SkRm∗ ⊗Rn for k = 0, 1 are determined by

the contractions 〈ψ0
Γ,∇(ρ, v), u〉, 〈ψ1

Γ,∇(ρ, v), w⊗ u〉 for all v ∈ T0Rm ∼= Rm,
u ∈ Rn∗, w ∈ Rm and all Γ,∇ in question.
Using the polarization formula from linear algebra, we have that every
symmetric bilinear form on a vector space is uniquely determined by the
corresponding quadratic form. Therefore, for k = 2 the values ψ2

Γ,∇(ρ, v) are
determined by the contractions 〈ψ2

Γ,∇(ρ, v), (w�w)⊗ u〉 for all v, u, w,Γ,∇
as above, where � denotes the symmetric tensor product. Then by the
density argument and m ≥ 2, we can assume that v and w are linearly
independent and u �= 0.
Using the GL(m) × GL(n)-invariance of ΔD and Proposition 1, we can
assume v = e1, w = e2, u = E1, where (ei) is the standard basis inRm, (Ep)
is the standard basis inRn and (Ep) is the dual basis inRn∗. So we get that
the operator ΔD is uniquely determined by the values 〈ψ0

Γ,∇(ρ,
∂

∂x1 |0), E1〉,
〈ψ1

Γ,∇(ρ,
∂

∂x1 |0), e2⊗E1〉 and 〈ψ2
Γ,∇(ρ,

∂
∂x1 |0), (e2�e2)⊗E1〉. In other words,

ΔD is uniquely determined by the values〈
Y 1
|ρ,

〈
ΔD(Γ,∇)(ρ), ∂

∂x1
|0
〉〉

∈ R
〈
Y 1
2|ρ,

〈
ΔD(Γ,∇)(ρ), ∂

∂x1
|0
〉〉

∈ R
〈
Y 1
22|ρ,

〈
ΔD(Γ,∇)(ρ), ∂

∂x1
|0
〉〉

∈ R

(14)

for all ρ ∈ (J2Rm,n)(0,0), all general connections Γ on R
m,n and all tor-

sion free classical linear connections ∇ on Rm such that ψ = idRm,n is
a (Γ,∇, (0, 0), 3)-quasi-normal fibred coordinate system on Rm,n over ψ =
idRm .
Consider locally defined FMm,n-maps ψ2 : Rm,n → Rm,n, ψ3 : Rm,n →
Rm,n given by

ψ2(x, y) =
(
x, y1 + (y1)

2, y2, . . . , yn
)

ψ3(x, y) =
(
x, y1 + (y1)

3, y2, . . . , yn
)

for x ∈ Rn and y = (y1, y2, . . . , yn) ∈ Rn. They preserve ∂
∂x1 |0 and can

be written in the form ψa(x, y) = (idRm(x), Ha(y)), where Ha(y) = (y1 +
(y1)

a, y2, . . . , yn) and a = 2, 3. So ψa = idRm ×Ha for Ha : Rn → Rn being
a diffeomorphism preserving 0. Hence by Proposition 1 these FMm,n-maps
ψa : Rm,n → Rm,n for a = 2, 3 transform quasi-normal fibred coordinate
systems into quasi-normal ones. Using the invariance of ΔD with respect
to ψa : Rm,n → Rm,n for a = 2, 3 and the density argument, we show
that the values 〈Y 1

2|ρ, 〈ΔD(Γ,∇)(ρ), ∂
∂x1 |0〉〉 and 〈Y 1

|ρ, 〈ΔD(Γ,∇)(ρ), ∂
∂x1 |0〉〉
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for all Γ ∈ Con(Rm,n), ∇ ∈ Qτ (Rm), ρ ∈ (J2Rm,n)(0,0) are determined by
the values 〈Y 1

22|ρ, 〈ΔD(Γ,∇)(ρ), ∂
∂x1 |0〉〉 for all Γ,∇, ρ as above.

Using the action of the group G3
m,n on S0 for a = 2, we obtain y122 =

y122 + 2y1y122 + 2(y12)
2 and then

(15) Y
1
22 = dy122 = Y 1

22+4y
1
2Y

1
2 +2y

1
22Y

1+2y1Y 1
22 = Y 1

22+4y
1
2Y

1
2 +2y

1
22Y

1

over (0, 0) ∈ Rm,n (i.e. for y1 = 0). Similarly, for a = 3 we get ỹ122 =
y122 + 3(y1)2y122 + 6y1(y12)

2 and then

(16)
Ỹ 1
22 = dỹ122 = Y 1

22 + 6(y12)
2Y 1 + 6y1y122Y

1 + 3(y1)2Y 1
22 + 12y1y12Y

1
2

= Y 1
22 + 6(y12)

2Y 1

over (0, 0) ∈ Rm,n.
By formula (16) for y12(ρ) �= 0, we have

(17) Y 1 =
Ỹ 1
22 − Y 1

22

6(y12)
2

and consequently the values 〈Y 1
|ρ, 〈ΔD(Γ,∇)(ρ), ∂

∂x1 |0〉〉 for all Γ ∈
Con(Rm,n), ∇ ∈ Qτ (Rm), ρ ∈ (J2Rm,n)(0,0) are determined by the val-
ues 〈Y 1

22|ρ, 〈ΔD(Γ,∇)(ρ), ∂
∂x1 |0〉〉 for all Γ,∇, ρ as above.

Then analogously from (15) and (17), we see that

Y 1
2 =

(Y
1
22 − Y 1

22) · 3(y12)2 − y122(Ỹ
1
22 − Y 1

22)

12(y12)
3

and therefore, the values 〈Y 1
2|ρ, 〈ΔD(Γ,∇)(ρ), ∂

∂x1 |0〉〉 for all Γ ∈ Con(Rm,n),

∇ ∈ Qτ (Rm), ρ ∈ (J2Rm,n)(0,0) are determined by the values
〈Y 1

22|ρ, 〈ΔD(Γ,∇)(ρ), ∂
∂x1 |0〉〉 for all Γ,∇, ρ as above.

Summing up, we obtain that the operator ΔD is uniquely determined by
the values

(18)
〈
Y 1
22|ρ,

〈
ΔD(Γ,∇)(ρ), ∂

∂x1
|0
〉〉

∈ R

for all general connections Γ on Rm,n such that

j2(0,0)Γ = j2(0,0)

(
Γ0 +

m∑
i,j,k=1

n∑
p=1

apkijx
kxidxj ⊗ ∂

∂yp

+
m∑

i,j=1

n∑
p,q=1

bpqijy
qxidxj ⊗ ∂

∂yp
+

m∑
i,j=1

n∑
p=1

cpijx
idxj ⊗ ∂

∂yp

)(19)

for unique real numbers apkij , b
p
qij and cpij satisfying (2) and all torsion free

classical linear connections∇ such that the identity map idRm is a∇-normal
coordinate system with center zero (then j10(∇) = j10((

∑m
k=1∇l

ij;kx
k)mi,j,l=1)
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for some ∇l
ij;k = ∇l

ji;k ∈ R satisfying some “classical” conditions) and all
ρ ∈ (J2Rm,n)(0,0) of the form

(20) ρ = j20

(( m∑
i=1

gpi x
i +

m∑
i,j=1

hpijx
ixj

)n

p=1

)

for real numbers gpi , h
p
ij = hpji. So, it is sufficient to study the values (18)

for Γ,∇, ρ as above.
Equivalently, in terms ofG3

m,n-invariant maps between the standard fibres
we obtain that values of functions f1

1 and f1
2;1 are determined by values of

functions f1
22;1. So we will study the values

(21)
f1
22;1(Γ

p
kij = apkij , Γ

p
qij = bpqij , Γ

p
ij = cpij , ∇l

ijk = ∇l
ij;k,

ypi = gpi , ypij = hpij).

The invariance of fp
ij;k with respect to the homotheties

ãij = tδij , ãpq = tδpq , api = 0, apqr = 0, apqi = 0, ãkij = 0, apij = 0,

apqri = 0, apqrs = 0, apqij = 0, apijk = 0, ãlijk = 0,

yields

t2fp
ij;k = fp

ij;k(t
2apkij , t2bpqij , tcpij , t2∇l

ij;k, gpi , th
p
ij).

Then the homogeneous function theorem implies that fp
ij;k is linear in a

p
kij ,

bpqij , ∇l
ij;k, bilinear in c

p
ij , h

p
ij , quadratic in c

p
ij and h

p
ij . In other words f

p
ij;k

is the linear combination of monomials

(22) apkij , b
p
qij ,∇l

ij;k, c
p
ijh

p1
i1j1

, cpijc
p1
i1j1

, hpijh
p1
i1j1

with the coefficients being smooth functions in the coefficients gpi of ρ.
Then using the invariance of fp

ij;k with respect to the homotheties

ãij = δij , apq = tδpq , api = 0, apqr = 0, apqi = 0, ãkij = 0, apij = 0,

apqri = 0, apqrs = 0, apqij = 0, apijk = 0, ãlijk = 0,

for t > 0 and the homogeneous function theorem, we observe that the
coefficients on apkij are constant, the coefficients on b

p
qij and ∇l

ij;k are linear
and the coefficients on other terms from (22) are zero.
Then using the invariance of fp

ij;k with respect to the FMm,n-maps
ψt,τ : Rm,n → Rm,n given by ψt,τ (x, y) = (t1x1, . . . , tmxm, τ1y1, . . . , τnyn)
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for ti > 0, i = 1, . . . ,m and τp > 0, p = 1, . . . , n we deduce that

f1
22;1 = (α1a

1
122 + α2a

1
212 + α3a

1
221)

+

( n∑
q=1

βq12b
1
q12g

q
2 +

n∑
q=1

βq21b
1
q21g

q
2 +

n∑
q=1

βq22b
1
q22g

q
1

)

+

( n∑
q=1

γq12b
q
q12g

1
2 +

n∑
q=1

γq21b
q
q21g

1
2 +

n∑
q=1

γq22b
q
q22g

1
1

)
+ g((g1l ), (∇l

ij;k))

for some uniquely determined real numbers α1, α2, α3, βq12, βq21, βq22, γq12,
γq21, γq22 and some uniquely determined bilinear function g.
Now because of conditions (2) we have

f1
22;1 = a1122(α1 + α2 − 2α3) +

n∑
q=1

(βq12 − βq21)b
1
q12g

q
2

+

n∑
q=1

(γq12 − γq21)b
q
q12g

1
2 + g((g1l ), (∇l

ij;k))

= αa1122 +
n∑

q=1

βqb
1
q12g

q
2 +

n∑
q=1

γqb
q
q12g

1
2 + g((g1l ), (∇l

ij;k)),

where α = α1+α2−2α3, βq = βq12−βq21, γq = γq12−γq21 for q = 1, . . . , n.
Further evaluations give

f1
22;1 = αa1122 + (β1 + γ1)b

1
112g

1
2 +

n∑
q=2

βqb
1
q12g

q
2

+

n∑
q=2

γqb
q
q12g

1
2 + g((g1l ), (∇l

ij;k))

= αa1122 + βb1112g
1
2 +

n∑
q=2

βqb
1
q12g

q
2 +

n∑
q=2

γqb
q
q12g

1
2 + g((g1l ), (∇l

ij;k)),

where β = β1 + γ1. In other words,

(23)

〈
Y 1
22|ρ,

〈
ΔD(Γ,∇)(ρ), ∂

∂x1
|0
〉〉

= αa1122 + βb1112g
1
2 +

n∑
q=2

βqb
1
q12g

q
2

+

n∑
q=2

γqb
q
q12g

1
2 + g((g1l ), (∇l

ij;k)),

for some uniquely determined real numbers α, β, βq, γq and some uniquely
determined bilinear function g, where j2(0,0)Γ is of the form (19) with the

coefficients apkij , b
p
qij and c

p
ij satisfying (2), j

1
0(∇) = j10((

∑m
k=1∇l

ij;kx
k)mi,j,l=1)
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for some ∇l
ij;k = ∇l

ji;k ∈ R satisfying some “classical” conditions and ρ is
of the form (20) with gpi , h

p
ij = hpji.

From (23) it follows that ΔD is determined by the real number α, the
bilinear map g and the values

(24)

ΔD

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1

+

n∑
p,q=1

bpq12y
q(x1dx2 − x2dx1)⊗ ∂

∂yp
,∇0

)
(ρ)

= ΔD

(
Γ0 + (x1dx2 − x2dx1)

(
∂

∂y1
+

n∑
p,q=1

bpq12y
q ∂

∂yp

)
,∇0

)
(ρ)

for all bpq12 ∈ R and all ρ ∈ (J2Rm,n)(0,0), where ∇0 is the usual flat torsion
free classical linear connection on Rm.
Considering the invariance of ΔD with respect to the maps idRm ×H for
diffeomorphisms H : Rn → Rn preserving 0, we get that

∑n
p,q=1 b

p
q12y

q ∂
∂yp

is near 0 equal to zero modulo some diffeomorphism H : Rn → Rn preser-
ving 0. Hence we have that ΔD is determined by the real number α, the
bilinear map g and the values

(25) ΔD

(
Γ0 + a(x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(ρ)

for all a ∈ R and all ρ ∈ (J2Rm,n)(0,0).
Next using the invariance of ΔD with respect to the homotheties

ãij = δij , apq = tδpq , api = 0, apqr = 0, apqi = 0, ãkij = 0, apij = 0,

apqri = 0, apqrs = 0, apqij = 0, apijk = 0, ãlijk = 0,

from the homogeneous function theorem, it follows that (25) depends lin-
early in (a, ρ). This implies that ΔD is determined by the real number α,
the bilinear map g and the values

ΔD

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(j200) and ΔD(Γ0,∇0)(ρ)

for all ρ ∈ (J2Rm,n)(0,0).
Now the values ΔD(Γ0,∇0)(ρ) are determined by the values

〈ΔD(Γ0,∇0)(ρ), v〉 ∈ VρJ
2Rm,n ∼=ρ J2

0R
m,n ∼= ⊕2

k=0S
kRm∗ ⊗ Rn for all

ρ ∈ (J2Rm,n)(0,0), v ∈ T0Rm such that ψ = idRm,n is a (Γ0,∇0, (0, 0), 3)-
quasi-normal fibred coordinate system on Rm,n over ψ = idRm . Since the
FMm,n-maps of the form B × H (in question) preserve the trivial gen-
eral connection Γ0 and the flat torsion free classical linear connection ∇0

then we deduce that the values ΔD(Γ0,∇0)(ρ) are determined by the values
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〈Y 1
22|ρ, 〈ΔD(Γ0,∇0)(ρ), ∂

∂x1 |0〉〉. But using the formula (23), we see that the
last values are equal to zero. Therefore,

(26) ΔD(Γ0,∇0)(ρ) = 0

for any ρ ∈ (J2Rm,n)(0,0). This gives that ΔD is determined by the real
number α, the bilinear map g and the values

(27) ΔD

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(j200).

The value (27) is determined by the evaluations〈
Y p
|j200

,

〈
ΔD

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(j200),

∂

∂xk
|0
〉〉

〈
Y p
i|j200

,

〈
ΔD

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(j200),

∂

∂xk
|0
〉〉

〈
Y p
ij|j200

,

〈
ΔD

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(j200),

∂

∂xk
|0
〉〉

(28)

for all p = 1, . . . , n and all i, j, k = 1, . . . ,m.
Since (25) depends linearly on a, using the invariance of ΔD with respect
to the homotheties

ãij = δij , ãpq = tδpq , a
p
i = 0, apqr = 0, apqi = 0, ãkij = 0, apij = 0,

apqri = 0, apqrs = 0, apqij = 0, apijk = 0, ãlijk = 0,

we see that〈
Y p
|j200

,

〈
ΔD

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(j200),

∂

∂xk
|0
〉〉

= 0,

〈
Y p
ij|j200

,

〈
ΔD

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(j200),

∂

∂xk
|0
〉〉

= 0.

Therefore, ΔD is determined by the evaluations

(29)
〈
Y p
i|j200

,

〈
ΔD

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(j200),

∂

∂xk
|0
〉〉

.

Then using the invariance of ΔD with respect to at : Rm,n → Rm,n by
at(x, y) = (x, ty1, y2, . . . , yn) for t > 0, we may assume p = 1, i.e. ΔD is
determined by the evaluations

(30)
〈
Y 1
i|j200,

〈
ΔD(Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0)(j200),

∂

∂xk
|0
〉〉

.

Then using the invariance of ΔD with respect to bt : Rm,n → Rm,n by
bt(x, y) = (t1x1, . . . , tmxm, y1, . . . , yn), we see that the values (30) are all
zero except the values

(31)
〈
Y 1
1|j200,

〈
ΔD

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(j200),

∂

∂x2
|0
〉〉
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and

(32)
〈
Y 1
2|j200,

〈
ΔD

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(j200),

∂

∂x1
|0
〉〉

.

Because of the invariance of ΔD with respect to exchanging x1 and x2 (i.e.
with respect to the map c : Rm,n → Rm,n given by c(x1, x2, . . . , xm, y) =
(x2, x1, . . . , xm, y)), we get〈

Y 1
1|j200,

〈
ΔD

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(j200),

∂

∂x2
|0
〉〉

= −
〈
Y 1
2|j200,

〈
ΔD

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(j200),

∂

∂x1
|0
〉〉

.

Consequently, the vector space of all possible values (27) is of dimension
≤ 1. So, the vector space of all possible ΔD is of dimension ≤ 2+K, where
K is the dimension of the vector space of all possible g.
If D = J 2

[i] for i = 1, 2 is as in Example 3, then we have〈
ΔJ 2

[1]

(
Γ0 + (x1x2dx2 − (x2)2dx1)⊗ ∂

∂y1
,∇0

)
(j200),

∂

∂x1
|0
〉
= 0,

〈
ΔJ 2

[1]

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(j200),

∂

∂x1
|0
〉

= J 2

(
x2

∂

∂y1

)
(j200),〈

ΔJ 2
[2]

(
Γ0 + (x1x2dx2 − (x2)2dx1)⊗ ∂

∂y1
,∇0

)
(j200),

∂

∂x1
|0
〉

= J 2

(
(x2)2

∂

∂y1

)
(j200),〈

ΔJ 2
[2]

(
Γ0 + (x1dx2 − x2dx1)⊗ ∂

∂y1
,∇0

)
(j200),

∂

∂x1
|0
〉
= 0,

ΔJ 2
[i]
(Γ0,∇)(ρ) = 0 for i = 1, 2

for any ρ ∈ (J2Rm,n)(0,0) and any torsion free classical linear connection
∇ ∈ Qτ (Rm) such that idRm is a ∇-normal coordinate system with center
0. By the flow argument we see that

J 2

(
(x2)2

∂

∂y1

)
(j200)

∼= j20((x
2)2)J 2

(
∂

∂y1

)
(j200),

J 2

(
x2

∂

∂y1

)
(j200)

∼= j20(x
2)J 2

(
∂

∂y1

)
(j200),

and then they are linearly independent.
Using the dimension argument and the formula (23), we deduce that
there exist unique real numbers t1 and t2 and an FMm,n-natural operator
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D1 such that

(33) D = (1− t1 − t2)D1 + t1J 2
[1] + t2J 2

[2]

(the affine combination) and

(34) ΔD1(Γ,∇0)(ρ) = 0

for all ρ ∈ (J2Rm,n)(0,0) and all general connections Γ onR
m,n such that the

identity map ψ = idRm,n is a (Γ,∇0, (0, 0), 3)-quasi-normal fibred coordinate
system on Rm,n. The operator D1 is uniquely determined if t1 + t2 �= 1.
It remains to show that D1 is of the form

(35) D1 = J 2
(A)

for a uniquely determined Mfm-natural operator A transforming torsion
free classical linear connections ∇ on m-manifolds M into second order lin-
ear connections A(∇) : TM → J2TM onM , where J 2

(A) is as in Example 1.
We construct A in the following way. Given a torsion free classical linear
connection ∇ on a m-manifold M we define a tensor field Ã(∇) : M →
T ∗M ⊗ S2T ∗M ⊗ TM on M by

(36) 〈Ã(∇)|x, ω〉 = pr1 ◦ΔD1(ΓM ,∇)(j2x(f, 0, . . . , 0)) ∈ T ∗
xM ⊗ S2T ∗

xM,

where ω = dxf ∈ T ∗
xM , f : M → R, f(x) = 0, ΓM is the trivial general

connection on the trivial bundle M ×Rn → M and

pr1 : T
∗M⊗S2T ∗M⊗V (M×Rn) = T ∗M⊗S2T ∗M⊗Rn → T ∗M⊗S2T ∗M

is the projection onto the first factor.
The definition (36) is correct because

ΔD1(ΓM ,∇)(j2x(f, 0, . . . , 0)) ∈ T ∗M ⊗ S2T ∗M ⊗ V (M ×Rn)

⊂ T ∗M ⊗ V J2(M ×Rn)

as ΔD1(ΓM ,∇)(j2x(f, 0, . . . , 0)) projects onto zero by
idT ∗M ⊗ V π2

1 : T
∗M ⊗ V J2(M ×Rn)→ T ∗M ⊗ V J1(M ×Rn),

where π2
1 : J

2Y → J1Y is the jet projection. Indeed, in order to observe
that ΔD1(ΓM ,∇)(j2x(f, 0, . . . , 0)) projects onto zero, we can assume that
M = Rm, x = 0 and ψ = idRm,n is a (Γ0,∇, (0, 0), 3)-quasi-normal fibred
coordinate system on Rm,n because of the FMm,n-invariance of ΔD1 . From
(26) for ΔD1 instead of ΔD we have ΔD1(Γ0,∇0)(j20(f, 0, . . . , 0)) = 0. Then
using the invariance of ΔD1 with respect to the homotheties and applying
the homogeneous function theorem, we complete the observation.
Using the invariance of ΔD1 with respect to the fiber homotheties idM ×

tidRn and applying the homogeneous function theorem, we see that the
value (36) depends linearly on ω. Hence Ã is really a tensor field.
Let

(37) A(∇) := Aexp
2 (∇) + Ã(∇) : TM → J2TM
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be the second order connection corresponding to Ã. So, we have con-
structed an Mfm-natural operator A transforming torsion free classical
linear connections ∇ on m-manifolds M into second order linear connec-
tions A(∇) : TM → J2TM on M .
We prove (35) as follows. Using the invariance of A− Aexp

2 with respect
to the homotheties and applying the homogeneous function theorem, we
see that A(∇0) − Aexp

2 (∇0) is the zero tensor field of type T ∗ ⊗ S2T ∗ ⊗
T . Therefore, we obtain (34) for ΔJ(A)

instead of ΔD1 . Then using the
condition (34), we get〈

Y 1
22|ρ,

〈
ΔD1(Γ,∇)(ρ),

∂

∂x1
|0
〉〉

=

〈
Y 1
22|ρ,

〈
ΔDJ(A)

(Γ,∇)(ρ), ∂

∂x1
|0
〉〉

= g((g1l ), (∇l
ij;k))

(38)

for any ρ ∈ (J2Rm,n)(0,0), any general connection Γ onR
m,n and any torsion

free classical linear connection ∇ on Rm such that the identity map ψ =
idRm,n is a (Γ,∇, (0, 0), 3)-quasi-normal coordinate system on Rm,n, where

j2(0,0)Γ = j2(0,0)

(
Γ0 +

m∑
i,j,k=1

n∑
p=1

apkijx
kxidxj ⊗ ∂

∂yp

+
m∑

i,j=1

n∑
p,q=1

bpqijy
qxidxj ⊗ ∂

∂yp
+

m∑
i,j=1

n∑
p=1

cpijx
idxj ⊗ ∂

∂yp

)

with coefficients apkij , b
p
qij and c

p
ij satisfying (2),

j10(∇) = j10

(( m∑
k=1

∇l
ij;kx

k

)m

i,j,l=1

)

for ∇l
ij;k = ∇l

ji;k ∈ R satisfying some “classical” conditions, ρ is of the form

ρ = j20

(( m∑
i=1

gpi x
i +

m∑
i,j=1

hpijx
ixj

)n

p=1

)

for real numbers gpi , h
p
ij = hpji and g is the bilinear map as in (23). Then we

have (35) because any ΔD (and then any D) is determined by the values
(18).
If D1 = J 2

(A1)
for anotherMfm-natural operator A1 (of the type as the

one of A), then

(39) 〈Ã(∇)|x, ω〉 = 〈Ã1(∇)|x, ω〉
for any torsion free classical linear connection∇ onM and any ω ∈ T ∗

xM,x ∈
M , where Ã1(∇) = A1(∇) − Aexp

2 (∇) : M → T ∗M ⊗ S2T ∗M ⊗ TM is the
tensor field corresponding to A1(∇) : TM → J2TM .
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Because ofMfm-invariance it is sufficient to show (39) in the case M =
Rm, x = 0 and the identity map ψ = idRm,n is a (Γ,∇, (0, 0), 3)-quasi-
normal fibred coordinate system on Rm,n. It is not difficult. So, A1 = A,
i.e. A satisfying (35) is uniquely determined. The proof of Theorem 1 for
m ≥ 2 is complete.
If m = 1 , we proceed similarly as in the case m ≥ 2. Therefore, ΔD is
uniquely determined by the values〈

Y 1
|ρ,

〈
ΔD(Γ,∇)(ρ), ∂

∂x1
|0
〉〉

∈ R
〈
Y 1
1|ρ,

〈
ΔD(Γ,∇)(ρ), ∂

∂x1
|0
〉〉

∈ R
〈
Y 1
11|ρ,

〈
ΔD(Γ,∇)(ρ), ∂

∂x1
|0
〉〉

∈ R

for all ρ ∈ (J2R1,n)(0,0), all general connections Γ onR
1,n and all torsion free

classical linear connections ∇ onR such that ψ = idR1,n is a (Γ,∇, (0, 0), 3)-
quasi-normal fibred coordinate system on R1,n over ψ = idR. Then the
operator ΔD is uniquely determined by the values〈

Y 1
11|ρ,

〈
ΔD(Γ,∇)(ρ), ∂

∂x1
|0
〉〉

∈ R.

If the identity map ψ = idR1,n is a (Γ,∇, (0, 0), 3)-quasi-normal fibred
coordinate system, then j2(0,0)Γ = j2(0,0)(Γ0) and j10(∇) = j10(∇0) (as the
curvature of ∇ is zero). Consequently, ΔD is determined by the values

(40)
〈
Y 1
11,

〈
ΔD(Γ0,∇0)(ρ),

∂

∂x1
|0
〉〉

∈ R

for all ρ ∈ J2
0 (R,R

n)0. But the values (40) are zero because of the similar
arguments as in the proof of formula (23).
The proof of Theorem 1 is complete. �
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