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The constructions of general connections
on second jet prolongation

ABSTRACT. We determine all natural operators D transforming general con-
nections I' on fibred manifolds Y — M and torsion free classical linear con-
nections V on M into general connections D(I', V) on the second order jet
prolongation J?Y — M of Y — M.

1. Introduction. The concept of r-th order connections was firstly intro-
duced on groupoids by C. Ehresmann in [2] and next by I. Kolaf in [3] for
arbitrary fibred manifolds.

Let us recall that an r-th order connection on a fibred manifold p: ¥ —
M is a section ©:Y — J"Y of the r-jet prolongation 5: J"Y — Y of
p:Y — M. A general connection on p: Y — M is a first order connection
[:Y — JY or (equivalently) a lifting map

'Y xyTM —TY.

By Con(Y — M) we denote the set of all general connections on a fibred
manifold p: Y — M.

If p: Y — M is a vector bundle and an r-th order connection ©: Y —
J"Y is a vector bundle morphism, then © is called an r-th order linear
connection on p: ¥ — M.
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An r-th order linear connection on M is an r-th order linear connection
A: TM — J"TM on the tangent bundle mpr: TM — M of M. By Q" (M)
we denote the set of all r-th order linear connections on M.

A classical linear connection on M is a first order linear connection
V:TM — J'TM or (equivalently) a covariant derivative V: X(M) x
X(M) — X(M). A classical linear connection V on M is called torsion
free if its torsion tensor T'(X,Y) = VxY — Vy X — [X,Y] is equal to zero.
By Q-(M) we denote the set of all torsion free classical linear connections
on M.

Let F M denote the category of fibred manifolds and their fibred maps
and let FM,,,, C FM be the (sub)category of fibred manifolds with m-
dimensional bases and n-dimensional fibres and their local fibred diffeomor-
phisms. Let Mf,, denote the category of m-dimensional manifolds and
their local diffeomorphisms. Let F': FM,,,, = FM be a bundle functor
on F M, ,, of order r in the sense of [4]. Let I': Y xpy TM — TY be the
lifting map of a general connection on an object p: Y — M of FM,,,.
Let A: TM — J"T'M be an r-th order linear connection on M. The flow
operator F of F' transforming projectable vector fields n on p: Y — M
into vector fields Fn = %\t:oF(Flg) on FY is of order r. In other words,

the value Fn(u) at every u € F,Y,y € Y depends only on jyn. There-

fore, we have the corresponding flow morphism F: FY xy J'TY — TFY,
which is linear with respect to J"T'Y. Moreover, F(u, Jyn) = Fn(u), where
ue Fy)Y,yeY. Let XT be the T-lift of a vector field X on M to Y, i.e. X' is
a projectable vector field on p: Y — M defined by X' (y) = I'(y, X (x)),y €
Yz, = p(y) € M. Then the connection I' can be extended to a morphism
[':Y xp J'TM — J'TY by the following formula I'(y, j7X) = jr(X").
By applying F, we obtain a map F(I'): FY x,; J'TM — TFY defined by

F(I)(u, jrX) = F(u,jg(XF)) = FX"(u). Further the composition
F(@,A) =F@)o (idpy x A): FY x5 TM — TFY

is the lifting map of a general connection on F'Y — M. The connection
F(I',A) is called F-prolongation of I" with respect to A and was discovered
by 1. Kolér [5].

Let V be a torsion free classical linear connection on M. For every x € M,
the connection V determines the exponential map expg: T, M — M (of V
in x), which is diffeomorphism of some neighbourhood of the zero vector at
x onto some neighbourhood of x. Every vector v € T, M can be extended to
a vector field © on a vector space T, M by v(w) = %lt:o[w—i-tv]. Then we can
construct an r-th order linear connection E,(V): TM — J"T'M, which is
given by E,.(V)(v) = j-((expy )«¥). This connection is called an exponential
extension of V and was presented by W. Mikulski in [9]. Another equivalent
definition (for corresponding principal connections in the r-frame bundles)
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of the exponential extension was independently introduced by I. Kol in [6].
Hence given a general connection I' on Y — M and a torsion free classical
linear connection V on M, we have the general connection

F(@,V):=F(,E(V)): FY x5 TM — TFY.

The canonical character of construction of this connection can be de-
scribed by means of the concept of natural operators. The general concept
of natural operators can be found in [4]. In particular, we have the following
definitions.

Definition 1. Let F': F M,,,, = FM be a bundle functor of order r on a
category F M, . An FM,, n-natural operator D: J! x Q,(B) ~ JYF —
B) transforming general connections I' on fibred manifolds p: Y — M
and torsion free classical linear connections V on M into general con-
nections D(T,V): FY — J'FY on FY — M is a system of regular
operators Dy: Con(Y — M) x Q;(M) — Con(FY — M), (p: Y —
M) € Obj(FM,y,,) satistying the FM,, p-invariance condition: for any
I'e Con(Y - M), I'y € Con(Y1 — M), V € Q(M) and V; € Q- (M)
such that if I' is f-related to I'y by an F M, ,-map f: Y — Y; cover-
ing f: M — M; (ie. J'foI' = Tiof) and V is f-related to Vi (i.e.
JITf oV = VioTf), then Dy(I',V) is Ff-related to Dy, (I'1,V1) (i.e.
JYFfoDy(T,V) = Dy, (T'1,V1)oFf). Equivalently the FM,, ,-invariance
means that for any I' € Con(Y — M),I'; € Con(Y; — M;),V € Q-(M)
and Vi € Q,(M;) if diagrams

1 JITf
sy Ly, JITM = J'TM,
T
f Tf
% ' M TM,

commute for a FM, ,-map f:Y — Y1 covering f: M — M, then the
diagram
1
Jry 2L ey
TDYI (T'1,V1)

Fyi

DY(F,V)T

ry 4

commutes. We say that the operator Dy is regular if it transforms smoothly
parametrized families of connections into smoothly parametrized ones.

Definition 2. A M f,,-natural operator A: @, ~~ Q" extending torsion
free classical linear connections V on m-dimensional manifolds M into r-th
order linear connections A(V): TM — J"TM on M is a system of regular
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operators Apr: Q- (M) — Q"(M),M € Obj(Mf,) satisfying the M f,,-
invariance condition: if V € Q,(M) and V; € Q,(M;) are f-related by a
Mfp-map f: M — My (ie. JITfoV =Vi0Tf), then A(V) and A(V)
are f-related, too (i.e. J'T'f o A(V) = A(V1)oTf). In other words, the
M [ -invariance means that if for any V € Q.(M), Vi € Q. (M) the
diagram

1
sy 2 e

S

TM TM;

commutes for a M f,,-map f: M — Mj, then the following diagram

gy 2L e
A(V)T TA(Vl)

™ — T

commutes, too. The regularity means that every Aj; transforms smoothly
parametrized families of connections into smoothly parametrized ones.

Thus the construction F(I', A) can be considered as the F.M,, ,-natural
operator F: J!' x Q,(B) ~ JYF — B). Similarly, the correspondence
Er: Qr ~» Q" is the M f,-natural operator.

In [4], the authors described all F M,y ,-natural operators D: J* x Q(B)
~ JYF — B) for a bundle functor F = J': FMy,,, — FM. They
constructed an additional FM,, ,-natural operator P and proved that all
F My, p-natural operators D: J! x Q. (B) ~» JY(J' — B) form the one
parameter family tP + (1 —¢)J',t € R.

In this paper we determine all FM,, ,-natural operators D: J! x Q,(B)
~ JY(J? — B). We assume that all manifolds and maps are smooth, i.e. of
class C*°.

2. Quasi-normal fibred coordinate systems. Let I': Y — J'Y be a
general connection on a fibred manifold p: Y — M with dim(M) = m and
dim(Y) = m 4+ n, V be a torsion free classical linear connection on M and
yo € Y be a point with z¢g = p(y) € M.

In [8] W. Mikulski presented a concept of (I, V,yp, r)-quasi-normal fi-
bred coordinate systems on Y for any r. For r = 3 this concept can be
equivalently defined in the following way.

Definition 3. A (T', V, yo, 3)-quasi-normal fibred coordinate system on Y’
is a fibred chart ¢ on Y with ¢(y0) = (0,0) € R™" covering a chart ¢ on
M with centre xq if the map idgm is a Q*V—normal coordinate system with
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centre 0 € R™ and an element j(20 0)(¥:l) € J(20 0)(J1Rm’” — R™") is of
the form

m n 8
-2 _ 2 z
J«Lm(¢*r)“ﬂmﬁ)<F0‘F > D agat deQDayp

1,5,k=1p=1

i i ylatda? ® — + Z Zcpxldxj ® 8)

1,7=1p,q i,j=1p=1

(1)

for some (uniquely determined) real numbers ay,;, b}, and cf; satisfying

p _ P __
Ui — Aigj = 0

aiij—l—aiji—i-afkj—i-a Tl tah, =0
@) -

qij QJZ

¢y + ¢ =0

where I'g = 2?1:1 dz' ® 621- is the trivial general connection on R™"™ and
b, .o 2™yl ..., y" are the usual fibred coordinates on R™".

n [8] W. Mikulski proved an important proposition ([8], Proposition 2.2)
concerning (I', V, yo, r)-quasi-normal fibred coordinate systems. Below we
recall this result for r = 3. A fibred-fibred manifold version of Proposition
2.2 from [8] for » = 1 is presented in [7].

Proposition 1. LetT': Y — J'Y be a general connection on a fibred mani-
foldp: Y — M with dim(M) = m and dim(Y') = m+n, V be a torsion free
classical linear connection on M andyp € Y be a point with xo = p(yo) € M.
Then:

(i) There exists a (I, V, yo, 3)-quasi-normal fibred coordinate system ) on'Y .
(ii) If ' is another (T, V, yo, 3)-quasi-normal fibred coordinate system, then

(3) Ju bt = jo (B x H) o))

or a linear map B € GL(m) and diffeomorphism H: R" — R™ preser-
J P P p
ving 0.

From the proof of Proposition 2.2 from [8] it follows that (B x H) o1
is a (I', V, yo, 3)-quasi-normal fibred coordinate system for any B € GL(m)
and any diffeomorphism H: R™ — R preserving 0. In other words, the
F M n-maps of the form B x H for B € GL(m) and diffeomorphisms
H: R"™ — R" preserving 0 € R" transform quasi-normal fibred coordinate
systems into quasi-normal ones.

From now on we will usually work in (I, V, y, 3)-quasi-normal fibred
coordinates for considered I' and V. If coordinates are not necessarily quasi-
normal, the reader will be informed.
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3. Constructions of connections. Let I': Y — J'Y be a general con-
nection on an FM,, ,-object p: Y — M and let V: TM — JITM be a
torsion free classical linear connection on M.

Example 1. Let A: Q, ~ Q? be a Mf,,-natural operator and let A =
A(V): TM — J*TM be a second order linear connection on M canonically
depending on V. Then from Introduction for a functor F = J?, we have a
general connection

(4) Joy(L,V) = T*(T, A(V)): JPY = J'J?Y
on J2Y — M canonically depending on I' and V.

Because of the canonical character of the construction j&) (', V) we ob-
tain the following proposition.

Proposition 2. The family j(QA): J' % Q- (B) ~ JY(J? = B) of functions
\7(2A): Con(Y — M) x Q;(M) — Con(J*Y — M)
for all F M, n-objects Y — M is an F M, n-natural operator.

Example 2. For every torsion free classical linear connection V on a man-
ifold M we have a canonical vector bundle isomorphism v : J2TM —
EB%:OS’“T*M ® T M given by a formula

U (1) = Bi_oS* Ty o™ @ Top L (I(J*Te(1))),

where 7 € J2TM,z € M, is a V-normal coordinate system on M with
centre x and I: JEZTR™ — EB%ZOS’“TG‘RT”@)TOR’” is the usual identification.

In the main result of [9], W. Mikulski showed that M f,,,-natural operators
A: Q; ~ @Q? are in bijection with M f,,-natural operators Ay = 0: Q, ~~
T*QT,A1: Qr ~ T*@T*®T and Ay: Q, ~ T* ® S?T* @ T. In other
words, the second order linear connections A = A(V): TM — J*TM on M
canonically depending on V are in bijection with the tensor fields Ay(V) =
0:M—->T*MTM,A(V): M - T"M@T*M @TM and A2(V): M —
T*M ® S?*T*M & TM on M canonically depending on V.

Now by means of ¢y, A1(V) = 0 and A2(V) we can define a second order
linear connection A(V): TM — J?*TM on M by

(5) A(V)(v) = ¢§1(v,0, < A2(V)(x),v>),v e T,M,x € M
In particular, for A3(V) =0: M — T*M ® S*T*M ® TM we obtain
(6) AP (V) (v) = 9! (0,0,0): TM — J*TM,

On the other hand, from [9] it follows that
A3 (V)(v) = E2(V)(v).

It means that A5 (V) is the second order exponential extension of V.
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Finally, in the accordance with Example 1 we have a general connection
(7) J Aew)(r V) = JT, AP (V) JY — JLTPY
on J2Y — M canonically depending on I' and V.

Example 3. Let p € (J2Y)y,, Yo € Yy, 2o € M and consider a (T, V, yo, 3)-
quasi-normal fibred coordinate system 1 on Y. Then

0
2 k_.i
3(0,0)(w* ) = J(oo <F0 + g g a,m:p 2idr? @ By

i,5,k=1 p=1

Y S Gt oo Y3 et o o)

i,j=1p,q=1 i,j=1p=1

for unique real numbers aj, i bh,; and c; satisfying (2). Denote

1]—F0+ Z Za,ﬂ]x ida:j®;)yp,

zjk 1p=1
(8) 5
2]—F0+ZZ qz]yxzdﬂ@i—l-zz:cpxdx]@i
1,j=1p,g=1 t,j=1p=1 Oy

Now we define general connections jﬁ] (T, V): J2Y — JYJ?Y and ‘7[%] (I, V):
J?Y — JYJ?Y on J?Y — M by

T (T, V) (p) = T T2 ()N (T gean) (T, VO (P0(p))),
Ty (T, V) (p) = T T2 (W7 ) (T aean) (TP, VO) (P0(p))),

where V0 is the usual flat classical linear connection on R™.

(9)

Because of the canonical character of the construction j[f] (I, V) for i =
1,2 we have the following proposition.

Proposition 3. The family .7[31 J' % Q. (B) ~ JY(J? — B) of functions
T+ Con(Y = M) x Qr(M) = Con(J*Y — M)
for all F M, n-objects Y — M is an F M, n-natural operator.

4. The main result. We can consider the first jet prolongation functor
J! as an affine bundle functor on the category F My, . The corresponding
vector bundle functor is T*B ® V', where B: F M,,,, = Mf,, is a base
functor and V is a vertical tangent functor. For this reason, for any fibred
manifold p: Y — M from the category FM,, ,, the first jet prolongation
JYY — Y is the affine bundle with the corresponding vector bundle 7% M ®
VY. Therefore, J'J?Y — J?Y is the affine bundle with corresponding
vector bundle T*M ® V.J?Y. Thus the set of all F M, n-natural operators
D: J' x Q. (B) ~ JY(J? — B) possesses the affine space structure.
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The following theorem classifies all FM,, ,-natural operators D: J L
Q-(B) ~ JH(J? = B).

Theorem 1. Let D: J' x Q(B) ~ J(J? — B) be an F My, n-natural
operator transforming general connections T':' Y — J'Y on F My, ,-objects
Y — M and torsion free classical linear connections V on M into general
connections D(I',V): J?Y — JYJ?Y on J?Y — M.

If m > 2, then there exist uniquely determined real numbers tg, t1,ta with
to +t1 + to = 1 and M f,-natural operator A: Qr ~ Q? transforming
torsion free classical linear connections V on M fp,-objects M into second
order linear connections A(NV): TM — J*TM on M such that

(10) D(I',V) = to 2 (T, V) + 1 T3 (1, V) + 12731, V)

for any F M, n-object Y — M, any general connection I' on' Y — M and
any torsion free classical linear connection ¥V on M. Besides, if tg # 0,

then A is uniquely determined (else A can be arbitrary).
In the case m =1, D = J2.

In the proof we use methods for finding natural operators presented in
[4] and lemmas from [1].

Proof. Let 2%, y? be the usual fibred coordinates on R™",
2
p_ Oy p_p_ O
Vi = oz Vi TYii T priggi
be the additional coordinates on J2R™" and

YP=dy, YP=dy], Y=Y} =dy]

be the essential coordinates on the vertical bundle V.J2R"™" of J2R™" —
R™, wherei,j=1,....,mand p=1,...,n.
On J3(J'R™"™) we have the coordinates

R L ) i
o T g NeT gy DT guiag
N b o bt

ar gyedyr’ T grigyt’
The standard coordinates on J§ (Q(R™)) are V;k = };j and V;kl = Véjl,
where i, 5, k,l=1,...,m.

Let wy, be the usual coordinates on T*R™. Then the induced coordinates
on the tensor product (T*R™ @ V.J?R™"), are

P _ P _ P p
Zk = prk, Zi;k: = Y; Wi, Z:

—yP
ik = Yijn:

Let D: J' x Q- (B) ~ J'(J? = B) be an F My, ,-natural operator trans-
forming general connections I': Y — JY on FM,, ,-objects Y — M and
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torsion free classical linear connections V on M into general connections
D(T,V): J?Y — J'J?Y on J?Y — M.

Since J'J?Y — J?Y is the affine bundle with the corresponding vector
bundle T*M ® V J?Y, we have the corresponding F.M,, ,-natural operator

Ap: J'x Qr(B) ~ (JA,T*B2V.J?).

It transforms a general connection I': Y — J'Y on an F M n-object Y —
M and a torsion free classical linear connection V on M into a fibred map

(11)  Ap(I,V) =D, V) =T} oy (I, V)2 JY — T*M @ V.J?Y.

Of course, the operator D is fully determined by Ap as D(I', V) = Ap(I', V)
+L7(2Aexp)(F,V) for every I' € Con(Y — M),V € Q,(M). In other words
2

D=Ap+ j(agzp), so it is sufficient to investigate the operator Ap.

Using the invariance of Ap with respect to the homotheties i, = tidgm.»
covering v .= tidgm for t > 0, we have the homogeneous conditions

(T*(tidgm) ® V.J?(tidgmn))(Ap(T, V)(p))
= (Ap((tidgmn).T, (tidgm ). V) (J* (tidgmn ) (p))

for any general connection I' on R™"™, any torsion free classical linear con-
nection V on R™ and any p € (JQRm’”)(O’O). Using the general theory and
the above local coordinates, the above condition can be written as the sys-
tem of homogeneous conditions. Now, by the non-linear Peetre theorem [4]
we obtain that the operator Ap is of finite order » in I' and of order s in
V. Having the natural operator Ap of order r in I and of finite order s in
V, we shall deduce that r =2 and s = 1.

The operators Ap of order 2 in I' and of order 1 in V are in bijection
with G?n’n—invariant maps of standard fibres f: S; x A x Sy — Z over
f = ids,, where S1 = J(JIR™™) A = JHQ-(R™)), Sy = JER™", Z =
(T*R™ ® VJ?R™™)y. This map is of the form

P _ P 1P P P P 1 p P
Zk; _fk(r Fzyrzq’Fz]k?qur’ zgq?v]kv jkl?yz”yij)

P PP P TP TP

Zi; = (F Fl]’qu’F’L]k7FZqT” Z]qgvjk,vjkl,yl,yl])
P P P TP TP

Zhi = T T Do T T T Vi Vi U ).
The group G%%n acts on the standard fibre Sy in the form

7= apyjal + apaj

- P raka P a~k~l P, 4d~k~l
yw =aq ykla a + aqrykyl a t ALY a; a5 + ayypa; a;
P k P ~k~l
+a yka” + ak ij T Qg QG
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and on the fibre S7 by the formula

™7 _ _ppdszd p~J
I, = aqFjai + a;a;
TP _ 749 7kl p 1qprak~l P 1azk=l P 1q~k~l p14a =k
I‘ij = aqulai a; + aqu‘kFl a;a; + aqul a;a; + aqukai a; + aql“kaij

~k ~k~1
+ agaij + CLZzai a;

3

h = Pl sl + ab Tasal + b aral

Lo = (ah, + ab L)Y + (aby, + ab, T3)TT, + aiT],
+ ag (T3, T + T ) + (agy, + ag TR0, + ag T,
+(ab,, + b Up)0f + ab, T +al |+ b T9]alaay

1 ~ I~
+ (ahTy, + af, DTy, 4 af U+l Uf + ap ) (@07 + a;ajy)

+ [(ab, + ab T7)T] + aPTE +al), + aglrg]aija}g + (alTF + al)aly,
7, = (8,15 + all5,, + a2, 15 + ab 15, + aby, )il dl !
fqu = (ap, Uy + Ty, + apy TRy + af T3, 17 + ol DT, + afktl“{
+al, T, + b, Ty + ab Ty, + ab,)al &édé
+ (aft e+ ably + ait)&fj&f,-
The action on A is
Vik = 6 V5, 07'6f. + ai,,al g
Vi = )V, Glapa + ol V2, G as, + ab, Vh, aratas + ab, Vs, alay

7 ~q~m~n i ~5 ~m
t Qg A Q5 + gy, Qg Q7

Finally, the group anm acts on Z in the form

7P — aP 795!
Zk = anl a/k
7P Py, 5l prd =l APV
Zife = Qg Y Y@ Ay, + ag 250505 + ag; 2y ag ay,
P __ p v, 4 ~l~m~n p 74 ~l~m~n p s, 4, T ~[~m~n
Zijik = OgqpY Y Wn @05 Qg + ag 2y, 005 Ay + G YY) Y, Wn G050 A,

P q, T 'Aves ~l~m=~=n p T, q ~l~m~n
+ aqr(Yz Ym T Y Ym)wnaiaj ay + aquY YmWn@;Q; A

P r7q =l-m=xn P r,q,  ~l=m=n P q ~l-m=~n
+ @y Zrin @i Q5 Qg+ G, Y Y W G305 Qg + G, 2y, G505 Gy,

+ab, Y ylwndl;ay + ab Z1 aan + ab Ziagar + apy, Ziaalay.
Now we want to show that every FM,, ,-natural operator Ap: J L%
Q-(B) ~ (J2, T*B® VJ?) is of order 2 in I and of order 1 in V. Using the

general theory, the operators in question are in bijection with G7, ,,-invariant
maps

f1 JG(J'R™™) 5 J5(Q-(R™)) x JGR™" — (T*R™ @ VJ’R™"),
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where ¢ = max{rank(J"J'), rank(J*Q, ), rank(J?), rank(T*), rank(V J?)} =
max{r+1,s+2,2,1,3} = max{r+1,s+ 2,3} > 3.

We shall investigate these maps. Let o and + be multi indices in % and
£ be a multi index in yP. This associated map of our operator has the form

Z]]; = flf((rp)aﬁ (v;k)% yfa yfj)

28 = I ((T)aps (Vi) 07 )
ijk ij; k((rp)oéﬁ ( ;k)’%yfayf])a

where |a| +|8] <r and |y] < s.
Using the homotheties

Gt — 48t GP — P P ~k P P _
ay =to}, ab = of, af =0, af —O,aql—O, aj; =0, a;; =0, a,,; =0,
_ ~1
qrs 0 aqz] 0 az]k 0? z]k O
we obtain

tfy = LN TD) o5, TNV ) 1l 200
From the homogeneous function theorem we deduce that f,f is linear in
(I'")s, ;.k, y; and is independent of y7; and of the variables with |a| > 0 or
|v| > 0. Therefore,

(12) f2 = 1T, Vi, o).
Considering invariance of (12) with respect to the homotheties

a?:&i p—tépa—O ap —Oa Oa Oa =0, a®

; =0,

qri —

qTS—O a?

qij - O aUk 0, aijk - 0,

we get the condition
tf]f - flf(tl_lﬁ‘(Ff)ﬁa ]k?tyz)

Using again the homogeneous function theorem, we see that f,‘f is indepen-
dent of (I'?)5 with |8] > 1.
For f? x> the homotheties

L — 18t aP — 5P 4P — P _ P ~k _ P o_ P _
a; = to;, ay = oy, a; =0, ag, =0, ag; =0, aj3 =0, a;; =0, a,, =0,
_ P _ ~l
qm =0, aqm 0, ik =0, Ay =0,
yield

2 1 1 ] 2

t 51@ = fz]?k(t +|a‘(rf)a57t +|’Y|( ;'k)ﬁ/vtyfvt yfj)
so that fF, is a polynomial independent of the variables with |o| > 1 or
|v| > 1. In other words,

(13) i = I ((ap, (Vi) vt )
for o] <1 and |y| < 1.
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The homotheties

~i __ <0 p _ p P _ P _ P _ ~k _ P _ P _
aj—é» ag = tog, a; =0, ag, =0, a, =0, a3 =0, a;; =0, a,,; =0,
_ ~l
qrs = 0 CL O aUk 0, aijk = 0,
imply

tf'fk = ffk(tli‘m(l—‘f)alﬁ ( 3](:)77 tyfa tyfj)
for || < 1 and |y| < 1. Therefore we deduce that f!, is independent of
(IP)as for |a] + |8] > 2 and (V). for [4] > 1.
Now invariance of ff;,k with respect to the homotheties

s =0}, ah =toh, af =0, a, =0, ab; =0, aj; =0, af; =0, d’, =0,
— — P _ ~l
ahs =0, ang 0, a5, =0, a5, =0,

gives
A = Fo g (ETITD) o, DN 0 ).

So fi.; is a polynomial independent of (I'})ag for |af +|B] > 2 and (V;,C)7
for |y] > 1. Hence the associated map of our operator is independent of
(T} )ap for [a| +[B] > 2 and (V) for |y] > 1. This completes the proof of
the fact that F M,y ,-natural operator Ap: J' x Q,(B) ~ (J2, T*BxV J?)
is of order 2 in I' and of order 1 in V. In other words it means that
the value Ap(T',V)(p) is determined by j(QO’O)F and j$(V) and p for any
I' € Con(R™"),V € Q-(R™) and p € (J*R™") o 0)-

In the rest of the proof, we shall use (I, V,yo,3)-quasi-normal fibred
coordinate systems,only. Consider the case m > 2.

Since Ap is invariant with respect to (I', V, o, 3)-quasi-normal fibred co-
ordinate systems, Ap is determined by the contractions (Ap(T', V)(p),v) €
V, JPR™" for all p € (JQRm’”)(O’O), all v € ToR™, all general connections
I' on R"™" and all torsion free classical linear connections V on R such
that ¢ = idgmn is a (I', V, (0,0), 3)-quasi-normal fibred coordinate system
on R"™" over ¢ = idgm.

For vector bundles £ — M we have the standard identification VE =
FE xj; E which is a vector bundle isomorphism. As R™" is a vector bundle
and J?R™" is a vector bundle we can write that VpJQRm’" =, JER™™
This identification =, is GL(m) x GL(n)-invariant but not FM,, ,-invariant.

Next we use the usual GL(m) x GL(n)-invariant identification

Jng,n ~ @iZOSkRm* ® R"
(it is not F My, p-invariant). Therefore, the values (Ap(I',V)(p),v) are
determined by the values wI’i’v(p, v) € SFR™ @ R™ for k = 0, 1,2 obtained

by composing the values (Ap(I', V)(p),v) with the respective projections.
So we can write

<AD(F7 v)(ﬂ)? U> = wg‘,V(p7 ’U) ® ¢%,v(ﬂv ’U) D w%,v(Pa U)7
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where wlg’v(p, v) € R, w%’v(p,v) eR™ ®R", w%’v(p, v) € SPR™ @ R™.

Now the values wlﬁv(p, v) € SFR™ @ R™ for k = 0, 1 are determined by
the contractions (@ZJ%v(p, v),u), <¢%7V(p, v),w®u) for all v € THxR™ = R™,
u € R™, we R™ and all ', V in question.

Using the polarization formula from linear algebra, we have that every
symmetric bilinear form on a vector space is uniquely determined by the
corresponding quadratic form. Therefore, for k = 2 the values w%,v (p,v) are
determined by the contractions (¢f ¢ (p,v), (w ®w) ® u) for all v,u,w,T,V
as above, where ® denotes the symmetric tensor product. Then by the
density argument and m > 2, we can assume that v and w are linearly
independent and u # 0.

Using the GL(m) x GL(n)-invariance of Ap and Proposition 1, we can
assume v = ey, w = e, u = E1, where (e;) is the standard basis in R™, (E,)
is the standard basis in R™ and (EP) is the dual basis in R™*. So we get that
the operator Ap is uniquely determined by the values (ngv(p, a%lk]), BY,
(Wt (P gorlo), e2® E') and (U ¢ (p, 52710, (e2@e2) © B'). In other words,
Ap is uniquely determined by the values

(Vi (Ap(. 7)o sl ) ) € R
a1 (Y (80900 5h) ) € R

(Y (2009101 51 ) ) € R

for all p € (JQRm’”)(()’O), all general connections I' on R™" and all tor-
sion free classical linear connections V on R such that ¢ = idgmn is
a (I V, (0,0), 3)-quasi-normal fibred coordinate system on R™" over ¢ =
idgm.

Consider locally defined FM,, ,-maps 12: R™" — R"™", 13: R™" —
R"™" given by

(.’L',yl + <y1)27y27 R 7y'rZ)
(xvyl + <y1)37y27 oo 7yn)

1/12(% y)
1/13(.%, y)

for z € R" and y = (y1,¥2,-.-,yn) € R™. They preserve a%lb and can
be written in the form v, (z,y) = (idgm(z), Ha(y)), where Hy(y) = (y1 +
(y1)*%, y2,...,yn) and a = 2,3. So ¥, = idgm x H, for H,: R"™ — R" being
a diffeomorphism preserving 0. Hence by Proposition 1 these FM,, ,-maps
Ye: R™™ — R™" for a = 2,3 transform quasi-normal fibred coordinate
systems into quasi-normal ones. Using the invariance of Ap with respect
to Y. R™"™ — R™" for a = 2,3 and the density argument, we show
that the values (Y5, (Ap(T, V)(p), gorlo)) and (Y1, (Ap(T, V)(p), gorlo))
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for all I' € Con(R™"), V € Q-(R™), p € (JPR™") (0, are determined by
the values <Y212‘p, (Ap(I', V) (p), 8? lo)) for all I', V, p as above.

Using the action of the group Gm
Y22 +2y'y3s + 2(y3)” and then

—1 _
(15) Yoo = dyzp = Yop +4y3Ys +2y30Y ' +2y' Yoy = Yop +4y3 Y5 + 245V
over (0,0) € R™™ (i.e. for y! = 0). Similarly, for a = 3 we get 7, =
Y22 +3(y") Y32 + 6y (y3)* and then
Voh = difigy = Yo +6(y5)*Y " + 6y y3,Y ' + 3(y")*Yah + 12y 5V
~ v+ 6y

over (0,0) € R™".

By formula (16) for yi(p) # 0, we have
Yh — V5

6(y3)?
and consequently the values <YI;, (Ap(T,V)(p), %|0>> for all T' €
Con(R™"), V € Q-(R™), p € (J*R™") o) are determined by the val-
ues <Y212‘p, (Ap(I', V) (p), %b)) for all I', V, p as above.

Then analogously from (15) and (17), we see that

71 ~
vyl — (Yoo — Y212) ) 3(1/%)2 - 3/52(5/212 - Y212)
? 12(y3)?

and therefore, the values <Y1| (Ap(T', V) (p), %|0)> for all ' € Con(R™"),
V e Q:R™), p € (J'R™)p are determined by the values
(Y} 991, (AD(T, V)(p), %]0» for all ', V, p as above.

Summing up, we obtain that the operator Ap is uniquely determined by
the values

(18) (Vi (BT ¥)0) ) ) € R

for all general connections I' on R™"™ such that

m n
. . i 8
](QO,O)F = J(20,0) (Fo + Z Z a,m ridr’ ® o

1,5,k=1p=1

i i ylatda? ® — —l— Z Zcpxzdxj ® 8)

1,7=1p,q=1 i,j=1p=1

, on Sy for a = 2, we obtain i, =

(16)

(17) Y=

(19)

for unique real numbers akij, bZij and cf] satisfying (2) and all torsion free

classical linear connections V such that the identity map idRm is a V-normal
coordinate system with center zero (then j} (V) = ji (X1, V ] 3T )”l 1)
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for some VU &= Véi;k € R satisfying some “classical” conditions) and all
p € (JPR™ ")(0,0) of the form

(20) = <<Zg '+ Zh xmﬂ>p 1)

i,7=1

for real numbers g7, h}; = hY;. So, it is sufficient to study the values (18)
for I', V, p as above.

Equivalently, in terms of G%yn—invariant maps between the standard fibres
we obtain that values of functions f{ and f21;1 are determined by values of
functions f212;1. So we will study the values

1 P P l
f22;1(rk1] akz]’ qu] - bZ’LJ’ i) ’Uk viﬁk’

(21)
yi = gw yij = hfj)‘

The invariance of fg.,k with respect to the homotheties

Q= 1o}, ab =top, af =0, ab, =0, ab, =0, aj; =0, af; =0,
agm» =0, ab.s =0, asij =0, afjk =0, a;j, =0,
yields
t2 k= ”k(t%kw, t20h s el Vs gy thi;).

Then the homogeneous function theorem implies that fp 5 18 linear in aiz n

. . p p
bgw’ V” > bilinear in czfj, 1> quadratic in cf] and h{;. In other words f/.,
is the linear combination of monomials

(22) 00 W Vs R B

qij’ ZJ k> =5 510 Yig T g iyt g

with the coefficients being smooth functions in the coefficients g¥ of p.
Then using the invariance of ff;  With respect to the homotheties

iy = 6%, ab = t6h, af =0, ab, =0, al; =0, aj; =0, af; =0,
rp  _ P _
Qgpi = 0, Agrs = 0, ang 0, awk 0, aijk =0,

for t > 0 and the homogeneous function theorem, we observe that the
coefficients on aii. are constant, the coefficients on bp and Vl ik are linear
and the coefficients on other terms from (22) are zero

Then using the invariance of fp & with respect to the ]:./\/lm n-Maps

P R™" — R™™ given by 1/1t7T(x,y) (tat, . tmam iyt Ty
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fort* >0,i=1,...,mand 77 > 0, p=1,...,n we deduce that

1 1 1 1
fao1 = (10199 + 20315 + a3agy;)

n n n
+ <Z Ba12bg1295 + Z Bap1byp195 + Z ﬂq22b(§229?>

q=1 q=1 q=1
n n n
1 1 1 1 I
+ <Z Va12bj1292 + Z Va21bg2192 + Z %122532291) +9((97), (Vijir)
q=1 q=1 q=1

for some uniquely determined real numbers a1, aa, a3, Bg12, Be21, Bg22, Vq12,
Yq21, Vq22 and some uniquely determined bilinear function g.
Now because of conditions (2) we have

n
fan1 = ajgs(cn + a2 — 203) + Z(ﬂqw - 5q2l)bé129§
q=1

+ D (Y12 = vg20)bh1005 + 9((91): (Vij))
q=1

= aajy + ZB‘I g1295 + Z’Yq Q1292 +9((a)), (sz k)
q=1 q=1

where a = ay +as —2a3, By = Bg12 — Bg21, Vg = VYq12 — Vg21 for ¢ =1,... n.
Further evaluations give

f22 | = aaigy + (B + 71)b11295 + Z Babq 41295
q=2

) vebh095 + 9((91), (Vi)
q=2

!
= aajgy + Bbiiags + Z Babg g1295 + Z Yqb q1292 +9((9); (Vijir))s
q=2 q=2

where g = 81 + 1. In other words,

a n
< 22|p? <AD(F V)(p)s 8a:1|0>> = aaty; + Bbl1ags + Zﬁqb;mgg
q=2
(23) n
q=2
for some uniquely determined real numbers «, 3, 84,7, and some uniquely
determined bilinear function g, where j(20 O)F is of the form (19) with the

coefficients ak”,bzq’zj and cp satisfying (2), j&(V) = 35((pe, Vi @ )ljJ:l)
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for some VU = Vé-i 5 € R satisfying some “classical” conditions and p is
of the form (20) with g7, hfj = hp

From (23) it follows that Ap is determined by the real number «, the
bilinear map g and the values

Ap (Fo + (xtde? — 2%dz') ® ot

" 0
oy X e - ) o 9 (o)

p,q=1

0 0
:AD<F0+($1dx2—m2d$l)<a T+ Z 2y’ 5 p> VO>( )

p,q=1

for all b 12 € Rand all p € (J?2R™ ")(0,0); Where VY is the usual flat torsion
free classmal linear connection on R™.

Considering the invariance of Ap with respect to the maps idRm x H for
diffeomorphisms H: R — R preserving 0, we get that Zp =1 myqa%p
is near 0 equal to zero modulo some diffeomorphism H: R™ — R preser-
ving 0. Hence we have that Ap is determined by the real number «, the
bilinear map g and the values

(25) Ap <F0 + a(xtda? — 22dat) @ 3, V0> (p)

for all a € R and all p € (JZRm’”)((),O).
Next using the invariance of Ap with respect to the homotheties

qm—o ab, 0 ab.. =0, awk 0, ijk 0

from the homogeneous function theorem, it follows that (25) depends lin-
early in (a, p). This implies that Ap is determined by the real number «;,
the bilinear map g and the values

Ap (ro + (2tda® — 2%dat) ® (fl,v())( 0) and Ap(To, VO)(p)
for all p € (J2R™")(0).

Now the values Ap(Tg,V°)(p) are determined by the values
(Ap(Lo, VO)(p),v) € V,J?R™"™ =, JAR™" = @2_ SFR™ @ R" for all
p € (JPR™™) 00, v € ToR™ such that ¢ = idgmn is a (Io, VY, (0,0), 3)-
quasi-normal fibred coordinate system on R™" over ¢ = idgm. Since the
F M n-maps of the form B x H (in question) preserve the trivial gen-
eral connection I'g and the flat torsion free classical linear connection V°
then we deduce that the values Ap (T, V°)(p) are determined by the values
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(Y} 52| (Ap(To, V) (p), %]0». But using the formula (23), we see that the
last values are equal to zero. Therefore,
(26) Ap(To, V) (p) =0

for any p € (JQRm’")(Oyo). This gives that Ap is determined by the real
number «, the bilinear map g and the values

oyl

The value (27) is determined by the evaluations

d B
1 2 2 0 -2
< |J80’<A <Fo+ dz?® — 22dg! )®—8 -V >( 0)’axk|0>>
d d
1 2 2 1 0 -2
(28) < 20 ( AD (F0+ da? — 22dx )®—8y1,v )(]OO>vaxk‘0>>
YP o, { Ap(To+ (z'da? — 2?da’t )®—8 v° ) (450 )78 lo
1j]550° (9 1 " Oxk

forallp=1,...,nand all¢,5,k=1,...,m
Since (25) depends linearly on a, using the invariance of Ap with respect
to the homotheties

Gl — 8L P — 5P 4P P _ ko _ P
a; =03, ay = toy,a; =0, ag —0,aqZ 0, a;; =0, a;; =0,

P _ P _ ~1
aqm 0 Qgrs = O ang O amk 07 z]k 0

(27) Ap (ro + (2lde? — 2%dz') ® 0 v0>( 0).

we see that

0
1,2 2.1 0\, .2
<Y| 207<AD<F0+( dr® —a"dx )®8717V )(Joo)yaxklo>>=0,
v? Ap | To + (ztda? — 22det) @ 9 v ) (520) i|0 -0
ZJI](%[)’ 8 1’ 7axk

Therefore, Ap is determined by the evaluations

(29) <Yﬁ’20, <AD (ro + (2tde? — 2%d2') ® 881, v0>( 0), £k|0>>.

Then using the invariance of Ap with respect to a;: R™" — R™"™ by
ar(z,y) = (z,ty1,y2,...,yn) for t > 0, we may assume p = 1, i.e. Ap is
determined by the evaluations

0 0
(30) <YZ.1].30,<AD(F0+(xldx2—x2da:)®61,V0)( )’axk|O>>‘

Then using the invariance of Ap with respect to b;: R™" — R"™" by
be(z,y) = (t121, -« - s tm@ms Y1, - - -, Yn), We see that the values (30) are all
zero except the values

(31) < 1lj20,<AD(P0+( Yda? — 2?dax? )®881,v0)( 0), 55 2|0>>
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and

)
(32) <Y2 20,<AD <r0+( Ydz? — 22da? )®317V0> e 1|0>>

Because of the invariance of Ap with respect to exchanging z! and 22 (i.e.

with respect to the map c: R™"™ — R™" given by c(z!, 22,. mm,y)

(22,21, .. 2, y)), we get

< 1|]20,<AD<F0+(95 dz? — 2%dx! )®881,v0>( 0), o 2|0>>
— < 2WO,<AD(PO+( Yda? — 2?dat )@(fl,vo)( 0), 8(331|0>>'

Consequently, the vector space of all possible values (27) is of dimension
< 1. So, the vector space of all possible Ap is of dimension < 2+ K, where
K is the dimension of the vector space of all possible g.

If D= J[f] for i = 1,2 is as in Example 3, then we have

0
<Aj[21] (FO + <$1$2d$2 - (%2)2d$ ) & ﬁ, V0>( ) o a1 |0>
0
(1, (To-+ (et sttty 555,930, )

0 )
—72($ 81)(]80)7
A T 1,2 7.2 22 7,1 8vo 2() 9
73 o+ (v zdr” — (%) $)®87y17 (J0 )a@b
0 )
=J? <<$2)28y1> (J30),
A (D Yda? — 22dat 0 v 0 =0
j[22] O+(£U xr~ — T ax )®ﬁ, ( ) @b =
AJ[Q](F(),V)(/))ZO for i—1,2

for any p € (JQR’"’”)([)’O) and any torsion free classical linear connection
V € Q-(R™) such that idgm is a V-normal coordinate system with center
0. By the flow argument we see that

J?((ﬂ)?fyl)@ém ~ j&((ﬁ)?)ﬁ(fyl)(jéox

7 (:ﬁ(ff;l) (720) & 3(2?)7? <a§1> (20,

and then they are linearly independent.
Using the dimension argument and the formula (23), we deduce that
there exist unique real numbers ¢; and to and an F.M,, ,-natural operator
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Dy such that

(33) D =(1—t—t2)D1 + 01 Jf) + 273
(the affine combination) and
(34) Ap, (I, V%)(p) =0

forallp e (J 2Rm’”)(0,0) and all general connections I' on R™" such that the
identity map ¢ = idgm» is a (I, V?, (0, 0), 3)-quasi-normal fibred coordinate
system on R""". The operator D is uniquely determined if ¢1 + ¢ # 1.

It remains to show that Dj is of the form

(35) Dy =,

for a uniquely determined M f,,,-natural operator A transforming torsion

free classical linear connections V on m-manifolds M into second order lin-

ear connections A(V): TM — J?*TM on M, where J(QA) is as in Example 1.
We construct A in the following way. Given a torsion free classical linear

connection V on a m-manifold M we define a tensor field A(V): M —

T*M @ S*T*M @ TM on M by

(36) (A(V)py,w) =prioAp, (Car, V)(G2(S,0,...,0) € ThM @ S*T; M
where w = d,f € TXM, f: M — R, f(x) =0, FM is the trivial general
connection on the trivial bundle M x R™ — M and
pri: T*M@S?*T*M@V(MxR") = T*M@S*T*M@R" — T*M®S*T* M
is the projection onto the first factor.
The definition (36) is correct because
Ap,(Tar, V)(52(£,0,...,0) € T"M @ S*T*M @ V(M x R™)
CT*M®VJ*(M x R")

as Ap, (Tar, V)(52(f,0,...,0)) projects onto zero by

idpey @Va2: T*M @ VJ*(M x R") — T*M @ VJYM x R"),

where 77: J2Y — J'Y is the jet projection. Indeed, in order to observe
that Ap, (T, V)(52(£,0,...,0)) projects onto zero, we can assume that
M=R", z=0and ¢ = zdRmn is a (Ig, V, (0,0),3) -quasi-normal fibred
coordinate system on R"" because of the M, ,-invariance of Ap,. From
(26) for Ap, instead of Ap we have Ap, (T'o, V°)(j3(f,0,...,0)) = 0. Then
using the invariance of Ap, with respect to the homotheties and applying
the homogeneous function theorem, we complete the observation.

Using the invariance of Ap, with respect to the fiber homotheties idys x
tidg» and applying the homogeneous function theorem, we see that the
value (36) depends linearly on w. Hence A is really a tensor field.

Let

(37) A(V) = ASP(V) + A(V): TM — J*TM
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be the second order connection corresponding to A. So, we have con-
structed an M f,,-natural operator A transforming torsion free classical
linear connections V on m-manifolds M into second order linear connec-
tions A(V): TM — J*TM on M.

We prove (35) as follows. Using the invariance of A — AS™ with respect
to the homotheties and applying the homogeneous function theorem, we
see that A(VY) — AJ™P(V?) is the zero tensor field of type T* ® S*T* ®
T. Therefore, we obtain (34) for Az, instead of Ap,. Then using the
condition (34), we get

<Y22p7 <AD1 (I, V)(p), 821\0>>
= (Vi (B3, (C.9N0) 510 ) ) = 9051 (T4

for any p € (J 2Rm’")(070), any general connection I' on R™™ and any torsion
free classical linear connection V on R™ such that the identity map ¢ =
idgmn is a (I', V, (0,0), 3)-quasi-normal coordinate system on R"", where

r 9
Jtoot =30 (F0+ Z Z%J dﬂ@ﬁ

i,7,k=1p=1

+ Z Z by’ da? ®7+ Z Zcpx’dﬂ@a)

D
1,j=1p,q=1 i,j=1p=1 Ay

(38)

with coefficients a;, j,bf;ij and ¢} satisfying (2),

J

i@ =((E ) )

for Vﬁ ik = Véi;k € R satisfying some “classical” conditions, p is of the form

:jg(@g a3 Mﬂ>p 1)

i,7=1

for real numbers g7, h}; = h’; and g is the bilinear map as in (23). Then we

have (35) because any Ap (and then any D) is determined by the values
(18).

If D, = *7(2,41) for another M f,,-natural operator A; (of the type as the
one of A), then

for any torsion free classical linear connection Von M and anyw € T M,z €

M, where A1(V) = Ay(V) — ASP(V): M — T*M @ S?T*M ® TM is the
tensor field corresponding to A1 (V): TM — J*TM.
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Because of M f,-invariance it is sufficient to show (39) in the case M =
R™,z = 0 and the identity map 1 = idR,,, is a (I',V,(0,0), 3)-quasi-
normal fibred coordinate system on R, . It is not difficult. So, A; = A,
i.e. A satisfying (35) is uniquely determined. The proof of Theorem 1 for
m > 2 is complete.

If m =1, we proceed similarly as in the case m > 2. Therefore, Ap is
uniquely determined by the values

lp® Ap(T, V)(p), ﬂ1!0 €eR

< < Ox >>

(Y (B0 ¥)0) k) ) € R
(Vi (30900, 5l ) ) € R

forallp € (J 2R1’”)(070), all general connections I" on R and all torsion free
classical linear connections V on R such that ¢ = idg1.» is a (I', V, (0,0), 3)-
quasi-normal fibred coordinate system on RY" over ¢ = idg. Then the
operator Ap is uniquely determined by the values

L (AT, V) (0 2l ) ) € R,
(o 3211))

If the identity map ¢ = idgi» is a (I, V, (0, 0), 3)-quasi-normal fibred
coordinate system, then j(20 ol = j(20 0)(F0) and j3(V) = 35(V?) (as the
curvature of V is zero). Consequently, Ap is determined by the values

(10) (Y (80,00 5l ) ) € R

for all p € J3(R,R"™)o. But the values (40) are zero because of the similar
arguments as in the proof of formula (23).
The proof of Theorem 1 is complete. O
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