ANNALES
 UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

Multiplication formulas for q-Appell polynomials and the multiple q-power sums

Abstract

In the first article on q-analogues of two Appell polynomials, the generalized Apostol-Bernoulli and Apostol-Euler polynomials, focus was on generalizations, symmetries, and complementary argument theorems. In this second article, we focus on a recent paper by Luo, and one paper on power sums by Wang and Wang. Most of the proofs are made by using generating functions, and the (multiple) q-addition plays a fundamental role. The introduction of the q-rational numbers in formulas with q-additions enables natural q-extension of vector forms of Raabes multiplication formulas. As special cases, new formulas for q-Bernoulli and q-Euler polynomials are obtained.

1. Introduction. In 2006, Luo and Srivastava [8, p. 635-636] found new relationships between Apostol-Bernoulli and Apostol-Euler polynomials. This was followed by the pioneering article by Luo [10], where multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order, together with λ-multiple power sums were introduced. Luo also expressed these λ-multiple power sums as sums of the above polynomials. One year later, Wang and Wang [12] introduced generating functions for λ-power sums, some of the proofs use a symmetry reasoning, which lead

[^0]to many four-line identities for Apostol-Bernoulli and Apostol-Euler polynomials and λ-power sums; as special cases, some of the above Luo identities were obtained.

In [5] it was proved that the q-Appell polynomials form a commutative ring; in this paper we show what this means in practice. Thus, the aim of the present paper is to find q-analogues of most of the above formulas with the aid of the multiple q-addition, the q-rational numbers, and so on. Many formulas bear a certain resemblance to the q-Taylor formula, where q rational numbers appear to the right in the function argument; this means that the alphabet is extended to $\mathbb{Q}_{\oplus_{q}}$. In some proofs, both q-binomial coefficients and a vector binomial coefficient occur, this is connected to a vector form of the multinomial theorem, with binomial coefficients, unlike the case in [3, p. 110].

This paper is organized as follows: In this section we give the general definitions. In each section, we then give the specific definitions and special values which we use there.

In Section 2, multiple q-Apostol-Bernoulli polynomials and q-power sums are introduced and multiplication formulas for q-Apostol-Bernoulli polynomials are proved, which are q-analogues of Luo [10].

In Section 3, multiplication formulas for q-Apostol-Euler polynomials are proved. In Section 4, formulas containing q-power sums in one dimension, q-analogues of Wang and Wang, [12] are proved. Then in Section 5, mixed formulas of the same kind are proved. Most of the proofs are similar, where different functions, previously used for the case $q=1$, are used in each proof.

We now start with the definitions. Some of the notation is well-known and can be found in the book [3]. The variables i, j, k, l, m, n, ν will denote positive integers, and λ will denote complex numbers when nothing else is stated.

Definition 1. The Gauss q-binomial coefficient are defined by

$$
\begin{equation*}
\binom{n}{k}_{q} \equiv \frac{\{n\}_{q}!}{\{k\}_{q}!\{n-k\}_{q}!}, k=0,1, \ldots, n . \tag{1}
\end{equation*}
$$

Let a and b be any elements with commutative multiplication. Then the NWA q-addition is given by

$$
\begin{equation*}
\left(a \oplus_{q} b\right)^{n} \equiv \sum_{k=0}^{n}\binom{n}{k}_{q} a^{k} b^{n-k}, n=0,1,2, \ldots \tag{2}
\end{equation*}
$$

If $0<|q|<1$ and $|z|<|1-q|^{-1}$, the q-exponential function is defined by

$$
\begin{equation*}
\mathrm{E}_{q}(z) \equiv \sum_{k=0}^{\infty} \frac{1}{\{k\}_{q}!} z^{k} . \tag{3}
\end{equation*}
$$

The following theorem shows how Ward numbers usually appear in applications.

Theorem 1.1. Assume that $n, k \in \mathbb{N}$. Then

$$
\begin{equation*}
\left(\bar{n}_{q}\right)^{k}=\sum_{m_{1}+\ldots+m_{n}=k}\binom{k}{m_{1}, \ldots, m_{n}}_{q} \tag{4}
\end{equation*}
$$

where each partition of k is multiplied with its number of permutations.
The semiring of Ward numbers, $\left(\mathbb{N}_{\oplus_{q}}, \oplus_{q}, \odot_{q}\right)$ is defined as follows:
Definition 2. Let $\left(\mathbb{N}_{\oplus_{q}}, \oplus_{q}, \odot_{q}\right)$ denote the Ward numbers $\bar{k}_{q}, k \geq 0$ together with two binary operations: \oplus_{q} is the usual Ward q-addition. The multiplication \odot_{q} is defined as follows:

$$
\begin{equation*}
\bar{n}_{q} \odot_{q} \bar{m}_{q} \sim \overline{n m}_{q} \tag{5}
\end{equation*}
$$

where \sim denotes the equivalence in the alphabet.
Theorem 1.2. Functional equations for Ward numbers operating on the q-exponential function. First assume that the letters \bar{m}_{q} and \bar{n}_{q} are independent, i.e. come from two different functions, when operating with the functional. Then we have

$$
\begin{equation*}
\mathrm{E}_{q}\left(\bar{m}_{q} \bar{n}_{q} t\right)=\mathrm{E}_{q}\left(\bar{m}_{q} t\right) \tag{6}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\mathrm{E}_{q}\left(\overline{j m}_{q}\right)=\mathrm{E}_{q}\left(\bar{j}_{q}\right)^{m}=\mathrm{E}_{q}\left(\bar{m}_{q}\right)^{j}=\mathrm{E}_{q}\left(\bar{n}_{q} \odot_{q} \bar{m}_{q}\right) . \tag{7}
\end{equation*}
$$

Proof. Formula (6) is proved as follows:

$$
\begin{equation*}
\mathrm{E}_{q}\left(\bar{m}_{q} \bar{n}_{q} t\right)=\mathrm{E}_{q}\left(\left(1 \oplus_{q} 1 \oplus_{q} \cdots \oplus_{q} 1\right) \bar{n}_{q} t\right) \tag{8}
\end{equation*}
$$

where the number of 1 s to the left is m. But this means exactly $\mathrm{E}_{q}\left(\bar{n}_{q} t\right)^{m}$, and the result follows.

Definition 3. The notation $\sum_{\vec{m}}$ denotes a multiple summation with the indices m_{1}, \ldots, m_{n} running over all non-negative integer values.

Given an integer k, the formula

$$
\begin{equation*}
m_{0}+m_{1}+\ldots+m_{j}=k \tag{9}
\end{equation*}
$$

determines a set $J_{m_{0}, \ldots, m_{j}} \in \mathbb{N}^{j+1}$.
Then if $f(x)$ is the formal power series $\sum_{l=0}^{\infty} a_{l} x^{l}$, its k^{\prime} th NWA-power is given by

$$
\begin{equation*}
\left(\oplus_{q, l=0}^{\infty} a_{l} x^{l}\right)^{k} \equiv\left(a_{0} \oplus_{q} a_{1} x \oplus_{q} \ldots\right)^{k} \equiv \sum_{|\vec{m}|=k} \prod_{m_{l} \in J_{m_{0}}, \ldots, m_{j}}\left(a_{l} x^{l}\right)^{m_{l}}\binom{k}{\vec{m}}_{q} \tag{10}
\end{equation*}
$$

We will later use a similar formula when $q=1$ for several proofs.
In order to solve systems of equations with letters as variables and Ward number coefficients, we introduce a division with a Ward number. This is equivalent to q-rational numbers with Ward numbers instead of integers.

Definition 4. Let $\mathbb{Q}_{\oplus_{q}}$ denote the set of objects of the following type:

$$
\begin{equation*}
\frac{\bar{m}_{q}}{\bar{n}_{q}}, \text { where } \frac{\bar{m}_{q}}{\bar{m}_{q}} \equiv 1, \tag{11}
\end{equation*}
$$

together with a linear functional

$$
\begin{equation*}
v, \mathbb{R}[x] \times \mathbb{Q}_{\oplus_{q}} \rightarrow \mathbb{R}, \tag{12}
\end{equation*}
$$

called the evaluation. If $v(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$, then

$$
\begin{equation*}
v\left(\frac{\bar{m}_{q}}{\bar{n}_{q}}\right) \equiv \sum_{k=0}^{\infty} a_{k} \frac{\left(\bar{m}_{q}\right)^{k}}{\left(\bar{n}_{q}\right)^{k}} . \tag{13}
\end{equation*}
$$

Definition 5. For every power series $f_{n}(t)$, the q-Appell polynomials or Φ_{q} polynomials of degree ν and order n have the following generating function:

$$
\begin{equation*}
f_{n}(t) \mathrm{E}_{q}(x t)=\sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\{\nu\}_{q}!} \Phi_{\nu, q}^{(n)}(x) . \tag{14}
\end{equation*}
$$

For $x=0$ we get the $\Phi_{\nu, q}^{(n)}$ number of degree ν and order n.
Definition 6. For $f_{n}(t)$ of the form $h(t)^{n}$, we call the q-Appell polynomial Φ_{q} in (14) multiplicative.

Examples of multiplicative q-Appell polynomials are the two q-Appell polynomials in this article.

2. The NWA q-Apostol-Bernoulli polynomials.

Definition 7. The generalized NWA q-Apostol-Bernoulli polynomials $\mathcal{B}_{\text {NWA }, \lambda, \nu, q}^{(n)}(x)$ are defined by

$$
\begin{equation*}
\frac{t^{n}}{\left(\lambda \mathrm{E}_{q}(t)-1\right)^{n}} \mathrm{E}_{q}(x t)=\sum_{\nu=0}^{\infty} \frac{t^{\nu} \mathcal{B}_{\mathrm{NWA}, \lambda, \nu, q}^{(n)}(x)}{\{\nu\}_{q}!},|t+\log \lambda|<2 \pi . \tag{15}
\end{equation*}
$$

Notice that the exponent n is an integer.
Definition 8. A q-analogue of [10, (20) p. 381], the multiple q-power sum is defined by

$$
\begin{equation*}
s_{\mathrm{NWA}, \lambda, m, q}^{(l)}(n) \equiv \sum_{|\vec{j}|=l}\binom{l}{\vec{j}} \lambda^{k}\left(\overline{k_{q}}\right)^{m}, \tag{16}
\end{equation*}
$$

where $k \equiv j_{1}+2 j_{2}+\cdots+(n-1) j_{n-1}, \forall j_{i} \geq 0$.

Definition 9. A q-analogue of $[10$, (46) p. 386], the multiple alternating q-power sum is defined by

$$
\begin{equation*}
\sigma_{\mathrm{NWA}, \lambda, m, q}^{(l)}(n) \equiv(-1)^{l} \sum_{|\vec{j}|=l}\binom{l}{\vec{j}}(-\lambda)^{k}\left(\overline{k_{q}}\right)^{m} \tag{17}
\end{equation*}
$$

where $k \equiv j_{1}+2 j_{2}+\cdots+(n-1) j_{n-1}, \forall j_{i} \geq 0$.
Remark 1. For $l=1$, formulas (16) and (17) reduce to single sums, as will be seen in section 4 .

We now start rather abruptly with the theorems; we note that limits like $\lambda \rightarrow 1$ and $q \rightarrow 1$ can be taken anywhere in the paper, and also in the next one [6]; see the subsequent corollaries. Much care is needed in the proofs, since the Ward numbers need careful handling.
Theorem 2.1. A q-analogue of [10, p. 380], multiplication formula for q-Apostol-Bernoulli polynomials.

$$
\begin{equation*}
\mathcal{B}_{\mathrm{NWA}, \lambda, \nu, q}^{(n)}\left(\bar{m}_{q} x\right)=\frac{\left(\bar{m}_{q}\right)^{\nu}}{\left(\bar{m}_{q}\right)^{n}} \sum_{|\vec{j}|=n} \lambda^{k}\binom{n}{\vec{j}} \mathcal{B}_{\mathrm{NWA}, \lambda^{m}, \nu, q}^{(n)}\left(x \oplus_{q} \frac{\bar{k}_{q}}{\bar{m}_{q}}\right), \tag{18}
\end{equation*}
$$

where $k=j_{1}+2 j_{2}+\cdots+(m-1) j_{m-1}$, and $\frac{\bar{k}_{q}}{\bar{m}_{q}} \in \mathbb{Q}_{\oplus_{q}}$.
Proof. We use the well-known formula for a geometric sum.

$$
\begin{align*}
& \sum_{\nu=0}^{\infty} \mathcal{B}_{\mathrm{NWA}, \lambda, \nu, q}^{(n)}\left(\bar{m}_{q} x\right) \frac{t^{\nu}}{\{\nu\}_{q}!}=\frac{t^{n}}{\left(\lambda \mathrm{E}_{q}(t)-1\right)^{n}} \mathrm{E}_{q}\left(\bar{m}_{q} x t\right) \\
& =\frac{t^{n}}{\left(\lambda^{m} \mathrm{E}_{q}\left(\bar{m}_{q} t\right)-1\right)^{n}}\left(\sum_{i=0}^{m-1} \lambda^{i} \mathrm{E}_{q}\left(\bar{i}_{q} t\right)\right)^{n} \mathrm{E}_{q}\left(\bar{m}_{q} x t\right) \\
& \stackrel{\operatorname{by}(7)}{=}\left(\frac{t}{\left(\lambda^{m} \mathrm{E}_{q}\left(\bar{m}_{q} t\right)-1\right)}\right)^{n} \sum_{|\vec{j}|=n}\binom{n}{\vec{j}} \lambda^{k} \mathrm{E}_{q}\left(\left(x \oplus_{q} \frac{\bar{k}_{q}}{\bar{m}_{q}}\right) \bar{m}_{q} t\right) \tag{19}\\
& =\sum_{\nu=0}^{\infty}\left(\frac{\left(\bar{m}_{q}\right)^{\nu}}{\left(\bar{m}_{q}\right)^{n}} \sum_{|\vec{j}|=n}\binom{n}{\vec{j}} \lambda^{k} \mathcal{B}_{\mathrm{NWA}, \lambda^{m}, \nu, q}^{(n)}\left(x \oplus_{q} \frac{\bar{k}_{q}}{\bar{m}_{q}}\right)\right) \frac{t^{\nu}}{\{\nu\}_{q}!} .
\end{align*}
$$

The theorem follows by equating the coefficients of $\frac{t^{\nu}}{\{\nu\}_{q}!}$.
Corollary 2.2. A q-analogue of [10, p. 381]:

$$
\begin{equation*}
\mathcal{B}_{\mathrm{NWA}, \lambda, \nu, q}\left(\bar{m}_{q} x\right)=\frac{\left(\bar{m}_{q}\right)^{\nu}}{m} \sum_{j=0}^{m-1} \lambda^{j} \mathcal{B}_{\mathrm{NWA}, \lambda^{m}, \nu, q}\left(x \oplus_{q} \frac{\bar{j}_{q}}{\bar{m}_{q}}\right) \tag{20}
\end{equation*}
$$

Corollary 2.3. A q-analogue of Carlitz formula [2], [10, p. 381]

$$
\begin{equation*}
\mathcal{B}_{\mathrm{NWA}, \nu, q}^{(n)}\left(\bar{m}_{q} x\right)=\frac{\left(\bar{m}_{q}\right)^{\nu}}{\left(\bar{m}_{q}\right)^{n}} \sum_{|\vec{j}|=n}\binom{n}{\vec{j}} \mathcal{B}_{\mathrm{NWA}, \nu, q}^{(n)}\left(x \oplus_{q} \frac{\bar{k}_{q}}{\bar{m}_{q}}\right), \tag{21}
\end{equation*}
$$

where $k=j_{1}+2 j_{2}+\cdots+(m-1) j_{m-1}$, and $\frac{\bar{k}_{q}}{\bar{m}_{q}} \in \mathbb{Q}_{\oplus_{q}}$.
Theorem 2.4. A formula for a multiple q-power sum, a q-analogue of [10, (25) p. 382]:

$$
\begin{align*}
& s_{\mathrm{NWA}, \lambda, m, q}^{(l)}(n)=\sum_{j=0}^{l}\binom{l}{j} \frac{(-1)^{l-j} \lambda^{(n-1) j+l}}{\{m+1\}_{l, q}} \tag{22}\\
& \quad \times\left(\sum_{k=0}^{m+l}\binom{m+l}{k}_{q} \mathcal{B}_{\mathrm{NWA}, \lambda, k, q}^{(j)}\left(\overline{(n-1) j+l}{ }_{q}\right) \mathcal{B}_{\mathrm{NWA}, \lambda, m+l-k, q}^{(l-j)}\right) .
\end{align*}
$$

Proof. We use the generating function technique. Put $k=j_{1}+2 j_{2}+\cdots+$ $(n-1) j_{n-1}$. It is assumed that $j_{i} \geq 0,1 \leq i \leq n-1$, zeros are neglected.

$$
\left.\begin{array}{l}
\sum_{\nu=0}^{\infty} s_{\mathrm{NWA}, \lambda, \nu, q}^{(l)}(n) \frac{t^{\nu}}{\{\nu\}_{q}!} \stackrel{\operatorname{by}(16)}{=} \sum_{\nu=0}^{\infty}\left(\sum_{|\vec{j}|=l}\binom{l}{\vec{j}} \lambda^{k}\left(\bar{k}_{q}\right)^{\nu}\right) \frac{t^{\nu}}{\{\nu\}_{q}!} \\
\left.\stackrel{\operatorname{by}(16)}{=}\left(\lambda \mathrm{E}_{q}(t)+\lambda^{2} \mathrm{E}_{q}\left(\overline{2}_{q} t\right)+\cdots+\lambda^{n-1} \mathrm{E}_{q}(\overline{n-1})_{q} t\right)\right)^{l} \\
=\left(\frac{\lambda^{n} \mathrm{E}_{q}\left(\bar{n}_{q} t\right)}{\lambda \mathrm{E}_{q}(t)-1}-\frac{\lambda \mathrm{E}_{q}(t)}{\lambda \mathrm{E}_{q}(t)-1}\right)^{l} \\
=\sum_{j=0}^{l}\binom{l}{j}(-1)^{l-j}\left(\frac{\lambda^{n} \mathrm{E}_{q}\left(\bar{n}_{q} t\right)}{\lambda \mathrm{E}_{q}(t)-1}\right)^{j}\left(\frac{\lambda \mathrm{E}_{q}(t)}{\lambda \mathrm{E}_{q}(t)-1}\right)^{l-j} \\
\stackrel{\operatorname{by}(7)}{=} t^{-l} \sum_{j=0}^{l}\binom{l}{j}(-1)^{l-j} \lambda^{(n-1) j+l} \sum_{k=0}^{\infty} \mathcal{B}_{\mathrm{NWA}, \lambda, k, q}^{(j)}(\overline{(n-1) j+l} \\
q
\end{array}\right) \frac{t^{k}}{\{k\}_{q}!}
$$

The theorem follows by equating the coefficients of $\frac{t^{\nu}}{\{\nu\}_{q}!}$.

Corollary 2.5. A q-analogue of $[10,(26)$ p. 382]: The generating function for $s_{\mathrm{NWA}, \lambda, \nu, q}^{(l)}(n)$ is

$$
\begin{align*}
& \sum_{\nu=0}^{\infty} s_{\mathrm{NWA}, \lambda, \nu, q}^{(l)}(n) \frac{t^{\nu}}{\{\nu\}_{q}!}=\left(\frac{\lambda^{n} \mathrm{E}_{q}\left(\bar{n}_{q} t\right)}{\lambda \mathrm{E}_{q}(t)-1}-\frac{\lambda \mathrm{E}_{q}(t)}{\lambda \mathrm{E}_{q}(t)-1}\right)^{l} \tag{24}\\
& =\left(\lambda \mathrm{E}_{q}(t)+\lambda^{2} \mathrm{E}_{q}\left(\overline{2}_{q} t\right)+\cdots+\lambda^{n-1} \mathrm{E}_{q}\left(\overline{n-1}_{q} t\right)\right)^{l}
\end{align*}
$$

Theorem 2.6. A recurrence relation for q-Apostol-Bernoulli numbers, a q-analogue of [10, (32) p. 384].

$$
\begin{equation*}
\left(\bar{m}_{q}\right)^{l} \mathcal{B}_{\mathrm{NWA}, \lambda, n, q}^{(l)}=\sum_{j=0}^{n}\binom{n}{j}_{q} \frac{\left(\bar{m}_{q}\right)^{n}}{\left(\bar{m}_{q}\right)^{n-j}} \mathcal{B}_{\mathrm{NWA}, \lambda^{m}, j, q}^{(l)} s_{\mathrm{NWA}, \lambda, n-j, q}^{(l)}(m) \tag{25}
\end{equation*}
$$

where $k=j_{1}+2 j_{2}+\cdots+(m-1) j_{m-1}$.
Proof. We use the definition of q-Appell numbers as q-Appell polynomial at $x=0$.

$$
\begin{align*}
& \left(\bar{m}_{q}\right)^{l} \mathcal{B}_{\mathrm{NWA}, \lambda, n, q}^{(l)} \stackrel{\mathrm{by}(18)}{=}\left(\bar{m}_{q}\right)^{n} \sum_{|\vec{\nu}|=l} \lambda^{k}\binom{l}{\vec{\nu}} \mathcal{B}_{\mathrm{NWA}, \lambda^{m}, n, q}^{(l)}\left(\frac{\bar{k}_{q}}{\bar{m}_{q}}\right) \\
& =\left(\bar{m}_{q}\right)^{n} \sum_{|\vec{\nu}|=l} \lambda^{k}\binom{l}{\vec{\nu}} \sum_{j=0}^{n}\binom{n}{j}_{q} \mathcal{B}_{\mathrm{NWA}, \lambda^{m}, j, q}^{(l)}\left(\frac{\bar{k}_{q}}{\bar{m}_{q}}\right)^{n-j} \tag{26}\\
& =\sum_{j=0}^{n}\binom{n}{j}_{q} \frac{\left(\bar{m}_{q}\right)^{n}}{\left(\bar{m}_{q}\right)^{n-j}} \mathcal{B}_{\mathrm{NWA}, \lambda^{m}, j, q}^{(l)} \sum_{|\vec{\nu}|=l} \lambda^{k}\binom{l}{\vec{\nu}}\left(\bar{k}_{q}\right)^{n-j} \stackrel{\mathrm{by}(16)}{=} \mathrm{LHS} .
\end{align*}
$$

3. The NWA \boldsymbol{q}-Apostol-Euler polynomials. We start with some repetition from [3]:

Definition 10. The generating function for the first q-Euler polynomials of degree ν and order $n, \mathrm{~F}_{\mathrm{NWA}, \nu, q}^{(n)}(x)$, is given by

$$
\begin{equation*}
\frac{2^{n} \mathrm{E}_{q}(x t)}{\left(\mathrm{E}_{q}(t)+1\right)^{n}}=\sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\{\nu\}_{q}!} \mathrm{F}_{\mathrm{NWA}, \nu, q}^{(n)}(x),|t|<\pi \tag{27}
\end{equation*}
$$

Definition 11. The generalized NWA q-Apostol-Euler polynomials $\mathcal{F}_{\text {NWA, }, \lambda, \nu, q}^{(n)}(x)$ are defined by

$$
\begin{equation*}
\frac{2^{n}}{\left(\lambda \mathrm{E}_{q}(t)+1\right)^{n}} \mathrm{E}_{q}(x t)=\sum_{\nu=0}^{\infty} \frac{t^{\nu} \mathcal{F}_{\mathrm{NWA}, \lambda, \nu, q}^{(n)}(x)}{\{\nu\}_{q}!},|t+\log \lambda|<\pi \tag{28}
\end{equation*}
$$

Theorem 3.1. A q-analogue of $[10,(37)$ p. 385], first multiplication formula for q-Apostol-Euler polynomials.

$$
\begin{equation*}
\mathcal{F}_{\mathrm{NWA}, \lambda, \nu, q}^{(n)}\left(\bar{m}_{q} x\right)=\left(\bar{m}_{q}\right)^{\nu} \sum_{|\vec{j}|=n}(-\lambda)^{k}\binom{n}{\vec{j}} \mathcal{F}_{\mathrm{NWA}, \lambda^{m}, \nu, q}^{(n)}\left(x \oplus_{q} \frac{\bar{k}_{q}}{\bar{m}_{q}}\right) \tag{29}
\end{equation*}
$$

where $k=j_{1}+2 j_{2}+\cdots+(m-1) j_{m-1}, m$ odd.

Proof.

$$
\begin{align*}
& \sum_{\nu=0}^{\infty} \mathcal{F}_{\mathrm{NWA}, \lambda, \nu, q}^{(n)}\left(\bar{m}_{q} x\right) \frac{t^{\nu}}{\{\nu\}_{q}!}=\frac{2^{n}}{\left(\lambda \mathrm{E}_{q}(t)+1\right)^{n}} \mathrm{E}_{q}\left(\bar{m}_{q} x t\right) \\
& =\frac{2^{n}}{\left(\lambda^{m} \mathrm{E}_{q}\left(\bar{m}_{q} t\right)+1\right)^{n}}\left(\sum_{i=0}^{m-1}(-\lambda)^{i} \mathrm{E}_{q}\left(\bar{i}_{q} t\right)\right)^{n} \mathrm{E}_{q}\left(\bar{m}_{q} x t\right) \\
& =\left(\frac{2}{\left(\lambda^{m} \mathrm{E}_{q}\left(\bar{m}_{q} t\right)+1\right)}\right)^{n} \sum_{|\vec{j}|=n}\binom{n}{\vec{j}}(-\lambda)^{k} \mathrm{E}_{q}\left(\left(x \oplus_{q} \frac{\bar{k}_{q}}{\bar{m}_{q}}\right) \bar{m}_{q} t\right) \tag{30}\\
& =\sum_{\nu=0}^{\infty}\left(\left(\bar{m}_{q}\right)^{\nu} \sum_{|\vec{j}|=n}\binom{n}{\vec{j}}(-\lambda)^{k} \mathcal{F}_{\mathrm{NWA}, \lambda^{m}, \nu, q}^{(n)}\left(x \oplus_{q} \frac{\bar{k}_{q}}{\bar{m}_{q}}\right)\right) \frac{t^{\nu}}{\{\nu\}_{q}!} .
\end{align*}
$$

The theorem follows by equating the coefficients of $\frac{t^{\nu}}{\{\nu\}_{q}!}$.
Theorem 3.2. A q-analogue of [10, (38) p. 385], second multiplication formula for q-Apostol-Euler polynomials.

$$
\begin{align*}
& \mathcal{F}_{\mathrm{NWA}, \lambda, \nu, q}^{(n)}\left(\bar{m}_{q} x\right) \\
& =\frac{(-2)^{n}\left(\bar{m}_{q}\right)^{\nu+n}}{\{\nu+1\}_{n, q}\left(\bar{m}_{q}\right)^{n}} \sum_{|\vec{j}|=n}\left(-\lambda^{k}\right)\binom{n}{\vec{j}} \mathcal{B}_{\mathrm{NWA}, \lambda^{m}, \nu+n, q}^{(n)}\left(x \oplus_{q} \frac{\bar{k}_{q}}{\bar{m}_{q}}\right), \tag{31}
\end{align*}
$$

where $k=j_{1}+2 j_{2}+\cdots+(m-1) j_{m-1}, m$ even.
Corollary 3.3. A q-analogue of $[10$, (43) p. 386]:

$$
\begin{align*}
& \mathcal{F}_{\mathrm{NWA}, \lambda, \nu, q}\left(\bar{m}_{q} x\right)= \\
& =\left\{\begin{array}{l}
\left(\bar{m}_{q}\right)^{\nu} \sum_{j=0}^{m-1}(-\lambda)^{j} \mathcal{F}_{\mathrm{NWA}, \lambda^{m}, \nu, q}\left(x \oplus_{q} \frac{\bar{j}_{q}}{\bar{m}_{q}}\right), m \text { odd } \\
\frac{-2\left(\bar{m}_{q}\right)^{\nu+1}}{m\{\nu+1\}_{q}} \sum_{j=0}^{m-1}(-\lambda)^{j} \mathcal{B}_{\mathrm{NWA}, \lambda^{m}, \nu+1, q}\left(x \oplus_{q} \frac{\bar{j}_{q}}{\bar{m}_{q}}\right), m \text { even }
\end{array}\right. \tag{32}
\end{align*}
$$

where $\frac{\bar{j}_{q}}{\bar{m}_{q}} \in \mathbb{Q}_{\oplus_{q}}$.

Theorem 3.4. A formula for a multiple alternating q-power sum, a qanalogue of $[10,(51)$ p. 387]:

$$
\begin{align*}
& \sigma_{\mathrm{NWA}, \lambda, m, q}^{(l)}(n)=2^{-l} \sum_{j=0}^{l}\binom{l}{j} \frac{(-1)^{j n} \lambda^{(n-1) j+l}}{\{m+1\}_{l, q}} \tag{33}\\
& \times\left(\sum_{k=0}^{m+l}\binom{m+l}{k}_{q} \mathcal{F}_{\mathrm{NWA}, \lambda, k, q}^{(j)}\left(\overline{(n-1) j+l}{ }_{q}\right) \mathcal{F}_{\mathrm{NWA}, \lambda, n+l-k, k, q}^{(l-j)}\right) .
\end{align*}
$$

Proof. We use the generating function technique. Put $k=j_{1}+2 j_{2}+\cdots+$ $(n-1) j_{n-1}$. It is assumed that $j_{i} \geq 0,1 \leq i \leq n-1$.

$$
\left.\begin{array}{l}
\sum_{\nu=0}^{\infty} \sigma_{\mathrm{NWA}, \lambda, \nu, q}^{(l)}(n) \frac{t^{\nu}}{\{\nu\}_{q}!} \stackrel{\operatorname{by}(17)}{=} \sum_{\nu=0}^{\infty}\left(\sum_{|\vec{j}|=l}\binom{l}{\vec{j}}(-1)^{l}(-\lambda)^{k}\left(\overline{k_{q}}\right)^{\nu}\right) \frac{t^{\nu}}{\{\nu\}_{q}!} \\
\stackrel{\operatorname{by}(17)}{=}(-1)^{l} \sum_{|\vec{j}|=l}\binom{l}{\vec{j}}\left(-\lambda \mathrm{E}_{q}(t)\right)^{k} \\
\left.=\left(\lambda \mathrm{E}_{q}(t)-\lambda^{2} \mathrm{E}_{q}\left(\overline{2}_{q} t\right)+\cdots+(-1)^{n} \lambda^{n-1} \mathrm{E}_{q}\left(\overline{n-1_{q}} t\right)\right)\right)^{l} \\
=\left(\frac{(-\lambda)^{n} \mathrm{E}_{q}\left(\bar{n}_{q} t\right)}{\lambda \mathrm{E}_{q}(t)+1}+\frac{\lambda \mathrm{E}_{q}(t)}{\lambda \mathrm{E}_{q}(t)+1}\right)^{l} \\
=\sum_{j=0}^{l}\binom{l}{j}(-1)^{l-j}\left(\frac{(-\lambda)^{n} \mathrm{E}_{q}\left(\bar{n}_{q} t\right)}{\lambda \mathrm{E}_{q}(t)+1}\right)^{j}\left(\frac{\lambda \mathrm{E}_{q}(t)}{\lambda \mathrm{E}_{q}(t)+1}\right)^{l-j} \\
\operatorname{byy}(7) \\
= \\
2^{-l} \sum_{j=0}^{l}\binom{l}{j}(-1)^{j n} \lambda^{(n-1) j+l} \sum_{k=0}^{\infty} \mathcal{F}_{\mathrm{NWA}, \lambda, k, q}^{(j)}(\overline{(n-1) j+l} \\
q
\end{array}\right) \frac{t^{k}}{\{k\}_{q}!} .
$$

The theorem follows by equating the coefficients of $\frac{t^{\nu}}{\{\nu\}_{q}!}$.
Corollary 3.5. A q-analogue of $[10,(52)$ p. 387]: The generating function for $\sigma_{\mathrm{NWA}, \lambda, \nu, q}^{(l)}(n)$ is

$$
\begin{align*}
& \sum_{\nu=0}^{\infty} \sigma_{\mathrm{NWA}, \lambda, \nu, q}^{(l)}(n) \frac{t^{\nu}}{\{\nu\}_{q}!}=\left(\frac{(-\lambda)^{n} \mathrm{E}_{q}\left(\bar{n}_{q} t\right)}{\lambda \mathrm{E}_{q}(t)-1}+\frac{\lambda \mathrm{E}_{q}(t)}{\lambda \mathrm{E}_{q}(t)+1}\right)^{l} \tag{34}\\
& =\left(\lambda \mathrm{E}_{q}(t)-\lambda^{2} \mathrm{E}_{q}\left(\overline{2}_{q} t\right)+\cdots+(-1)^{n} \lambda^{n-1} \mathrm{E}_{q}\left(\overline{n-1}{ }_{q} t\right)\right)^{l} .
\end{align*}
$$

Theorem 3.6. A q-analogue of $[10, \mathrm{p} .389]$. For m odd, we have the following recurrence relation for q-Apostol-Euler numbers.

$$
\begin{equation*}
\mathcal{F}_{\mathrm{NWA}, \lambda, n, q}^{(l)}=(-1)^{l} \sum_{j=0}^{n}\binom{n}{j}_{q} \frac{\left(\bar{m}_{q}\right)^{n}}{\left(\bar{m}_{q}\right)^{n-j}} \mathcal{F}_{\mathrm{NWA}, \lambda^{m}, j, q}^{(l)} \sigma_{\mathrm{NWA}, \lambda, n-j, q}^{(l)}(m), \tag{35}
\end{equation*}
$$

where $k=j_{1}+2 j_{2}+\cdots+(m-1) j_{m-1}$.
Proof.

$$
\begin{align*}
& \mathcal{F}_{\mathrm{NWA}, \lambda, n, q}^{(l)} \stackrel{\operatorname{by}(29)}{=}\left(\bar{m}_{q}\right)^{n} \sum_{\mid \overrightarrow{\mid \overrightarrow{\mid}}=l}(-\lambda)^{k}\binom{l}{\vec{\nu}} \mathfrak{F}_{\mathrm{NWA}, \lambda^{m}, n, q}^{(l)}\left(\frac{\bar{k}_{q}}{\bar{m}_{q}}\right) \\
& =\left(\bar{m}_{q}\right)^{n} \sum_{|\vec{\nu}|=l}(-\lambda)^{k}\binom{l}{\vec{\nu}} \sum_{j=0}^{n}\binom{n}{j}_{q} \mathfrak{F}_{\mathrm{NWA}, \lambda^{m}, j, q}^{(l)}\left(\frac{\bar{k}_{q}}{\bar{m}_{q}}\right)^{n-j} \tag{36}\\
& =\sum_{j=0}^{n}\binom{n}{j}_{q} \frac{\left(\bar{m}_{q}\right)^{n}}{\left(\bar{m}_{q}\right)^{n-j}} \mathcal{F}_{\mathrm{NWA}, \lambda^{m}, j, q}^{(l)} \sum_{|\vec{\nu}|=l}(-\lambda)^{k}\binom{l}{\vec{\nu}}_{q}\left(\bar{k}_{q}\right)^{n-j} \stackrel{\mathrm{by}(17)}{=} \text { LHS. }
\end{align*}
$$

4. Single formulas for Apostol \boldsymbol{q}-power sums. In order to keep the same notation as in [3], we make a slight change from [12, p. 309]. The following definitions are special cases of the q-power sums in section 2 .

Definition 12. Almost a q-analogue of [12, p. 309], the q-power sum and the alternate q-power sum (with respect to λ), are defined by
(37) $s_{\mathrm{NWA}, \lambda, m, q}(n) \equiv \sum_{k=0}^{n-1} \lambda^{k}\left(\bar{k}_{q}\right)^{m}$ and $\sigma_{\mathrm{NWA}, \lambda, m, q}(n) \equiv \sum_{k=0}^{n-1}(-1)^{k} \lambda^{k}\left(\bar{k}_{q}\right)^{m}$.

Their respective generating functions are

$$
\begin{equation*}
\sum_{m=0}^{\infty} s_{\mathrm{NWA}, \lambda, m, q}(n) \frac{t^{m}}{\{m\}_{q}!}=\frac{\lambda^{n} \mathrm{E}_{q}\left(\bar{n}_{q} t\right)-1}{\lambda \mathrm{E}_{q}(t)-1} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{m=0}^{\infty} \sigma_{\mathrm{NWA}, \lambda, m, q}(n) \frac{t^{m}}{\{m\}_{q}!}=\frac{(-1)^{n+1} \lambda^{n} \mathrm{E}_{q}\left(\bar{n}_{q} t\right)+1}{\lambda \mathrm{E}_{q}(t)+1} \tag{39}
\end{equation*}
$$

Proof. Let us prove (38). We have

$$
\sum_{m=0}^{\infty} s_{\mathrm{NWA}, \lambda, m, q}(n) \frac{t^{m}}{\{m\}_{q}!}=\sum_{m=0}^{\infty} \sum_{k=0}^{n-1} \lambda^{k} \frac{\left(\bar{k}_{q} t\right)^{m}}{\{m\}_{q}!} \stackrel{\operatorname{by}(6)}{=} \sum_{k=0}^{n-1} \lambda^{k}\left(\mathrm{E}_{q}(t)\right)^{k}=\mathrm{RHS}
$$

We have the following special cases:

$$
\begin{gather*}
s_{\mathrm{NWA}, \lambda, m, q}(1)=\sigma_{\mathrm{NWA}, \lambda, m, q}(1)=\delta_{0, m}, \tag{40}\\
s_{\mathrm{NWA}, \lambda, m, q}(2)=\delta_{0, m}+\lambda, \sigma_{\mathrm{NWA}, \lambda, m, q}(2)=\delta_{0, m}-\lambda . \tag{41}
\end{gather*}
$$

Theorem 4.1. A q-analogue of [12, p. 310], and extensions of [3, p. 121, 131]:

$$
\begin{align*}
s_{\mathrm{NWA}, \lambda, m, q}(n) & =\frac{\lambda^{n} \mathcal{B}_{\mathrm{NWA}, \lambda, m+1, q}\left(\bar{n}_{q}\right)-\mathcal{B}_{\mathrm{NWA}, \lambda, m+1, q}}{\{m+1\}_{q}} \tag{42}\\
\sigma_{\mathrm{NWA}, \lambda, m, q}(n) & =\frac{(-1)^{n+1} \lambda^{n} \mathcal{F}_{\mathrm{NWA}, \lambda, m, q}\left(\bar{n}_{q}\right)-\mathcal{F}_{\mathrm{NWA}, \lambda, m, q}}{2}
\end{align*}
$$

Theorem 4.2. A q-analogue of [12, (18), p. 311],

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k}_{q} \frac{\left(\bar{i}_{q}\right)^{k}}{i}\left(\bar{j}_{q}\right)^{n-k} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, k, q}\left(\bar{j}_{q} x\right) s_{\mathrm{NWA}, \lambda^{j}, n-k, q}(i) \\
& =\sum_{k=0}^{n}\binom{n}{k}_{q} \frac{\left(\bar{j}_{q}\right)^{k}}{j}\left(\bar{i}_{q}\right)^{n-k} \mathcal{B}_{\mathrm{NWA}, \lambda^{j}, k, q}\left(\overline{\bar{i}}_{q} x\right) s_{\mathrm{NWA}, \lambda^{i}, n-k, q}(j) \\
& =\frac{\left(\bar{i}_{q}\right)^{n}}{i} \sum_{m=0}^{i-1} \lambda^{j m} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, n, q}\left(\bar{j}_{q} x \oplus_{q} \frac{\overline{j m}_{q}}{\bar{i}_{q}}\right) \tag{44}\\
& =\frac{\left(\bar{j}_{q}\right)^{n}}{j} \sum_{m=0}^{j-1} \lambda^{i m} \mathcal{B}_{\mathrm{NWA}, \lambda^{j}, n, q}\left(\bar{i}_{q} x \oplus_{q} \frac{\overline{i m}_{q}}{\bar{j}_{q}}\right) .
\end{align*}
$$

Proof. Define the following function, symmetric in i and j.

$$
\begin{align*}
& f_{q}(t) \equiv \frac{t \mathrm{E}_{q}\left(\bar{j}_{q} x t\right)\left(\lambda^{i j} \mathrm{E}_{q}\left(\overline{i j}_{q} t\right)-1\right)}{\left(\lambda^{\mathrm{i}} \mathrm{E}_{q}\left(\bar{i}_{q} t\right)-1\right)\left(\lambda^{j} \mathrm{E}_{q}\left(\bar{j}_{q} t\right)-1\right)} \\
& =\left(\frac{\left(\bar{i}_{q} t{ }^{1} \mathrm{E}_{q} \overline{i j_{q}} x t\right)}{\lambda^{i} \mathrm{E}_{q}\left(\bar{i}_{q} t\right)-1}\right)\left(\frac{\lambda^{i j} \mathrm{E}_{q}\left(\bar{i}{ }_{q} t\right)-1}{\lambda^{j} \mathrm{E}_{q}\left(\bar{j}_{q} t\right)-1}\right) \frac{1}{i} . \tag{45}
\end{align*}
$$

By using the formula for a geometric sequence, we can expand $f_{q}(t)$ in two ways:

$$
\begin{aligned}
& f_{q}(t)=\left(\sum_{\nu=0}^{\infty} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, \nu, q}\left(\bar{j}_{q} x\right) \frac{\left(\bar{i}_{q} t\right)^{\nu}}{\{\nu\}_{q}!}\right)\left(\sum_{m=0}^{\infty} s_{\mathrm{NWA}, \lambda^{j}, m, q}(i) \frac{\left(\bar{j}_{q} t\right)^{m}}{\{m\}_{q}!}\right) \frac{1}{i} \\
& (46)=\frac{\left(\bar{i}_{q}\right)^{1} t}{\lambda^{1} \mathrm{E}_{q}\left(\bar{i}_{q} t\right)-1} \sum_{m=0}^{i-1} \lambda^{j m}\left(\mathrm{E}_{q}\left(\bar{j}_{q} x \oplus_{q} \frac{\overline{j m}_{q}}{\bar{i}_{q}}\right) \bar{i}_{q} t\right) \frac{1}{i} \\
& =\sum_{\nu=0}^{\infty}\left(\frac{\left(\bar{i}_{q}\right)^{\nu}}{i} \sum_{m=0}^{i-1} \lambda^{j m} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, \nu, q}\left(\bar{j}_{q} x \oplus_{q} \frac{\overline{j m}_{q}}{\bar{i}_{q}}\right)\right) \frac{t^{\nu}}{\{\nu\}_{q}!} .
\end{aligned}
$$

The theorem follows by equating the coefficients of $\frac{t^{\nu}}{\{\nu\}_{q}!}$ and using the symmetry in i and j of $f_{q}(t)$.

Corollary 4.3. A q-analogue of [12, (19), p. 311],

$$
\begin{align*}
& \mathcal{B}_{\mathrm{NWA}, \lambda, n, q}\left(\bar{i}_{q} x\right)=\sum_{k=0}^{n}\binom{n}{k}_{q} \frac{\left(\bar{i}_{q}\right)^{k}}{i} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, k, q}(x) s_{\mathrm{NWA}, \lambda, n-k, q}(i) \\
& =\frac{\left(\bar{i}_{q}\right)^{n}}{i} \sum_{m=0}^{i-1} \lambda^{m} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, n, q}\left(x \oplus_{q} \frac{\bar{m}_{q}}{\bar{i}_{q}}\right) . \tag{47}
\end{align*}
$$

Proof. Put $j=1$ in (44) and use (41).
Remark 2. This proves formula (20) again.
Corollary 4.4. A q-analogue of [12, (20), p. 311],

$$
\begin{align*}
& \sum_{m=0}^{1} \lambda^{i m} \mathcal{B}_{\mathrm{NWA}, \lambda^{2}, n, q}\left(\bar{i}_{q} x \oplus_{q} \frac{{\overline{i m_{q}}}_{\overline{2}_{q}}}{}\right. \\
& =\frac{2}{\left(\overline{\bar{q}}_{q}\right)^{n}} \sum_{k=0}^{n}\binom{n}{k}_{q} \frac{\left(\bar{i}_{q}\right)^{k}}{i}\left(\overline{2}_{q}\right)^{n-k} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, k, q}\left(\overline{2}_{q} x\right) s_{\mathrm{NWA}, \lambda^{2}, n-k, q}(i) \tag{48}\\
& =\frac{2}{\left(\overline{2}_{q}\right)^{n}} \frac{\left(\overline{(}_{q}\right)^{n}}{i} \sum_{m=0}^{i-1} \lambda^{2 m} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, n, q}\left(\overline{2}_{q} x \oplus_{q} \frac{\overline{2 m}_{q}}{\bar{i}_{q}}\right) .
\end{align*}
$$

Proof. Put $j=2$ in (44) and multiply by $\frac{2}{\left(2_{q}\right)^{n}}$.

Moreover, we have

$$
\begin{equation*}
\mathcal{B}_{\mathrm{NWA}, \lambda, n, q}(x)=\frac{\left(\overline{2}_{q}\right)^{n}}{2} \sum_{m=0}^{1} \lambda^{m} \mathcal{B}_{\mathrm{NWA}, \lambda^{2}, n, q}\left(\frac{x}{\overline{\overline{2}}_{q}} \oplus_{q} \frac{\bar{m}_{q}}{\overline{2}_{q}}\right) . \tag{49}
\end{equation*}
$$

Proof. Put $i=2$ in (47) and replace x by $\frac{x}{\overline{2}_{q}}$.

For $\lambda=1$ and $x=0$, this reduces to

$$
\begin{equation*}
\mathrm{B}_{\mathrm{NWA}, n, q}\left(\frac{1}{\overline{2}_{q}}\right)=\left(\frac{2}{\left(\overline{2}_{q}\right)^{n}}-1\right) \mathrm{B}_{\mathrm{NWA}, n, q} . \tag{50}
\end{equation*}
$$

Theorem 4.5. A q-analogue of [12, (22) p. 312]. Assume that i and j are either both odd, or both even, then we have

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k}_{q}\left(\bar{i}_{q}\right)^{k}\left(\bar{j}_{q}\right)^{n-k} \mathcal{F}_{\mathrm{NWA}, \lambda^{i}, k, q}\left(\bar{j}_{q} x\right) \sigma_{\mathrm{NWA}, \lambda^{j}, n-k, q}(i) \\
& =\sum_{k=0}^{n}\binom{n}{k}_{q}\left(\bar{j}_{q}\right)^{k}\left(\bar{i}_{q}\right)^{n-k} \mathcal{F}_{\mathrm{NWA}, \lambda^{j}, k, q}\left(\bar{i}_{q} x\right) \sigma_{\mathrm{NWA}, \lambda^{j}, n-k, q}(i) \\
& =\left(\bar{i}_{q}\right)^{n} \sum_{m=0}^{i-1} \lambda^{j m}(-1)^{m} \mathcal{F}_{\mathrm{NWA}, \lambda^{i}, n, q}\left(\bar{j}_{q} x \oplus_{q} \frac{\overline{j m}_{q}}{\bar{i}_{q}}\right) \tag{51}\\
& =\left(\bar{j}_{q}\right)^{n} \sum_{m=0}^{j-1} \lambda^{i m}(-1)^{m} \mathcal{F}_{\mathrm{NWA}, \lambda^{j}, n, q}\left(\bar{i}_{q} x \oplus_{q} \frac{\overline{i m}_{q}}{\bar{j}_{q}}\right) .
\end{align*}
$$

Proof. Define the following symmetric function

$$
\begin{align*}
& f_{q}(t) \equiv \frac{\mathrm{E}_{q}\left(\overline{i j}_{q} x t\right)\left((-1)^{i+1} \lambda^{i j} \mathrm{E}_{q}\left(\overline{i j}_{q} t\right)+1\right)}{\left(\lambda^{i} \mathrm{E}_{q}\left(\bar{i}_{q} t\right)+1\right)\left(\lambda^{j} \mathrm{E}_{q}\left(\bar{j}_{q} t\right)+1\right)} \\
& =\frac{1}{2}\left(\frac{2 \mathrm{E}_{q}\left(\overline{i j}_{q} x t\right)}{\lambda^{i} \mathrm{E}_{q}\left(\bar{i}_{q} t\right)+1}\right)\left(\frac{(-1)^{i+1} \lambda^{i j} \mathrm{E}_{q}\left(\overline{i j}_{q} t\right)+1}{\lambda^{j} \mathrm{E}_{q}\left(\bar{j}_{q} t\right)+1}\right) . \tag{52}
\end{align*}
$$

By using the formula for a geometric sequence, we can expand $f_{q}(t)$ in two ways:

$$
\begin{align*}
& f_{q}(t)=\frac{1}{2}\left(\sum_{\nu=0}^{\infty} \mathcal{F}_{\mathrm{NWA}, \lambda^{i}, \nu, q}\left(\bar{j}_{q} x\right) \frac{\left(\bar{i}_{q} t\right)^{\nu}}{\{\nu\}_{q}!}\right)\left(\sum_{m=0}^{\infty} \sigma_{\mathrm{NWA}, \lambda^{j}, m, q}(i) \frac{\left(\bar{j}_{q} t\right)^{m}}{\{m\}_{q}!}\right) \\
& =\frac{1}{\lambda^{i} \mathrm{E}_{q}\left(\bar{i}_{q} t\right)+1} \sum_{m=0}^{i-1}(-1)^{m} \lambda^{j m} \mathrm{E}_{q}\left(\left(\bar{j}_{q} x \oplus_{q} \frac{\overline{j m}_{q}}{\bar{i}_{q}}\right) \bar{i}_{q} t\right) \tag{53}\\
& =\frac{1}{2} \sum_{\nu=0}^{\infty}\left(\left(\bar{i}_{q}\right)^{\nu} \sum_{m=0}^{i-1}(-1)^{m} \lambda^{j m} \mathcal{F}_{\mathrm{NWA}, \lambda^{i}, \nu, q}\left(\bar{j}_{q} x \oplus_{q} \frac{\overline{j m}_{q}}{\bar{i}_{q}}\right)\right) \frac{t^{\nu}}{\{\nu\}_{q}!} .
\end{align*}
$$

The theorem follows by equating the coefficients of $\frac{t^{\nu}}{\{\nu\}_{q}!}$ and using the symmetry in i and j of $f_{q}(t)$.

Theorem 4.6. (A q-analogue of [12, (24) p. 313]) For i odd we have

$$
\begin{align*}
& \mathcal{F}_{\mathrm{NWA}, \lambda, n, q}\left(\bar{i}_{q} x\right)=\sum_{k=0}^{n}\binom{n}{k}_{q}\left(\bar{i}_{q}\right)^{k} \mathcal{F}_{\mathrm{NWA}, \lambda^{i}, k, q}(x) \sigma_{\mathrm{NWA}, \lambda, n-k, q}(i) \\
& =\left(\bar{i}_{q}\right)^{n} \sum_{m=0}^{i-1}(-\lambda)^{m} \mathcal{F}_{\mathrm{NWA}, \lambda^{i}, n, q}\left(x \oplus_{q} \frac{\overline{\bar{m}}_{q}}{\bar{i}_{q}}\right) . \tag{54}
\end{align*}
$$

(A q-analogue of [12, (25) p. 313]) For i even,

$$
\begin{align*}
& \sum_{m=0}^{1} \lambda^{i m}(-1)^{m} \mathcal{F}_{\mathrm{NWA}, \lambda^{2}, n, q}\left(\bar{i}_{q} x \oplus_{q} \frac{\overline{i m}_{q}}{\overline{2}_{q}}\right) \\
& =\frac{1}{\left(\overline{2}_{q}\right)^{n}} \sum_{k=0}^{n}\binom{n}{k}_{q}\left(\bar{i}_{q}\right)^{k}\left(\overline{2}_{q}\right)^{n-k} \mathcal{F}_{\mathrm{NWA}, \lambda^{i}, k, q}\left(\overline{2}_{q} x\right) \sigma_{\mathrm{NWA}, \lambda^{2}, n-k, q}(i) \tag{55}\\
& =\frac{\left(\bar{i}_{q}\right)^{n}}{\left(\overline{2}_{q}\right)^{n}} \sum_{m=0}^{i-1}(-1)^{m} \lambda^{2 m} \mathcal{F}_{\mathrm{NWA}, \lambda^{i}, n, q}\left(\overline{2}_{q} x \oplus_{q} \frac{\overline{2 m}_{q}}{\bar{i}_{q}}\right) .
\end{align*}
$$

Proof. Put $j=1$ or 2 in (51), and divide by $\left(\overline{2}_{q}\right)^{n}$.
Remark 3. This proves the first part of formula (32) again.
5. Apostol \boldsymbol{q}-power sums, mixed formulas. We now turn to mixed formulas, which contain polynomials of both kinds.

Theorem 5.1. A q-analogue of $[12,(26)$ p. 313]. If i is even then

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k}_{q} \frac{\left(\bar{i}_{q}\right)^{k}}{i}\left(\bar{j}_{q}\right)^{n-k} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, k, q}\left(\bar{j}_{q} x\right) \sigma_{\mathrm{NWA}, \lambda^{j}, n-k, q}(i) \\
& =-\frac{\{n\}_{q}}{2} \sum_{k=0}^{n-1}\binom{n-1}{k}_{q}\left(\bar{j}_{q}\right)^{k}\left(\bar{i}_{q}\right)^{n-k-1} \\
& \quad \times \mathcal{F}_{\mathrm{NWA}, \lambda^{j}, k, q}\left(\bar{i}_{q} x\right) s_{\mathrm{NWA}, \lambda^{i}, n-k-1, q}(j) \tag{56}\\
& = \\
& =\frac{\left(\bar{i}_{q}\right)^{n}}{i} \sum_{m=0}^{i-1}(-1)^{m} \lambda^{j m} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, n, q}\left(\bar{j}_{q} x \oplus_{q} \frac{\overline{j_{m}}}{\bar{i}_{q}}\right) \\
& = \\
& -\frac{\{n\}_{q}}{2}\left(\bar{j}_{q}\right)^{n-1} \sum_{m=0}^{j-1} \lambda^{i m} \mathcal{F}_{\mathrm{NWA}, \lambda^{j}, n-1, q}\left(\bar{i}_{q} x \oplus_{q} \frac{\overline{\overline{i m}_{q}}}{\bar{j}_{q}}\right) .
\end{align*}
$$

Proof. Define the following function

$$
\begin{align*}
& f_{q}(t) \equiv \frac{t \mathrm{E}_{q}\left(\overline{i j}_{q} x t\right)\left((-1)^{i+1} \lambda^{i j} \mathrm{E}_{q}\left(\overline{i j}_{q} t\right)+1\right)}{\left.\left(\lambda^{i} \mathrm{E}_{q} \overline{\bar{i}}_{q} t\right)-1\right)\left(\lambda^{j} \mathrm{E}_{q}\left(\bar{j}_{q} t\right)+1\right)} \\
& =\left(\frac{\left(\bar{i}_{q} t\right)^{1} \mathrm{E}_{q}\left(\overline{i j_{q}} x t\right)}{\lambda^{2} \mathrm{E}_{q}\left(\bar{i}_{q} t\right)-1}\right)\left(\frac{(-1)^{i+1} \lambda^{i j} \mathrm{E}_{q}\left(\bar{i} \bar{j}_{q} t\right)+1}{\lambda^{j} \mathrm{E}_{q}\left(\bar{j}_{q} t\right)+1}\right) \frac{1}{i} . \tag{57}
\end{align*}
$$

By using the formula for a geometric sequence, we can expand $f_{q}(t)$ in two ways:

$$
\begin{gathered}
f_{q}(t)=\left(\sum_{\nu=0}^{\infty} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, \nu, q}\left(\bar{j}_{q} x\right) \frac{\left(\bar{i}_{q} t\right)^{\nu}}{\{\nu\}_{q}!}\right)\left(\sum_{m=0}^{\infty} \sigma_{\mathrm{NWA}, \lambda^{j}, m, q}(i) \frac{\left(\bar{j}_{q} t\right)^{m}}{\{m\}_{q}!}\right) \frac{1}{i} \\
(58)=\frac{\left(\bar{i}_{q}\right)^{1} t}{\lambda^{i} \mathrm{E}_{q}\left(\bar{i}_{q} t\right)-1} \sum_{m=0}^{i-1}(-1)^{m} \lambda^{j m} \mathrm{E}_{q}\left(\left(\bar{j}_{q} x \oplus_{q} \frac{\overline{j m}_{q}}{\bar{i}_{q}}\right) \bar{i}_{q} t\right) \frac{1}{i} \\
=\sum_{\nu=0}^{\infty}\left(\frac{\left(\bar{i}_{q}\right)^{\nu}}{i} \sum_{m=0}^{i-1}(-1)^{m} \lambda^{j m} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, \nu, q}\left(\bar{j}_{q} x \oplus_{q} \frac{\overline{j m_{q}}}{\bar{i}_{q}}\right)\right) \frac{t^{\nu}}{\{\nu\}_{q}!} .
\end{gathered}
$$

By equating the coefficients of $\frac{t^{\nu}}{\{\nu\}_{q}!}$, we obtain rows 1 and 3 of formula (56).
On the other hand, we can rewrite $f_{q}(t)$ in the following way:

$$
\begin{align*}
& f_{q}(t)=-\frac{t}{2} \frac{2 \mathrm{E}_{q}\left(\overline{i j}_{q} x t\right)\left(\lambda^{i j} \mathrm{E}_{q}\left(\overline{i j}_{q} t\right)-1\right)}{\left(\lambda^{i} \mathrm{E}_{q}\left(\bar{i}_{q} t\right)-1\right)\left(\lambda^{j} \mathrm{E}_{q}\left(\bar{j}_{q} t\right)+1\right)} \\
& =-\frac{t}{2}\left(\frac{2 \mathrm{E}_{q}\left(\overline{i j}_{q} x t\right)}{\lambda^{j} \mathrm{E}_{q}\left(\bar{j}_{q} t\right)+1}\right)\left(\frac{\lambda^{i j} \mathrm{E}_{q}\left(\overline{i j}_{q} t\right)-1}{\lambda^{i} \mathrm{E}_{q}\left(\bar{i}_{q} t\right)-1}\right) . \tag{59}
\end{align*}
$$

By using the formula for a geometric sequence, we can expand (59) in two ways:

$$
\begin{gathered}
f_{q}(t)=-\frac{t}{2}\left(\sum_{\nu=0}^{\infty} \mathcal{F}_{\mathrm{NWA}, \lambda^{j}, \nu, q}\left(\bar{i}_{q} x\right) \frac{\left(\bar{j}_{q} t\right)^{\nu}}{\{\nu\}_{q}!}\right)\left(\sum_{m=0}^{\infty} s_{\mathrm{NWA}, \lambda^{i}, m, q}(j) \frac{\left(\bar{i}_{q} t\right)^{m}}{\{m\}_{q}!}\right) \\
(60)=-\frac{t}{2} \sum_{m=0}^{j-1} \lambda^{i m} \frac{2}{\lambda^{j} \mathrm{E}_{q}\left(\bar{j}_{q} t\right)+1} \mathrm{E}_{q}\left(\left(\bar{i}_{q} x \oplus_{q} \frac{\overline{i m}_{q}}{\bar{j}_{q}}\right) \bar{j}_{q} t\right) \\
\quad=-\frac{t}{2} \sum_{\nu=0}^{\infty}\left(\left(\bar{j}_{q}\right)^{\nu} \sum_{m=0}^{j-1} \lambda^{i m} \mathcal{F}_{\mathrm{NWA}, \lambda^{j}, \nu, q}\left(\bar{i}_{q} x \oplus_{q} \frac{\overline{i m}_{q}}{\bar{j}_{q}}\right)\right) \frac{t^{\nu}}{\{\nu\}_{q}!} .
\end{gathered}
$$

By equating the coefficients of $\frac{t^{\nu}}{\{\nu\}_{q}!}$, we obtain rows 2 and 4 of formula (56).

Corollary 5.2. A q-analogue of $[12,(28)$ p. 313]. If i is even, then

$$
\begin{align*}
& \mathcal{F}_{\mathrm{NWA}, \lambda, n-1, q}\left(\bar{i}_{q} x\right) \\
& =-\frac{2}{\{n\}_{q}} \sum_{k=0}^{n}\binom{n}{k}_{q} \frac{\left(\bar{i}_{q}\right)^{k}}{i} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, k, q}(x) \sigma_{\mathrm{NWA}, \lambda, n-k, q}(i) \tag{61}\\
& =-\frac{2\left(\bar{i}_{q}\right)^{n}}{i\{n\}_{q}} \sum_{m=0}^{i-1}(-\lambda)^{m} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, n, q}\left(x \oplus_{q} \frac{\bar{m}_{q}}{\bar{i}_{q}}\right) .
\end{align*}
$$

Proof. Put $j=1$ in formula (56) and multiply by $-\frac{2}{\{n\}_{q}}$.

Corollary 5.3. A q-analogue of $[12,(29)$ p. 313].

$$
\begin{align*}
& \mathcal{F}_{\mathrm{NWA}, \lambda, n-1, q}(x) \\
& =-\frac{2}{\{n\}_{q}} \sum_{k=0}^{n}\binom{n}{k}_{q} \frac{\left(\overline{2}_{q}\right)^{k}}{2} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, k, q}\left(\frac{x}{\overline{2}_{q}}\right) \sigma_{\mathrm{NWA}, \lambda, n-k, q}(2) \tag{62}\\
& =-\frac{\left(\overline{2}_{q}\right)^{n}}{\{n\}_{q}} \sum_{m=0}^{1}(-\lambda)^{m} \mathcal{B}_{\mathrm{NWA}, \lambda^{2}, n, q}\left(\frac{x}{\overline{2}_{q}} \oplus_{q} \frac{\bar{m}_{q}}{\overline{2}_{q}}\right) .
\end{align*}
$$

Proof. Put $i=2$ in formula (61), and replace x by $\frac{x}{2_{q}}$.
Corollary 5.4. A q-analogue of $[12,(31)$ p. 314]. If i is even, then

$$
\begin{align*}
& \sum_{m=0}^{1} \lambda^{i m} \mathcal{F}_{\mathrm{NWA}, \lambda^{2}, n-1, q}\left(\bar{i}_{q} x \oplus_{q} \frac{\overline{i m}_{q}}{\overline{2}_{q}}\right) \tag{63}\\
& =-\frac{2}{\{n\}_{q}\left(\overline{2}_{q}\right)^{n-1}} \sum_{k=0}^{n}\binom{n}{k}_{q} \frac{\left(\bar{i}_{q}\right)^{k}}{i}\left(\overline{2}_{q}\right)^{n-k} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, k, q}\left(\overline{2}_{q} x\right) \sigma_{\mathrm{NWA}, \lambda^{2}, n-k, q}(i) \\
& =\frac{1}{\left(\overline{\bar{q}}_{q}\right)^{n-1}} \sum_{k=0}^{n-1}\binom{n-1}{k}_{q}\left(\overline{2}_{q}\right)^{k}\left(\bar{i}_{q}\right)^{n-k-1} \mathcal{F}_{\mathrm{NWA}, \lambda^{2}, k, q}\left(\overline{\bar{i}}_{q} x\right) s_{\mathrm{NWA}, \lambda^{i}, n-k-1, q}(2) \\
& =-\frac{2}{\{n\}_{q}\left(\overline{2}_{q}\right)^{n-1}} \frac{\left(\bar{i}_{q}\right)^{n}}{i} \sum_{m=0}^{i-1}(-1)^{m} \lambda^{2 m} \mathcal{B}_{\mathrm{NWA}, \lambda^{i}, n, q}\left(\overline{2}_{q} x \oplus_{q} \frac{\overline{2 m}_{q}}{\bar{i}_{q}}\right) .
\end{align*}
$$

Proof. Put $j=2$ in formula (56) and multiply by $-\frac{2}{\{n\}_{q}\left(\overline{2}_{q}\right)^{n-1}}$.
Corollary 5.5. A q-analogue of [12, (32) p. 314].

$$
\begin{align*}
& \sum_{m=0}^{1}(-1)^{m+1} \lambda^{m} \mathcal{B}_{\mathrm{NWA}, \lambda, n, q}\left(x \oplus_{q} \frac{\overline{2 m}_{q}}{\overline{2}_{q}}\right) \\
& =\frac{\{n\}_{q}\left(\overline{2}_{q}\right)^{n-1}}{\left(\overline{2}_{q}\right)^{n}} \sum_{m=0}^{1} \lambda^{m} \mathcal{F}_{\mathrm{NWA}, \lambda, n-1, q}\left(x \oplus_{q} \frac{\overline{2 m}_{q}}{\overline{2}_{q}}\right) . \tag{64}
\end{align*}
$$

Proof. Put $i=2$ in formula (63), replace x and λ^{2} by $\frac{x}{\overline{2}_{q}}$ and λ, and multiply by $\frac{\{n\}_{q}\left(\overline{(2}_{q}\right)^{n-1}}{\left(\overline{2}_{q}\right)^{n}}$.

Corollary 5.6. A q-analogue of $[12,(33)$ p. 314].

$$
\begin{aligned}
& \sum_{m=0}^{1}(-1)^{m} \lambda^{j m} \mathcal{B}_{\mathrm{NWA}, \lambda^{2}, n, q}\left(\bar{j}_{q} x \oplus_{q} \frac{\overline{j m}_{q}}{\overline{2}_{q}}\right) \\
& =-\frac{\{n\}_{q}}{\left(\overline{2}_{q}\right)^{n}} \sum_{k=0}^{n-1}\binom{n-1}{k}_{q}\left(\bar{j}_{q}\right)^{k}\left(\overline{2}_{q}\right)^{n-k-1} \mathcal{F}_{\mathrm{NWA}, \lambda^{j}, k, q}\left(\overline{2}_{q} x\right) s_{\mathrm{NWA}, \lambda^{2}, n-k-1, q}(j) \\
& =-\frac{\{n\}_{q}}{\left(\overline{2}_{q}\right)^{n}}\left(\bar{j}_{q}\right)^{n-1} \sum_{m=0}^{j-1} \lambda^{2 m} \mathcal{F}_{\mathrm{NWA}, \lambda^{j}, n-1, q}\left(\overline{2}_{q} x \oplus_{q} \frac{\overline{2 m}_{q}}{\bar{j}_{q}}\right)
\end{aligned}
$$

Proof. Put $i=2$ in formula (56) and multiply by $\frac{2}{\left(\overline{2}_{q}\right)^{n}}$.
6. Discussion. As was indicated in [5], we have considered q-analogues of the currently most popular Appell polynomials, together with corresponding power sums. The beautiful symmetry of the formulas comes from the ring structure of the q-Appell polynomials. We have not considered JHC q-Appell polynomials, since we are looking for maximal symmetry in the formulas. The q-Taylor formulas have not been used in the proofs, since the generating functions were mostly used. In a further paper [6], we will find similar expansion formulas for q-Appell polynomials of arbitrary order.

References

[1] Apostol, T. M., On the Lerch zeta function, Pacific J. Math. 1 (1951), 161-167.
[2] Carlitz, L., A note on the multiplication formulas for the Bernoulli and Euler polynomials, Proc. Amer. Math. Soc. 4 (1953), 184-188.
[3] Ernst. T., A Comprehensive Treatment of q-calculus, Birkhäuser/Springer, Basel, 2012.
[4] Ernst, T., On certain generalized q-Appell polynomial expansions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 68, No. 2 (2015), 27-50.
[5] Ernst, T., A solid foundation for q-Appell polynomials, Adv. Dyn. Syst. Appl. 10 (2015), 27-35.
[6] Ernst, T., Expansion formulas for Apostol type q-Appell polynomials, and their special cases, submitted.
[7] Luo, Q.-M., Srivastava, H. M., Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl. 308, No. 1 (2005), 290-302.
[8] Luo, Q-M., Srivastava, H. M., Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 51, No. 3-4 (2006), 631-642.
[9] Luo, Q.-M., Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwanese J. Math. 10, No. 4 (2006), 917-925.
[10] Luo, Q.-M., The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order, Integral Transforms Spec. Funct. 20, No. 5-6 (2009), 377-391.
[11] Milne-Thomson, L. M., The Calculus of Finite Differences, Macmillan and Co., Ltd., London, 1951.
[12] Wang, Weiping, Wang, Wenwen, Some results on power sums and Apostol-type polynomials, Integral Transforms Spec. Funct. 21, No. 3-4 (2010), 307-318.

Thomas Ernst

Department of Mathematics
Uppsala University
P.O. Box 480, SE-751 06 Uppsala

Sweden
e-mail: thomas@math.uu.se
Received September 16, 2015

[^0]: 2010 Mathematics Subject Classification. Primary 05A40, 11B68; Secondary 05A10.
 Key words and phrases. Raabes multiplication formulas, q-Appell polynomials, multiple q-power sum, symmetry, q-rational number.

