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ABSTRACT. In the first article on g-analogues of two Appell polynomials, the
generalized Apostol-Bernoulli and Apostol-Euler polynomials, focus was on
generalizations, symmetries, and complementary argument theorems. In this
second article, we focus on a recent paper by Luo, and one paper on power
sums by Wang and Wang. Most of the proofs are made by using generat-
ing functions, and the (multiple) g-addition plays a fundamental role. The
introduction of the g-rational numbers in formulas with g-additions enables
natural g-extension of vector forms of Raabes multiplication formulas. As
special cases, new formulas for g-Bernoulli and ¢-Euler polynomials are ob-
tained.

1. Introduction. In 2006, Luo and Srivastava [8, p. 635-636] found new
relationships between Apostol-Bernoulli and Apostol-Euler polynomials.
This was followed by the pioneering article by Luo [10], where multiplica-
tion formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of
higher order, together with A-multiple power sums were introduced. Luo
also expressed these A-multiple power sums as sums of the above polynomi-
als. One year later, Wang and Wang [12] introduced generating functions
for A-power sums, some of the proofs use a symmetry reasoning, which lead
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to many four-line identities for Apostol-Bernoulli and Apostol-Euler poly-
nomials and A-power sums; as special cases, some of the above Luo identities
were obtained.

In [5] it was proved that the g-Appell polynomials form a commutative
ring; in this paper we show what this means in practice. Thus, the aim
of the present paper is to find g-analogues of most of the above formulas
with the aid of the multiple g-addition, the ¢-rational numbers, and so on.
Many formulas bear a certain resemblance to the g-Taylor formula, where ¢-
rational numbers appear to the right in the function argument; this means
that the alphabet is extended to Qg,. In some proofs, both g-binomial
coefficients and a vector binomial coefficient occur, this is connected to a
vector form of the multinomial theorem, with binomial coefficients, unlike
the case in [3, p. 110].

This paper is organized as follows: In this section we give the general
definitions. In each section, we then give the specific definitions and special
values which we use there.

In Section 2, multiple g-Apostol-Bernoulli polynomials and g-power sums
are introduced and multiplication formulas for ¢-Apostol-Bernoulli polyno-
mials are proved, which are g-analogues of Luo [10].

In Section 3, multiplication formulas for g- Apostol-Euler polynomials are
proved. In Section 4, formulas containing g-power sums in one dimension,
g-analogues of Wang and Wang, [12] are proved. Then in Section 5, mixed
formulas of the same kind are proved. Most of the proofs are similar, where
different functions, previously used for the case ¢ = 1, are used in each
proof.

We now start with the definitions. Some of the notation is well-known
and can be found in the book [3]. The variables i, j, k, [, m,n,v will denote
positive integers, and A will denote complex numbers when nothing else is
stated.

Definition 1. The Gauss ¢-binomial coefficient are defined by

n _ {n}q! _
(1) <k>q :m,k—(),l,...,n.

Let a and b be any elements with commutative multiplication. Then the
NWA g¢-addition is given by

(2) (a@gb)" = (Z) a*v Tk n=0,1,2,....
q

k=0
If 0 < |¢| <1and |z| < |1 —q|™, the g-exponential function is defined by

oo

Z) = ! Zk
® Bl = 2 G
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The following theorem shows how Ward numbers usually appear in ap-
plications.

Theorem 1.1. Assume that n,k € N. Then

(@) W= T (ot m),

where each partition of k is multiplied with its number of permutations.

The semiring of Ward numbers, (Ng, , ©q, ©4) is defined as follows:

Definition 2. Let (Ng_,©,, ®,) denote the Ward numbers kg, k> 0 to-
gether with two binary operations: @, is the usual Ward g-addition. The
multiplication ©, is defined as follows:

(5) Ng ©Og Mg ~ Mg,
where ~ denotes the equivalence in the alphabet.

Theorem 1.2. Functional equations for Ward numbers operating on the
q-exponential function. First assume that the letters my and ng are inde-
pendent, i.e. come from two different functions, when operating with the
functional. Then we have

(6) Eq(mgngt) = Eq(mngt).
Furthermore,

(7) Ef](%q) = Equ)m = Eq(mq)j = Eq(ﬁq oF mq)-
Proof. Formula (6) is proved as follows:

(8) Eq(Mqngt) = Eq((1 ¢ 1@ -+ ©¢ 1)Ngt),

where the number of 1s to the left is m. But this means exactly E,(74t)™,
and the result follows. O

Definition 3. The notation ). denotes a multiple summation with the
indices my, ..., m, running over all non-negative integer values.
Given an integer k, the formula

(9) mo—i—m1+...—{—mj:k:

determines a set Jy, . m; € NI+

Then if f(z) is the formal power series Y ;7 a;z', its k’th NWA-power is
given by

(10) (®(§3:0alxl)k = (CLO Bg a1T By - . )k = Z H (Cllxl)ml <7];’L) .

(| =k U E Jmg ...
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We will later use a similar formula when ¢ = 1 for several proofs.

In order to solve systems of equations with letters as variables and Ward
number coefficients, we introduce a division with a Ward number. This is
equivalent to g-rational numbers with Ward numbers instead of integers.

Definition 4. Let Qg, denote the set of objects of the following type:
(11) @, where @ =1,
Ngq Mg
together with a linear functional
(12) v, R[z] x Qg, = R,

called the evaluation. If v(z) = Y32, axz®, then
. = (mgy)k

(13) v <q> = ap~—L_.
Nq Z (Mq)*

Definition 5. For every power series f,(t), the g¢-Appell polynomials or ®,
polynomials of degree v and order n have the following generating function:

[e.o]

(14) Fa OB (t) = 3 0 ().

| v,q
v=0 {V}Q'

For x = 0 we get the @,%3 number of degree v and order n.

Definition 6. For f,(t) of the form h(t)", we call the ¢-Appell polynomial
O, in (14) multiplicative.

Examples of multiplicative ¢-Appell polynomials are the two g-Appell
polynomials in this article.

2. The NWA g-Apostol-Bernoulli polynomials.

Definition 7. The generalized NWA ¢-Apostol-Bernoulli polynomials

Biwa g () are defined by

0o qvqm(n)
" t"Bawa g (@)

Notice that the exponent n is an integer.

Definition 8. A g-analogue of [10, (20) p. 381], the multiple g-power sum
is defined by

(1) Monrma(m = 2 (5)3 @)™

= J
|7]=l
where k = ji +2j2 + -+ + (0 — 1)jn—1, Vj; > 0.
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Definition 9. A g-analogue of [10, (46) p. 386], the multiple alternating
g-power sum is defined by

a7 Binrma) = ('S (5N )"

= J
|7]=l
where k = ji + 2j2 + -+ + (n — 1)jn—1, Vj; > 0.

Remark 1. For | = 1, formulas (16) and (17) reduce to single sums, as will
be seen in section 4.

We now start rather abruptly with the theorems; we note that limits like
A — 1 and ¢ — 1 can be taken anywhere in the paper, and also in the next
one [6]; see the subsequent corollaries. Much care is needed in the proofs,
since the Ward numbers need careful handling.

Theorem 2.1. A g-analogue of [10, p. 380], multiplication formula for
q-Apostol-Bernoulli polynomials.

n I3
(18) Bl(v\?VAqu(qu Z Ak( > NWA A g (95 Dq mi) ;

mg)"
|gl=n

k
where k = j1 + 2jo + -+ (m — 1)jm—1, and %q € @@q.
q

Proof. We use the well-known formula for a geometric sum.

(n) v t" _
ZBNWAAVq mq ){l/} ! - ()\E (t) _ l)nEQ(qut)

MW@M—1<2X >%WW)

a9, n z
() 2 () (e eome)
= — S )AE | (x @ mgt
(()‘mEq(mqt) -1) lj;:n J G q) !
. o _
(Thg)” (n) ke () ( kq > tv
- — - )\ B m T P — .
VZ:O (mq)n ;Z:n J NWA ™ v.q q My {V}q!
The theorem follows by equating the coefficients of {lf—;q, O

Corollary 2.2. A g-analogue of [10, p. 381]:

__ 1/ m—1
__ j
(20)  BNwAAvg(Mgx) = (T Z X BNWA ™ g (96 Dy mq > :
Jj=0 a
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Corollary 2.3. A g-analogue of Carlitz formula [2], [10, p. 381]

n n n E
(21) Bl(\“;vA g(Mg) = (7o) Z (;) ‘Bl(\I\z\/A,V,q (x Dq mi{) )

l7]=n

where k = j1 + 2jo + -+ (m — 1)jm—1, and m—q € Qg, -
q

Theorem 2.4. A formula for a multiple q-power sum, a q-analogue of [10

(25) p. 382]:

l . .
. I\ (—1)l=d N1+
SIQI{/VA,A,m,q(n) = Z ( )

=0 J {m+ 1},
(22)
(M1 o) —— \ ()
X (E : ( k > Bl\?WA,)\,k,q ((” —1)j+ lq) BNW7A,A,m+lk,q> .
k=0 q

Proof. We use the generating function technique. Put k = j1 + 2jo+ -+
(n —1)jp—1. It is assumed that j; > 0,1 < i <n — 1, zeros are neglected.

> ' by(16) ! |
ZSI(\lI)WA )\,,q( ){V}q! b (216) Z Z (—») )\k (k?q) {TM

=0 v=0 \ji=

L (NEq (1) + N By (Zgt) + -+ X' Ey(n— 14t))'

AE, (Tigt) AE,(8) !
e w1

o B0 GEE) ()
by(7) Hi( > A J+lZ Brwani q(mq) {;’;q!

0 ! l)lfj)\(nfl)jJrl

(—) "=
XZBNIWAM,(J{Z}, > Z() {m+ 1},

v=0 | j=0 J
m+l
m + ; S tv
x kZO ( L )qBI(\?\)?VA,)\,k,q ((” —1)j+1 ) Bl(\IWJiAm—I—l kq] {V} I

The theorem follows by equating the coefficients of {If—;q, O
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Corollary 2.5. A g-analogue of [10, (26) p. 382]: The generating function

l .
for SI(\I)VVA,)\,u,q(n) 18

v N'Eq(mgt) AE,(?) :
ZSNWA)\uq (v}, <)\E()q1_)\Eq(t)—1>

= (AEq(t) + NE(24t) + -+ AT B (n = 1t))

(24)

Theorem 2.6. A recurrence relation for q-Apostol-Bernoulli numbers, a
q-analogue of [10, (32) p. 384].

(1) — (n\ (M)" 0

(25)  (Mq)' Bawanmg = 2 ( j)q (mq;]n—j Bawam g, SNWA A n—j.g (M)
7=0

where k = j1 + 2jo + -+ (m — 1) jm—1.

Proof. We use the definition of ¢g-Appell numbers as ¢g-Appell polynomial
at © = 0.

l by(18 k
( )Bl(\I)VVA)\nq - Z)\k< ) NWA,\™ n,q <mi)

7=t

o S B)  (3)”

7=t 7=0
"\ (@) I\ ~ \p_; by(16)

- (;) CA= ;In_jBl(\I)WA’/\m’j’qZ)\k(ﬁ)(kq) 7 EY LS.
j=0 g\ |7|=l

0

3. The NWA g-Apostol-Euler polynomials. We start with some rep-
etition from [3]:

Definition 10. The generating function for the first ¢g-Euler polynomials

of degree v and order n, Fl(\?\sz y q(az), is given by

(27) (é Eq( Z {V}q' Nwqu( x), |t| <.

Definition 11. The generalized NWA g¢-Apostol-Euler polynomials
&”ETJVA’AM(](:U) are defined by

on o) tug:(”) "

R T < S O

, [t+log A\l < .
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Theorem 3.1. A g-analogue of [10, (37) p. 385], first multiplication for-
mula for g-Apostol-Euler polynomials.

n _ N n\ (n k
20) Thnwa) = ) 32 V() b e (720 51 )
|l=n

where k = j1 +2jo+ -+ (m — 1)jm—1, m odd.

Proof.
v 2n
F m = E, (Mgt
;) NWA,A,y,q(qu) {V}q! ()\Eq(t) + 1)n Q(mqw)
m—1 n
Z(_)\)iEq(iqt)> Eq(Mgat)
- e, >+ D (izo
" n kg
< ATE,( mqt 1)> Z <§‘> (7)‘)qu ((x By mi)mqt)
|7]=n
= i (719)" Z <7:~L’>(_>‘)k3:1(\1n\2\/A ATy (m Dq kq) = .
- F=n J el mq {v}q!
The theorem follows by equating the coefficients of {5—;(1, O

Theorem 3.2. A g-analogue of [10, (38) p. 385], second multiplication
formula for q-Apostol-Euler polynomials.

?l(gl\g\/A AV q(mq )
(31) (=2)"(my)"™" K (n) Eq
{V + 1}n7q(mq)n I; ( ) ] NWA, ™ v+n,q X @q mq
J|=n
where k= ji1 + 2ja + -+ (m = 1)jm—1, m even.

Corollary 3.3. A g-analogue of [10, (43) p. 386]:

TINWA N v,q(Mgx) =

oom—1 ) ;
v -\ F "y =4 dd

_2(mq)y+l et ]B jq
“m{v+1}, > (A BNwaam vi1g | T By — m even,
Jj=0 q

J
where =L € Q@q.
myq



Multiplication formulas for ¢g-Appell polynomials... 9

Theorem 3.4. A formula for a multiple alternating q-power sum, a g-
analogue of [10, (51) p. 387]:

0 . ]n)\(n 1)j+1
INWA A m,g () = 27 Z (]> {m+ 1},

m+1
m+ 1 j s j
X (Z ( 2 )qgl(\?\)NA,)\,k,q (( 1)j+1 )91(\IWA)An+l kkq) :

(33)

k=0

Proof. We use the generating function technique. Put k = j1 +2jo+ -+
(n—1)jnp—1. It is assumed that j; > 0,1 <i<n— 1.

tY —\v tY
ZO’NWA)\Vq 1! i Z (Z <J> 1) (=\)* (kq) ) {T}q!

lj1=1
ey (j) (AB,(0)"

|*'|:l
AE Ey(Zt) + - + (—1)" A" By (n = 1,1)))’

= (
( T+ 1t + AEAq]?z)(l 1>l
l nE (= J l—j
> (ﬁ) “(Seeey) Gt
k

l oo

e l Y . S t

/(1) o1 <j>(—1)ﬂ Al ””“Z”ffé%m,k,q (B=D7%1,) G
—0 k=0

<.

J

i OO ny(n—1)j+l1
(1—3) ¢ 91 < > 17"
X g F E E
P NWA)\,z,q{Z}l j {m+1}lq

v=0
m+l
m+1\ 26) T ) gD tr
X Z ( k ) FNWA A kg ((”_ 1)j+1 )9NWA/\n+l kb | Y1
k=0 q
The theorem follows by equating the coefficients of {Vt—;q, O

Corollary 3.5. A g-analogue of [10, (52) p. 387]: The generating function

l
for UI(V%NA A Uq(n) 18

v (“N"Eq(Tgt) | ABg(t) '
ZUNWA)\uq (v}, < AE,(t) — 1 +/\Eq(t)+1>

- ()\Eq(t) — N%Ey(24t) + -+ (= 1)"A" By (n — 1,t))

(34)
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Theorem 3.6. A g-analogue of [10, p. 389]. For m odd, we have the
following recurrence relation for q-Apostol-Euler numbers.

0 s () M) o 0
(35) ‘TNWA,/\,n,q - (_1) Z <]> (mq;J ?NWA A7 5 gONWA A n—7, q(m)
=0 q

where k = j1 + 2jo + -+ (m — 1) jm—1.
Proof.

o) =0 3 <A>k<i~) 3 (1) hnse (1)

|7|=l Jj=0

Y ! - \n—j Py(7)
3 (1) A s X V() o s

j=0 7=l

4. Single formulas for Apostol g-power sums. In order to keep the
same notation as in [3], we make a slight change from [12, p. 309]. The
following definitions are special cases of the ¢-power sums in section 2.

Definition 12. Almost a g-analogue of [12, p. 309], the ¢g-power sum and
the alternate g-power sum (with respect to \), are defined by

n—1

(37) SNWA, m,q Z )\k ™ and UNWA,A,m,q(n) = Z(—l)kAk(Eq)m
k=0

Their respective generating functions are

o A"E (nqt) _1
(38) Z SNWA, A, m,q(1 {m} 1T AR () —

and

Z " tm (—1)”+1A”Eq(ﬁqt) +1
NWAAm q {m}q )‘Eq(t) +1

Proof. Let us prove (38). We have

(39)

n—1

mZOSNWA,/\,m,q {m} i mz kz: {m} ' o Z)\k k — RHS.
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We have the following special cases:
(40) SNWA A m.g(1) = ONWA A m.q(1) = Go.m,

(41) SNWA A m.q(2) = 00.m + A, ONWA A mq(2) = So.m — A

Theorem 4.1. A g-analogue of [12, p. 310], and extensions of [3, p. 121,
131]:

A"BNwA A m+1,¢(Thg) — BNwa,x mtlq
{m+ 1}q

(42) SNWA,)\,m,q(n) =

(=)™ N Fywa rm.g(g) — FNWA A m.q
2

Theorem 4.2. A g-analogue of [12, (18), p. 311],

n k
n 1 =~ \n— )
§ <k> ( q) (,7 ) k'BNWA M k,q (]q ) SNWA,)\j,nfk,q(Z)
q

(43) ONWA A m,q(N) =

o\ G o ; .
:Z (k) 1= (iq) kBNWA,AJ"k’q (iq2) SNWA N n—kq(F)

AR . Tx® &
i NWA X nq | Jq q fq

mn
= N BNWAAan(WU@q .q>-
m=0 ]q

Proof. Define the following function, symmetric in ¢ and j.
() = _PaT OB Gf) 1)
"= VB (igt) — VE () — 1)
B ((iqtﬂEqwqxt)) (A”‘Eqwqw — 1) 1
NEg(igt) — 1 NEq(Gt)—1 ) i
By using the formula for a geometric sequence, we can expand f,(t) in
two ways:

fq(t) — (Z ‘BNWA,NMQ (5q {I/} )(Z SNWA, N ,m,q )({];Lt})m> %
v=0

-\ 1 1—1 _—
(z) t . — gm, \ - 1
(46) NE, (igt) — 1 ZO < q(‘jqx 7 >2q> i

0 = \y —1 m, v
:Z (ui) Z)\jm‘BNWAX‘Vq (]qx@q ]T )) {Vt}q

v=0 m=0

(45)
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The theorem follows by equating the coefficients of {lf—;q, and using the
symmetry in i and j of fq(t). O

Corollary 4.3. A g-analogue of [12, (19), p. 311],

n - k
- ny\ (¢ .
Brnwaan.g (qu) = Z (k:) ( (;) BNWA N kg (T) SNWA, A n—k,q(7)
q

k=0
(47) (T n i—1 J—
i
Z A" BNWA, X nyg (x@q = ) .
q
Proof. Put j =1 in (44) and use (41). O

Remark 2. This proves formula (20) again.

Corollary 4.4. A g-analogue of [12, (20), p. 311],

1 -
; - m,
m . q
E : AT BNWA N g (qu’ Bq 2>
m=0

q

2 [0\ (i)* = _ .
(48) = 2. Z (k) (; (20)" " Brwani kg (207) snwanz,n—iqg(0)
k=0 a
2 (ig)" 2m,
— = n )\ B @ 2 T @ = q .
(2q)n 7 TRZ_O NWA )\ ,n,q q Z-q
Proof. Put j =2 in (44) and multiply by ﬁ O
q
Moreover, we have
(§ x Mg
(49)  Brxwaang (@) = Z A" Brwazng |5 Pa g |-
q q
Proof. Put i = 2 in (47) and replace x by % O

q

For A =1 and = = 0, this reduces to

1 2
B n = == — - 1 B n.g-
(50) NWA,n,g <2q> < 2. ) NWA,n.g
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Theorem 4.5. A g-analogue of [12, (22) p. 312]. Assume that i and j are
either both odd, or both even, then we have

n
_k - .
Z( > T FNWAN kg (T4T) ONWAN it g ()
k=0
r n
= <k> (jq)k(iq)nikngWA,)\j,k,q (iq%) ONWA N kg (7)
k=0 q
m
anZAjm ?NWAAan<Jq$@q iq>
q

j—l —
~\n m m
:(jq) E A ( ) :TNWAAJ nq(qu@q »q> .

m=0 Jq

(51)

Proof. Define the following symmetric function
£(0) Eq(ij2t) ((=1)" T A E (ijgt) + 1)
= T NEGigt) + DOVE, (i) + 1

1 [ 2Bq(ij,at) (1) INTE (ij,t) + 1
2 \ NE,(igt) + 1 NEq(j,t) +1 '

By using the formula for a geometric sequence, we can expand f,(t) in
two ways:

fq(t) = % (Z Fawai v (J4?) {v} )(Z INWAX g )({J;’]%})q'>
v=0
i—1 im
m m 7 Jm 7,
53) = NE,Gh+1 zqt 12 ((qu - qu> th>

(52)

m=0
-33(a z G (e 22 ) )
All/ =
1/0 m=0 WA AL ! qz {V}q

The theorem follows by equating the coefficients of o } ; and using the
symmetry in ¢ and j of fq(t). O

Theorem 4.6. (A g-analogue of [12, (24) p. 313]) For i odd we have

n

ol n - ;
q

k=0
(54) i_l

= \n m
= Zq) Z(_ 5tNWA)an<x@q .q>-

m=0 Zq
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(A g-analogue of [12, (25) p. 313]) For i even,

m
Z)\m ?NWA,\2nq<Zq$@q 2q>
q

I & /n\ -~ = ne = .

(55) = 5 z (k) (ig)"(2g) k?NWA,M‘,k,q (247) oNWA N2 1k g ()

( q) k=0 q

—\y i-1

" 2
= (Eq)n (_1)mA2m?NWA,Ai,n,q <2q$ @q mf]) )

(2‘]) m=0 q

Proof. Put j =1 or 2 in (51), and divide by (24)". O

Remark 3. This proves the first part of formula (32) again.

5. Apostol g-power sums, mixed formulas. We now turn to mixed
formulas, which contain polynomials of both kinds.

Theorem 5.1. A g-analogue of [12, (26) p. 313]. Ifi is even then

n k
n [ = \n— .
Z <k> ( q) G,) kBNWA Nk (_jq ) ONWAN n—k,q(?)
q

)
k=0

__{nh k: <n ; 1>q(jq)k(iq)n_k_1

(56) X FNwA N kg (GgT) SNWA N n—k—1,4 ()
(El])n — myjm = jimq
= i Z( 1) A BN\i\]A,)\i,TL,q Jq% 69q T
m=0 q

n m,
_ { }q n IZAZmFNWAXJn 1q<2qx@q .(1).

m=0 q
Proof. Define the following function

fo(t) = tEq (17 2t) (1) IATE, (ij,t) + 1)
T (B (igt) — 1) (VB (1) + 1)

[ Gt) ' Bg(ifgxt) \ [ (=1)™INIE(ijgt) +1) 1
\NE,(igt) — 1 NEg(j t) + 1 i

(57)
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By using the formula for a geometric sequence, we can expand f,(t) in
two ways:

f,t) = (Z BaWA N wg (747) (v} ><Z INWAN )({37;1?}? > %

v=0
-\ 1 1—1 -
(ig) ¢ , _ Jm 1
58) = ——F—— —1)"N™E =it =
( ) )\qu(th) 1 Ynzzo( ) q ]qx @q iq Zq i
= (gq)y = myjm ‘]m t”
= VZ:D ( ; Tnzz:o(—].) AJ BNWA,)\i jq.'lf @q g {y}q

By equating the coefficients of {If—l}’q!, we obtain rows 1 and 3 of formula (56).
On the other hand, we can rewrite fy(¢) in the following way:

2B () WE(it) — 1)
Jal) = =5 (B, (iyt) — D) (VE, (dgt) +1)

ot [ 2Eg(ijgat) ATBqg(ij,t) — 1
2\ WE.(,t) +1 NE,(igt) =1 |~

By using the formula for a geometric sequence, we can expand (59) in

two ways:
fQ(t)__<Z?NWA/\JVq )(Z SNWA N m.q(J )({g;m>

¢ img
= —— —E 1qT By —=
2mz NEq(7,t) + 1 "((q "jq>3q>
t - l,] . im qu tY
:—52 (Jq) Z)\ FNWAN wg | 1gT Bg 7
=0 {v}g!

m=0

(59)

By equating the coefficients of {If—;q!, we obtain rows 2 and 4 of formula (56).
O

Corollary 5.2. A g-analogue of [12, (28) p. 313]. If i is even, then
EFNWA,)\,nfl,q (qu)

2 1\ (ig)* .
= Tl Z <k>qZBNWA,Ai,k,q (z) ONWA A n—k,q (1)

k=0

= ’L—l
2(1q)" myq
=— g =N Brwa i — .
Z{n}q m:()( ) NWAAL <x @(1 A

lq

(61)

Proof. Put j =1 in formula (56) and multiply by _ﬁ' O
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Corollary 5.3. A g-analogue of [12, (29) p. 313].

H:NWA,)\,n—l,q (35)

2 (1) (2)F x

(62)

k=0
5 1
(29)" x My
- — (_)\)mBNWA \2n — D, =— .
{n}qu:O A2, q2q
Proof. Put ¢ = 2 in formula (61), and replace z by . O

q

Corollary 5.4. A g-analogue of [12, (31) p. 314]. If i is even, then

(63)

1
m=0

2 & n (Zq)k 35 \n—k = .
- _WZ k i (24) BNWA,Ai,k,q(2q$)0NWA,A27n_k,q(z)
q\<q

. - m
m - q
ATTINWA N2 -1 (qu’ﬂ a5 >
q

. ~1 _
2 (iq)" 2 5 2mg
= 5 . (=)™ A" Brywa g | 20T g —=— | -
{n}e(29)"1 1 = RN
Proof. Put j = 2 in formula (56) and multiply by — 2. O
{n}q(2g)™
Corollary 5.5. A g-analogue of [12, (32) p. 314].
1 I
Z (_1)m+1)\mBNWA,/\,n,q (.’E @q 2(])
- q
(64) R _
n}q(24)" 2m
— { }QS (1) Z Amg(NWA,)\,n—l,q T @q - q )
(24)" 2q
m=0

Proof. Put i = 2 in formula (63), replace x and A? by L and A, and
q

multiply by % 0
q



Multiplication formulas for ¢g-Appell polynomials... 17

Corollary 5.6. A g-analogue of [12, (33) p. 314].

1 ey

jm JMq
Z "X BNVVA A2 n,q ]qx Dq 5
_ q
m=0
{n} n— 1 G.)F @) = .
1 Z ] )*(24)" " Frwan kg (207) Sxwanzn—k—1,4(7)
q

{n} - 2m,
= 5 Z n ! Z )‘Qm?NWA A n—1gq 2qx Dq = =
- (2) m=0 Jq

Proof. Put i = 2 in formula (56) and multiply by

O

2
(2g)"
6. Discussion. As was indicated in [5], we have considered g-analogues of
the currently most popular Appell polynomials, together with correspond-
ing power sums. The beautiful symmetry of the formulas comes from the
ring structure of the g-Appell polynomials. We have not considered JHC
g-Appell polynomials, since we are looking for maximal symmetry in the
formulas. The ¢-Taylor formulas have not been used in the proofs, since the
generating functions were mostly used. In a further paper [6], we will find
similar expansion formulas for g-Appell polynomials of arbitrary order.
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