doi: 10.17951/a.2016.70.1.81

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

-91

VOL. LXX, NO. 1, 2016 SECTIO A	8.
--------------------------------	----

ANDRZEJ WALENDZIAK

On ideals of pseudo-BCH-algebras

ABSTRACT. In this paper we introduce the notion of a disjoint union of pseudo-BCH-algebras and describe ideals in such algebras. We also investigate ideals of direct products of pseudo-BCH-algebras. Moreover, we establish conditions for the set of all minimal elements of a pseudo-BCH-algebra \mathfrak{X} to be an ideal of \mathfrak{X} .

1. Introduction. In 1966, Y. Imai and K. Iséki ([11], [12]) introduced BCK- and BCI-algebras. In 1983, Q. P. Hu and X. Li ([10]) introduced BCH-algebras. It is known that BCK- and BCI-algebras are contained in the class of BCH-algebras.

In 2001, G. Georgescu and A. Iorgulescu ([9]) introduced pseudo-BCKalgebras as an extension of BCK-algebras. In 2008, W. A. Dudek and Y. B. Jun ([3]) introduced pseudo-BCI-algebras as a natural generalization of BCI-algebras and of pseudo-BCK-algebras. These algebras have also connections with other algebras of logic such as pseudo-MV-algebras and pseudo-BL-algebras defined by G. Georgescu and A. Iorgulescu (see [13]). Those algebras were investigated by several authors in [7], [8], [15] and [16]. Recently, A. Walendziak ([18]) introduced pseudo-BCH-algebras as an extension of BCH-algebras and studied the set Cen \mathfrak{X} of all minimal elements of a pseudo-BCH-algebra \mathfrak{X} , the so-called centre of \mathfrak{X} . He also considered ideals in pseudo-BCH-algebras and established a relationship between the ideals of a pseudo-BCH-algebra and the ideals of its centre.

²⁰¹⁰ Mathematics Subject Classification. 03G25, 06F35.

 $Key\ words\ and\ phrases.$ (Pseudo-)BCK/BCI/BCH-algebra, disjoint union, ideal, centre.

In this paper we introduce the notion of a disjoint union of pseudo-BCHalgebras and describe ideals in such algebras. We also investigate ideals of direct products of pseudo-BCH-algebras. Moreover, we establish conditions for the set Cen \mathfrak{X} to be an ideal of a pseudo-BCH-algebra \mathfrak{X} .

2. Pseudo-BCH-algebras. We recall that an algebra $\mathfrak{X} = (X; *, 0)$ of type (2,0) is called a *BCH-algebra* if it satisfies the following axioms:

(BCH-1) x * x = 0;

(BCH-2) (x * y) * z = (x * z) * y;

(BCH-3) $x * y = y * x = 0 \Longrightarrow x = y$.

A BCH-algebra \mathfrak{X} is said to be a *BCI-algebra* if it satisfies the identity (BCI) ((x * y) * (x * z)) * (z * y) = 0.

A *BCK-algebra* is a BCI-algebra \mathfrak{X} satisfying the law 0 * x = 0.

Definition 2.1 ([3]). A pseudo-BCI-algebra is a structure $\mathfrak{X} = (X; \leq, *, \diamond, 0)$, where " \leq " is a binary relation on the set X, "*" and " \diamond " are binary operations on X and "0" is an element of X, satisfying the axioms:

 $\begin{array}{ll} (\mathrm{pBCI-1}) & (x*y)\diamond(x*z)\leq z*y, & (x\diamond y)*(x\diamond z)\leq z\diamond y;\\ (\mathrm{pBCI-2}) & x*(x\diamond y)\leq y, & x\diamond(x*y)\leq y;\\ (\mathrm{pBCI-3}) & x\leq x;\\ (\mathrm{pBCI-4}) & x\leq y, y\leq x\Longrightarrow x=y;\\ (\mathrm{pBCI-5}) & x\leq y \Longleftrightarrow x*y=0 \Longleftrightarrow x\diamond y=0. \end{array}$

A pseudo-BCI-algebra $\mathfrak X$ is called a pseudo-BCK-algebra if it satisfies the identities

(pBCK) $0 * x = 0 \diamond x = 0$.

Definition 2.2 ([18]). A *pseudo-BCH-algebra* is an algebra $\mathfrak{X} = (X; *, \diamond, 0)$ of type (2, 2, 0) satisfying the axioms:

(pBCH-1) $x * x = x \diamond x = 0;$ (pBCH-2) $(x * y) \diamond z = (x \diamond z) * y;$ (pBCH-3) $x * y = y \diamond x = 0 \Longrightarrow x = y;$ (pBCH-4) $x * y = 0 \iff x \diamond y = 0.$

We define a binary relation \leq on X by

 $x \leqslant y \iff x \ast y = 0 \iff x \diamond y = 0.$

Throughout this paper \mathfrak{X} will denote a pseudo-BCH-algebra.

Remark. Observe that if (X; *, 0) is a BCH-algebra, then letting $x \diamond y := x * y$, produces a pseudo-BCH-algebra $(X; *, \diamond, 0)$. Therefore, every BCH-algebra is a pseudo-BCH-algebra in a natural way. It is easy to see that if $(X; *, \diamond, 0)$ is a pseudo-BCH-algebra, then $(X; \diamond, *, 0)$ is also a pseudo-BCH-algebra. From Proposition 3.2 of [3] we conclude that if $(X; \leq, *, \diamond, 0)$ is a pseudo-BCI-algebra, then $(X; *, \diamond, 0)$ is a pseudo-BCH-algebra.

Example 2.3 ([19]). Let $(G; \cdot, e)$ be a group. Define binary operations * and \diamond on G by

$$a * b = ab^{-1}$$
 and $a \diamond b = b^{-1}a$

for all $a, b \in G$. Then $\mathfrak{G} = (G; *, \diamond, e)$ is a pseudo-BCH-algebra.

We say that a pseudo-BCH-algebra \mathfrak{X} is *proper* if $* \neq \diamond$ and it is not a pseudo-BCI-algebra.

Remark. The class of all pseudo-BCH-algebras is a quasi-variety. Therefore, if $(\mathfrak{X}_t)_{t\in T}$ is an indexed family of pseudo-BCH-algebras, then the direct product $\mathfrak{X} = \prod_{t\in T} \mathfrak{X}_t$ is also a pseudo-BCH-algebra. In the case when at least one of \mathfrak{X}_t is proper, then \mathfrak{X} is proper.

Example 2.4. Let $X_1 = \{0, a, b, c\}$. We define the binary operations $*_1$ and \diamond_1 on X_1 as follows:

*1	0	a	b	c		\diamond_1	0	a	b	c
0	0	0	0	0		0	0	0	0	0
a	a	0	a	0	and	a	a	0	a	0
b	b	b	0	0		b	b	b	0	0
c	c	b	c	0		c	c	c	a	0

On the set $X_2 = \{0, 1, 2, 3\}$ consider the operation $*_2$ given by the following table:

*2	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	2	0	0
3	3	3	3	0

Then $\mathfrak{X}_1 = (X_1; *_1, \diamond_1, 0)$ and $\mathfrak{X}_2 = (X_2; *_2, *_2, 0)$ are pseudo-BCH-algebras (see [18]). Therefore, the direct product $\mathfrak{X} = \mathfrak{X}_1 \times \mathfrak{X}_2$ is a (proper) pseudo-BCH-algebra.

Let $\mathfrak{X} = (X; *, \diamond, 0)$ be a pseudo-BCH-algebra satisfying (pBCK), and let $(G; \cdot, e)$ be a group. Denote $Y = G - \{e\}$ and suppose that $X \cap Y = \emptyset$. Define the binary operations * and \diamond on $X \cup Y$ by

(1)
$$x * y = \begin{cases} x * y & \text{if } x, y \in X \\ xy^{-1} & \text{if } x, y \in Y \text{ and } x \neq y \\ 0 & \text{if } x, y \in Y \text{ and } x = y \\ y^{-1} & \text{if } x \in X, y \in Y \\ x & \text{if } x \in Y, y \in X \end{cases}$$

and

and

84

(2)
$$x \diamond y = \begin{cases} x \diamond y & \text{if } x, y \in X \\ y^{-1}x & \text{if } x, y \in Y \text{ and } x \neq y \\ 0 & \text{if } x, y \in Y \text{ and } x = y \\ y^{-1} & \text{if } x \in X, y \in Y \\ x & \text{if } x \in Y, y \in X. \end{cases}$$

Routine calculations give that $(X \cup Y; *, \diamond, 0)$ is a pseudo-BCH-algebra; it is proper if \mathfrak{X} is proper.

Example 2.5. Consider the set $X = \{0, a, b, c\}$ with the operation * defined by the following table:

Then $\mathfrak{X} = (X; *, 0)$ is a BCH-algebra (see [10]). Let \mathfrak{G} be the group of all permutations of $\{1, 2, 3\}$. We have $G = \{i, d, e, f, g, h\}$, where i = (1), d = (12), e = (13), f = (23), g = (123), and h = (132). Applying (1) and (2) we obtain the following tables:

*	0	a	b	c	d	e	f	g	h
0	0	0	0	0	d	e	f	h	g
a	a	0	c	c	d	e	f	h	g
b	b	0	0	b	d	e	f	h	g
c	c	0	0	0	d	e	f	h	g
d	d	d	d	d	0	h	g	e	f
e	e	e	e	e	g	0	h	f	d
f	f	f	f	f	h	g	0	d	e
g	g	g	g	g	e	f	d	0	h
h	h	h	h	h	f	d	e	g	0
\diamond	0	0	Ь	~	4	_	ſ	-	1
	0	u	0	c	a	e	J	g	n
0	0	$\frac{u}{0}$	$\frac{0}{0}$	$\frac{c}{0}$	$\frac{a}{d}$	$\frac{e}{e}$	$\frac{J}{f}$	$\frac{g}{h}$	$\frac{n}{g}$
$\begin{array}{c} 0 \\ a \end{array}$	$\begin{array}{c} 0\\ 0\\ a \end{array}$	$\begin{array}{c} a \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0\\ 0\\ c \end{array}$	$\begin{array}{c} c \\ 0 \\ c \end{array}$	$\begin{array}{c} a \\ d \\ d \end{array}$	$e \\ e \\ e$	$\frac{J}{f}$	$\frac{g}{h}$	$\frac{n}{g}$
$\begin{array}{c} 0 \\ a \\ b \end{array}$	$\begin{array}{c} 0\\ a\\ b\end{array}$	$\begin{array}{c} u \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0\\ 0\\ c\\ 0 \end{array}$	$\begin{array}{c} c \\ 0 \\ c \\ b \end{array}$	d d d	e e e	$\frac{f}{f}\\f$	g h h h	$\begin{array}{c} n \\ g \\ g \\ g \end{array}$
$egin{array}{c} 0 \\ a \\ b \\ c \end{array}$	$egin{array}{c} 0 \\ a \\ b \\ c \end{array}$	$\begin{array}{c} a \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0\\ 0\\ c\\ 0\\ 0\\ 0 \end{array}$	$\begin{array}{c} c \\ 0 \\ c \\ b \\ 0 \end{array}$	$\begin{array}{c} a \\ d \\ d \\ d \\ d \end{array}$	e e e e	$\frac{f}{f}\\f\\f\\f$	g h h h h	$ \begin{array}{c} n\\ g\\ g\\ g\\ g\\ g \end{array} $
$\begin{array}{c} 0\\ a\\ b\\ c\\ d \end{array}$	$\begin{bmatrix} 0 \\ a \\ b \\ c \\ d \end{bmatrix}$	$\begin{array}{c} a \\ 0 \\ 0 \\ 0 \\ 0 \\ d \end{array}$	$\begin{array}{c} 0\\ 0\\ c\\ 0\\ 0\\ d\\ \end{array}$	$\begin{array}{c} c \\ 0 \\ c \\ b \\ 0 \\ d \end{array}$	$\begin{array}{c} d \\ d \\ d \\ d \\ d \\ 0 \end{array}$	e e e e h		$egin{array}{c} g \\ h \\ h \\ h \\ h \\ f \end{array}$	$ \begin{array}{c} n\\ g\\ g\\ g\\ g\\ e\end{array} $
$\begin{array}{c} 0\\ a\\ b\\ c\\ d\\ e \end{array}$	$\begin{matrix} 0\\ a\\ b\\ c\\ d\\ e\end{matrix}$	$\begin{array}{c} a \\ 0 \\ 0 \\ 0 \\ 0 \\ d \\ e \end{array}$	$\begin{array}{c} 0\\ 0\\ c\\ 0\\ 0\\ d\\ e\end{array}$	$\begin{array}{c} c\\ 0\\ c\\ b\\ 0\\ d\\ e \end{array}$	$\begin{array}{c} a \\ d \\ d \\ d \\ d \\ 0 \\ g \end{array}$	$\begin{array}{c} e \\ e \\ e \\ e \\ h \\ 0 \end{array}$		$\begin{array}{c} g\\ h\\ h\\ h\\ f\\ d\end{array}$	$\begin{array}{c}n\\g\\g\\g\\e\\f\end{array}$
$egin{array}{c} a \\ b \\ c \\ d \\ e \\ f \end{array}$	$\begin{matrix} 0\\ a\\ b\\ c\\ d\\ e\\ f\end{matrix}$	$\begin{array}{c} a \\ 0 \\ 0 \\ 0 \\ d \\ e \\ f \end{array}$	$\begin{array}{c} 0\\ 0\\ c\\ 0\\ 0\\ d\\ e\\ f\end{array}$	$\begin{array}{c} c\\ 0\\ c\\ b\\ 0\\ d\\ e\\ f \end{array}$	$\begin{array}{c} a \\ d \\ d \\ d \\ 0 \\ g \\ h \end{array}$	$\begin{array}{c} e \\ e \\ e \\ e \\ h \\ 0 \\ g \end{array}$		$\begin{array}{c} g\\ h\\ h\\ h\\ f\\ d\\ e\end{array}$	$ \begin{array}{c} n\\ g\\ g\\ g\\ g\\ e\\ f\\ d \end{array} $
$\begin{array}{c} 0\\ a\\ b\\ c\\ d\\ e\\ f\\ g \end{array}$	$\begin{matrix} 0\\ a\\ b\\ c\\ d\\ e\\ f\\ g\end{matrix}$	$\begin{array}{c} a\\ 0\\ 0\\ 0\\ d\\ e\\ f\\ g \end{array}$	$\begin{matrix} 0\\ 0\\ 0\\ 0\\ d\\ e\\ f\\ g\end{matrix}$	$\begin{array}{c} c\\ 0\\ c\\ b\\ 0\\ d\\ e\\ f\\ g \end{array}$	$\begin{array}{c} a \\ d \\ d \\ d \\ 0 \\ g \\ h \\ e \end{array}$	$\begin{array}{c} e \\ e \\ e \\ e \\ h \\ 0 \\ g \\ f \end{array}$	$\begin{array}{c} f\\ f\\ f\\ f\\ g\\ h\\ 0\\ d\end{array}$	$\begin{array}{c} g\\ h\\ h\\ h\\ f\\ d\\ e\\ 0 \end{array}$	$ \begin{array}{c} n\\ g\\ g\\ g\\ e\\ f\\ d\\ g \end{array} $

Then $(\{0, a, b, c, d, e, f, g, h\}; *, \diamond, 0)$ is a pseudo-BCH-algebra. Observe that it is proper. Indeed, $(b * c) \diamond (b * a) = b \diamond 0 = b \nleq c = a * c$.

Let T be any set and, for each $t \in T$, let $\mathfrak{X}_t = (X_t; *_t, \diamond_t, 0)$ be a pseudo-BCH-algebra satisfying (pBCK). Suppose that $X_s \cap X_t = \{0\}$ for $s \neq t$, $s, t \in T$. Set $X = \bigcup_{t \in T} X_t$ and define the binary operations * and \diamond on X via

$$x * y = \begin{cases} x *_t y & \text{if } x, y \in X_t, t \in T, \\ x & \text{if } x \in X_s, y \in X_t, s \neq t, s, t \in T, \end{cases}$$

and

$$x \diamond y = \begin{cases} x \diamond_t y & \text{if } x, y \in X_t, \ t \in T, \\ x & \text{if } x \in X_s, \ y \in X_t, \ s \neq t, \ s, t \in T. \end{cases}$$

It is easy to check that $\mathfrak{X} = (X; *, \diamond, 0)$ is a pseudo-BCH-algebra. Following the terminology for BCH-algebras (see [1]), the algebra \mathfrak{X} will be called the *disjoint union* of $(\mathfrak{X}_t)_{t\in T}$. We shall denote it by $\sum_{t\in T} \mathfrak{X}_t$.

Example 2.6. Let $\mathfrak{X}_1 = (\{0, a, b, c\}; *_1, \diamond_1, 0)$ be the pseudo-BCH-algebra from Example 2.4. Consider the set $X_2 = \{0, 1, 2, 3\}$ with the operation $*_2$ defined by the following table:

*2	0	1	2	3
0	0	0	0	0
1	1	0	2	1
2	2	0	0	2
3	3	3	0	0

Routine calculations show that $\mathfrak{X}_2 = (X_2; *_2, *_2, 0)$ is a (pseudo)-BCHalgebra. Let $X = \{0, a, b, c, 1, 2, 3\}$. We define the binary operations *and \diamond on X as follows

*	0	a	b	c	1	2	3		\diamond	0	a	b	c	1	2	3	
0	0	0	0	0	0	0	0	and	0	0	0	0	0	0	0	0	0
a	a	0	a	0	a	a	a		a	a	0	a	0	a	a	a	
b	b	b	0	0	b	b	b		b	b	b	0	0	b	b	b	
c	c	b	c	0	c	c	c		c	c	c	a	0	c	c	c	
1	1	1	1	1	0	2	1		1	1	1	1	1	0	2	1	
2	2	2	2	2	0	0	2			2	2	2	2	2	0	0	2
3	3	3	3	3	3	0	0		3	3	3	3	3	3	0	0	

It is clear that $\mathfrak{X} = (X; *, \diamond, 0)$ is the disjoint union of \mathfrak{X}_1 and \mathfrak{X}_2 . We have $(3 * 1) \diamond (3 * 2) = 3 \diamond 0 = 3 \leq 0 = 2 * 1$, and therefore \mathfrak{X} is not a pseudo-BCI-algebra. Thus \mathfrak{X} is a proper pseudo-BCH-algebra.

From [18] it follows that in any pseudo-BCH-algebra \mathfrak{X} for all $x, y \in X$ we have:

(a1) $x * (x \diamond y) \leq y$ and $x \diamond (x * y) \leq y$; (a2) $x * 0 = x \diamond 0 = x$; (a3) $0 * x = 0 \diamond x$; (a4) 0 * (0 * (0 * x)) = 0 * x; (a5) $0 * (x * y) = (0 * x) \diamond (0 * y)$; (a6) $0 * (x \diamond y) = (0 * x) * (0 * y).$

Following the terminology of [18], the set $\{a \in X : a = 0 * (0 * a)\}$ will be called the *centre* of \mathfrak{X} . W shall denote it by Cen \mathfrak{X} . By Proposition 4.1 of [18], Cen \mathfrak{X} is the set of all minimal elements of \mathfrak{X} , that is,

$$\operatorname{Cen} \mathfrak{X} = \{ a \in X : \forall_{x \in X} (x \leqslant a \Longrightarrow x = a) \}.$$

By (a4),

$$(3) 0 * x \in \operatorname{Cen} \mathfrak{X}$$

for all $x \in \mathfrak{X}$.

Minimal elements (also called atoms) were investigated in BCI/BCHalgebras ([17], [14]), pseudo-BCI-algebras ([7]), and in other algebras of logic (see for example [2], [4], and [5]).

Proposition 2.7 ([18]). Let \mathfrak{X} be a pseudo-BCH-algebra, and let $a \in X$. Then the following conditions are equivalent:

- (i) $a \in \operatorname{Cen} \mathfrak{X}$.
- (ii) a * x = 0 * (x * a) for all $x \in X$.
- (iii) $a \diamond x = 0 * (x \diamond a)$ for all $x \in X$.

Proposition 2.8 ([18]). Cen \mathfrak{X} is a subalgebra of \mathfrak{X} .

3. Ideals in pseudo-BCH-algebras.

Definition 3.1. A subset I of X is called an *ideal* of \mathfrak{X} if it satisfies for all $x, y \in X$,

- (I1) $0 \in I;$
- (I2) if $x * y \in I$ and $y \in I$, then $x \in I$.

We will denote by $Id(\mathfrak{X})$ the set of all ideals of \mathfrak{X} . Obviously, $\{0\}, X \in Id(\mathfrak{X})$.

Proposition 3.2 ([18]). Let I be an ideal of \mathfrak{X} . For any $x, y \in X$, if $y \in I$ and $x \leq y$, then $x \in I$.

Proposition 3.3 ([18]). Let \mathfrak{X} be a pseudo-BCH-algebra and I be a subset of X satisfying (I1). Then I is an ideal of \mathfrak{X} if and only if for all $x, y \in X$, (I2') if $x \diamond y \in I$ and $y \in I$, then $x \in I$.

Example 3.4. Consider the pseudo-BCH-algebra \mathfrak{G} given in Example 2.3. Let a be an element of G. It is clear that $\{a^n : n \in \mathbb{N} \cup \{0\}\}$ is an ideal of \mathfrak{G} .

Example 3.5. Let $\mathfrak{X}_1 = (\{0, a, b, c\}; *_1, \diamond_1, 0)$ be the pseudo-BCH-algebra from Example 2.4. It is easy to check that $I_1 = \{0\}$, $I_2 = \{0, a\}$, $I_3 = \{0, b\}$, and $I_4 = \{0, a, b, c\}$ are ideals of \mathfrak{X}_1 . Let I be an ideal of \mathfrak{X}_1 and suppose that $c \in I$. Since $a *_1 c = b *_1 c = 0 \in I$, (I2) shows that $a, b \in I$, and therefore $I = X_1$. Similarly, if $a, b \in I$, then $I = X_1$. Thus $\mathrm{Id}(\mathfrak{X}_1) = \{I_1, I_2, I_3, I_4\}$. **Theorem 3.6.** Let \mathfrak{X} be a pseudo-BCH-algebra and I be a subset of X containing 0. The following statements are equivalent:

- (i) I is an ideal of \mathfrak{X} .
- (ii) $x \in I, y \in X I \Longrightarrow y * x \in X I.$
- (iii) $x \in I, y \in X I \Longrightarrow y \diamond x \in X I.$

Proof. (i) \Longrightarrow (ii): Assume that *I* is an ideal of \mathfrak{X} , let $x \in I$ and $y \in X - I$. If $y * x \in I$, then $y \in I$ by definition. Therefore $y * x \in X - I$.

(ii) \implies (i): To prove that $I \in Id(\mathfrak{X})$, let $y * x \in I$ and $x \in I$. If $y \notin I$, then (ii) implies $y * x \in X - I$, a contradiction. Hence $y \in I$, which gives that I is an ideal of \mathfrak{X} .

Thus we have (i) \iff (ii). The proof of the equivalence of (i) and (iii) is similar.

For any pseudo-BCH-algebra \mathfrak{X} , we set

$$\mathbf{K}(\mathfrak{X}) = \{ x \in X : 0 \leq x \}.$$

Proposition 3.7 ([18]). Let \mathfrak{X}_1 and \mathfrak{X}_2 be pseudo-BCH-algebras. Then

 $\mathrm{K}(\mathfrak{X}_1 \times \mathfrak{X}_2) = \mathrm{K}(\mathfrak{X}_1) \times \mathrm{K}(\mathfrak{X}_2).$

Observe that

(4)
$$\operatorname{Cen} \mathfrak{X} \cap \mathrm{K}(\mathfrak{X}) = \{0\}.$$

Indeed, $0 \in \operatorname{Cen} \mathfrak{X} \cap \operatorname{K}(\mathfrak{X})$ and if $x \in \operatorname{Cen} \mathfrak{X} \cap \operatorname{K}(\mathfrak{X})$, then x = 0 * (0 * x) = 0 * 0 = 0.

Theorem 3.8.

- (i) For any $t \in T$, let I_t be an ideal of a pseudo-BCH-algebra $(X_t; *_t, \circ_t, 0_t)$. Then $I \coloneqq \prod_{t \in T} I_t$ is an ideal of $\mathfrak{X} \coloneqq \prod_{t \in T} \mathfrak{X}_t$.
- (ii) If I is an ideal of \mathfrak{X} such that $I \subseteq K(\mathfrak{X})$, then $I_t \coloneqq \pi_t(I)$, where π_t is the t-th projection of \mathfrak{X} onto \mathfrak{X}_t , is an ideal of \mathfrak{X}_t , and $I \subseteq \prod_{t \in T} I_t$.

Proof. (i) The first part of the assertion is obvious.

(ii) The proof of this is similar to that of Theorem 5.1.35 [6]. \Box

Proposition 3.9. Let \mathfrak{X}_1 and \mathfrak{X}_2 be pseudo-BCH-algebras satisfying the condition (pBCK). Then

$$\mathrm{Id}(\mathfrak{X}_1 \times \mathfrak{X}_2) = \mathrm{Id}(\mathfrak{X}_1) \times \mathrm{Id}(\mathfrak{X}_2).$$

Proof. Let $\mathfrak{X} = \mathfrak{X}_1 \times \mathfrak{X}_2$ and $I \in \mathrm{Id}(\mathfrak{X})$. By Proposition 3.7, $\mathrm{K}(\mathfrak{X}) = \mathrm{K}(\mathfrak{X}_1) \times \mathrm{K}(\mathfrak{X}_2) = X_1 \times X_2 = X$, and therefore $I \subseteq \mathrm{K}(\mathfrak{X})$. From Theorem 3.8 (ii) it follows that $I \subseteq I_1 \times I_2$, where $I_1 = \pi_1(I)$, $I_2 = \pi_2(I)$. Let $a \in I_1$ and $b \in I_2$. There are $c \in X_2$ and $d \in X_1$ such that $(a, c), (d, b) \in I$. Since $(a, 0) \leq (a, c)$ and $(0, b) \leq (d, b)$, we conclude that $(a, 0), (0, b) \in I$. Observe that $(a, b) \in I$. Indeed, we have (a, b) * (0, b) = (a, 0) and $(a, 0), (0, b) \in I$. From this $(a, b) \in I$. Therefore $I = I_1 \times I_2 \in \mathrm{Id}(\mathfrak{X}_1) \times \mathrm{Id}(\mathfrak{X}_2)$.

A. Walendziak

Conversely, let $I = I_1 \times I_2$, where $I_1 \in Id(\mathfrak{X}_1)$ and $I_2 \in Id(\mathfrak{X}_2)$. By Theorem 3.8 (i), I is an ideal of \mathfrak{X} .

Example 3.10. Let $\mathfrak{X} = \mathfrak{X}_1 \times \mathfrak{X}_2$ be the pseudo-BCH-algebra given in Example 2.4. We know that $\mathrm{Id}(\mathfrak{X}_1) = \{I_1, I_2, I_3, I_4\}$ where $I_1 = \{0\}, I_2 = \{0, a\}, I_3 = \{0, b\}$, and $I_4 = X_1$ (see Example 3.5). It is easily seen that the only ideals of \mathfrak{X}_2 are the following subsets of X_2 : $J_1 = \{0\}, J_2 = \{0, 1\}, J_3 = \{0, 1, 2\}, \text{ and } J_4 = X_2$. Then, by Proposition 3.9, $\mathrm{Id}(\mathfrak{X}) = \{I_m \times J_n : m, n = 1, 2, 3, 4\}$.

Theorem 3.11. Let $(\mathfrak{X}_t)_{t\in T}$ be an indexed family of pseudo-BCH-algebras satisfying (pBCK) and $\mathfrak{X} = \sum_{t\in T} \mathfrak{X}_t$. Let I_t be an ideal of \mathfrak{X}_t for $t \in T$. Then $\bigcup_{t\in T} I_t$ is an ideal of \mathfrak{X} . Conversely, every ideal of \mathfrak{X} is of this form.

Proof. Let $I = \bigcup_{t \in T} I_t$. Of course, $0 \in I$. Let $x * y \in I$ and $y \in I$. If $x \in X_t$ and $y \in X_u$, where $t \neq u$, then $x = x * y \in I$. Suppose that $x, y \in X_t$. Then $x * y, y \in I_t$. Since I_t is an ideal of \mathfrak{X}_t , we conclude that $x \in I_t$. Hence $x \in I$, and consequently, $I \in \mathrm{Id}(\mathfrak{X})$.

Now let I be an ideal of \mathfrak{X} . It is easy to see that $I_t := I \cap X_t \in \mathrm{Id}(\mathfrak{X}_t)$ for $t \in T$. We have $I = I \cap \bigcup_{t \in T} X_t = \bigcup_{t \in T} I \cap X_t = \bigcup_{t \in T} I_t$. \Box

Example 3.12. Consider the pseudo-BCH-algebras $\mathfrak{X}_1, \mathfrak{X}_2$, and \mathfrak{X} , which are described in Example 2.6. We know that $\mathrm{Id}(\mathfrak{X}_1) = \{\{0\}, \{0, a\}, \{0, b\}, X_1\}$ (by Example 3.5). It is easy to check that $\mathrm{Id}(\mathfrak{X}_2) = \{\{0\}, \{0, 3\}, X_2\}$. Applying Theorem 3.11, we get $\mathrm{Id}(\mathfrak{X}) = \{\{0\}, \{0, a\}, \{0, b\}, X_1, \{0, 3\}, \{0, 3, a\}, \{0, 3, b\}, X_1 \cup \{3\}, X_2, X_2 \cup \{a\}, X_2 \cup \{b\}, X\}$.

Cen \mathfrak{X} is a subalgebra of \mathfrak{X} (see Proposition 2.8) but it may not be an ideal. For example, let $Y = \{0, a, b, c, d, e, f, g, h\}$ and $\mathfrak{Y} = (Y; *, \diamond, 0)$ be the pseudo-BCH-algebra given in Example 2.5. Then Cen $\mathfrak{Y} = \{0, d, e, f, g, h\}$. It is easy to see that Cen \mathfrak{Y} is not an ideal of \mathfrak{Y} . Now we establish conditions for the set Cen \mathfrak{X} to be an ideal of a pseudo-BCH-algebra \mathfrak{X} .

Theorem 3.13. Let \mathfrak{X} be a pseudo-BCH-algebra. The following statements are equivalent:

- (i) Cen \mathfrak{X} is an ideal of \mathfrak{X} .
- (ii) x = (x * a) * (0 * a) for $x \in X$, $a \in \text{Cen } \mathfrak{X}$.
- (iii) For all $x \in X$, $a \in \text{Cen } \mathfrak{X}$, x * a = 0 * a implies x = 0.
- (iv) For all $x \in K(\mathfrak{X})$, $a \in Cen \mathfrak{X}$, x * a = 0 * a implies x = 0.

Proof. (i) \implies (ii): Write $I = \text{Cen } \mathfrak{X}$, and suppose that I is an ideal of \mathfrak{X} . Let $x \in X$ and $a \in I$. By (pBCH-2) and (pBCH-1),

 $((x*a)*(0*a))\diamond x = ((x*a)\diamond x)*(0*a) = ((x\diamond x)*a))*(0*a) = (0*a)*(0*a) = 0,$ and hence

(5)
$$(x*a)*(0*a) \leqslant x.$$

Using (pBCH-2) and (a1), we obtain

(6) $(x \diamond ((x * a) * (0 * a))) * a = (x * a) \diamond ((x * a) * (0 * a)) \leq 0 * a.$

By (3), $0 * a \in I$. From (6) and Proposition 3.2 we conclude that

 $(x \diamond ((x \ast a) \ast (0 \ast a))) \ast a \in I.$

Since $a \in I$, by the definition of ideal we deduce that

(7)
$$x \diamond ((x * a) * (0 * a)) \in I.$$

Applying (a6) and Proposition 2.7, we get

$$0*((x*a)*(0*a)) = (0*(x*a)) \diamond (0*(0*a)) = (a*x) \diamond a = (a \diamond a) * x = 0 * x$$

Then $0 * (x \diamond ((x * a) * (0 * a))) = (0 * x) * (0 * x) = 0$, and hence

$$x \diamond ((x \ast a) \ast (0 \ast a)) \in \mathbf{K}(\mathfrak{X}).$$

From this and (7) we have $x \diamond ((x * a) * (0 * a)) \in I \cap \mathcal{K}(\mathfrak{X}) = \{0\}$ (see (4)), that is, $x \diamond ((x * a) * (0 * a)) = 0$. Therefore

$$(8) x \leqslant (x*a)*(0*a).$$

By (5) and (8) we obtain x = (x * a) * (0 * a).

(ii) \implies (iii): Let $x \in X$, $a \in \operatorname{Cen} \mathfrak{X}$, and x * a = 0 * a. Then x = (x * a) * (0 * a) = (x * a) * (x * a) = 0.

(iii) \implies (iv) is obvious.

(iv) \Longrightarrow (i): To prove that Cen \mathfrak{X} is an ideal, let $a, x * a \in \text{Cen } \mathfrak{X}$. Observe that $x \diamond (0 * (0 * x)) \in \text{K}(\mathfrak{X})$. By (a6) and (a4), $0 * [x \diamond (0 * (0 * x))] = (0 * x) * (0 * (0 * (0 * x))) = (0 * x) * (0 * x) = 0$, and hence

(9)
$$x \diamond (0 * (0 * x)) \in \mathbf{K}(\mathfrak{X}).$$

We have

$$x * a = 0 * (0 * (x * a))$$
 [since $x * a \in Cen \mathfrak{X}$]
= $(0 * (0 * x)) * (0 * (0 * a))$ [by (a5) and (a6)]
= $(0 * (0 * x)) * a$. [since $a \in Cen \mathfrak{X}$]

Then by (pBCH-2) and (pBCH-1),

$$[x \diamond (0 \ast (0 \ast x))] \ast a = (x \ast a) \diamond (0 \ast (0 \ast x)) = [(0 \ast (0 \ast x)) \ast a] \diamond (0 \ast (0 \ast x)) = 0 \ast a,$$

that is,

$$[x \diamond (0 * (0 * x))] * a = 0 * a.$$

Applying (iv) we get $x \diamond (0 * (0 * x)) = 0$. Hence $x \leq 0 * (0 * x)$. By (a3) and (a1), $0 * (0 * x) = 0 * (0 \diamond x) \leq x$, and therefore x = 0 * (0 * x). From this $x \in \text{Cen } \mathfrak{X}$. Thus $\text{Cen } \mathfrak{X}$ is an ideal of \mathfrak{X} .

We also have theorem analogous to Theorem 3.13.

Theorem 3.14. Let \mathfrak{X} be a pseudo-BCH-algebra. The following statements are equivalent:

- (i) Cen \mathfrak{X} is an ideal of \mathfrak{X} .
- (ii) $x = (x \diamond a) \diamond (0 \diamond a)$ for $x \in X$, $a \in \text{Cen } \mathfrak{X}$.
- (iii) For all $x \in X$, $a \in \text{Cen } \mathfrak{X}$, $x \diamond a = 0 \diamond a$ implies x = 0.
- (iv) For all $x \in K(\mathfrak{X})$, $a \in Cen \mathfrak{X}$, $x \diamond a = 0 \diamond a$ implies x = 0.

References

- Dudek, W. A., Thomys, J., On decompositions of BCH-algebras, Math. Japon. 35 (1990), 1131–1138.
- [2] Dudek, W. A., Zhang, X., On atoms in BCC-algebras, Discuss. Math. Algebra Stochastic Methods 15 (1995), 81–85.
- [3] Dudek, W. A., Jun, Y. B., Pseudo-BCI-algebras, East Asian Math. J. 24 (2008), 187–190.
- [4] Dudek, W. A., Zhang, X., Wang, Y., Ideals and atoms of BZ-algebras, Math. Slovaca 59 (2009), 387–404.
- [5] Dudek, W. A., Karamdin, B., Bhatti, S. A., Branches and ideals of weak BCCalgebras, Algebra Colloq. 18 (Special) (2011), 899–914.
- [6] Dvurečenskij, A., Pulmannová, S., New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht; Ister Science, Bratislava, 2000.
- [7] Dymek, G., Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012), 73–90.
- [8] Dymek, G., On pseudo-BCI-algebras, Ann. Univ. Mariae Curie-Skłodowska Sect. A 69 (1) (2015), 59–71.
- [9] Georgescu, G., Iorgulescu, A., Pseudo-BCK algebras: an extension of BCK algebras, in Proc. of DMTCS'01: Combinatorics, Computability and Logic, 97–114, Springer, London, 2001.
- [10] Hu, Q. P., Li, X., On BCH-algebras, Math. Seminar Notes 11 (1983), 313–320.
- [11] Imai, Y., Iséki, K., On axiom systems of propositional calculi XIV, Proc. Japan Acad. 42 (1966), 19–22.
- [12] Iséki, K., An algebra related with a propositional culculus, Proc. Japan Acad. 42 (1966), 26–29.
- [13] Iorgulescu, A., Algebras of Logic as BCK-algebras, Editura ASE, Bucharest, 2008.
- [14] Kim, K. H., Roh, E. H., The role of A^+ and A(X) in BCH-algebras, Math. Japon. **52** (2000), 317–321.
- [15] Kim, Y. H., So, K. S., On minimality in pseudo-BCI-algebras, Commun. Korean Math. Soc. 27 (2012), 7–13.
- [16] Lee, K. J, Park, C. H., Some ideals of pseudo-BCI-algebras, J. Appl. Math. Inform. 27 (2009), 217–231.
- [17] Meng, J., Xin, X. L., Characterizations of atoms in BCI-algebras, Math. Japon. 37 (1992), 359–361.
- [18] Walendziak, A., Pseudo-BCH-algebras, Discuss. Math. Gen. Algebra Appl. 35 (2015), 1–15.
- [19] Walendziak, A., Wojciechowska-Rysiawa, M., Fuzzy ideals of pseudo-BCH-algebras, Mathematica Aeterna 5 (2015), 867–881.

Andrzej Walendziak Institute of Mathematics and Physics Faculty of Science Siedlce University of Natural Sciences and Humanities 3 Maja 54, PL-08110 Siedlce Poland e-mail: walent@interia.pl

Received January 17, 2016