ANNALES
 UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA
 LUBLIN - POLONIA

VOL. LXX, NO. 1, 2016

ANDRZEJ WALENDZIAK

On ideals of pseudo-BCH-algebras

Abstract

In this paper we introduce the notion of a disjoint union of pseudo-BCH-algebras and describe ideals in such algebras. We also investigate ideals of direct products of pseudo-BCH-algebras. Moreover, we establish conditions for the set of all minimal elements of a pseudo-BCH-algebra \mathfrak{X} to be an ideal of \mathfrak{X}.

1. Introduction. In 1966, Y. Imai and K. Iséki ([11], [12]) introduced BCK- and BCI-algebras. In 1983, Q. P. Hu and X. Li ([10]) introduced BCH-algebras. It is known that BCK- and BCI-algebras are contained in the class of BCH -algebras.

In 2001, G. Georgescu and A. Iorgulescu ([9]) introduced pseudo-BCKalgebras as an extension of BCK-algebras. In 2008, W. A. Dudek and Y. B. Jun ([3]) introduced pseudo-BCI-algebras as a natural generalization of BCI-algebras and of pseudo-BCK-algebras. These algebras have also connections with other algebras of logic such as pseudo-MV-algebras and pseudo-BL-algebras defined by G. Georgescu and A. Iorgulescu (see [13]). Those algebras were investigated by several authors in [7], [8], [15] and [16]. Recently, A. Walendziak ([18]) introduced pseudo-BCH-algebras as an extension of BCH -algebras and studied the set Cen \mathfrak{X} of all minimal elements of a pseudo-BCH-algebra \mathfrak{X}, the so-called centre of \mathfrak{X}. He also considered ideals in pseudo-BCH-algebras and established a relationship between the ideals of a pseudo- BCH -algebra and the ideals of its centre.

[^0]In this paper we introduce the notion of a disjoint union of pseudo-BCHalgebras and describe ideals in such algebras. We also investigate ideals of direct products of pseudo-BCH-algebras. Moreover, we establish conditions for the set Cen \mathfrak{X} to be an ideal of a pseudo-BCH-algebra \mathfrak{X}.
2. Pseudo-BCH-algebras. We recall that an algebra $\mathfrak{X}=(X ; *, 0)$ of type $(2,0)$ is called a $B C H$-algebra if it satisfies the following axioms:
(BCH-1) $x * x=0$;
$(\mathrm{BCH}-2)(x * y) * z=(x * z) * y$;
(BCH-3) $x * y=y * x=0 \Longrightarrow x=y$.
A BCH-algebra \mathfrak{X} is said to be a $B C I$-algebra if it satisfies the identity $(\mathrm{BCI})((x * y) *(x * z)) *(z * y)=0$.
A $B C K$-algebra is a BCI-algebra \mathfrak{X} satisfying the law $0 * x=0$.
Definition 2.1 ([3]). A pseudo-BCI-algebra is a structure $\mathfrak{X}=(X ; \leq, *, \diamond, 0)$, where " \leq " is a binary relation on the set X, "*" and " \diamond " are binary operations on X and " 0 " is an element of X, satisfying the axioms:

```
(pBCI-1) }(x*y)\diamond(x*z)\leqz*y,\quad(x\diamondy)*(x\diamondz)\leqz\diamondy
(pBCI-2) }x*(x\diamondy)\leqy,\quadx\diamond(x*y)\leqy
(pBCI-3) }x\leqx\mathrm{ ;
(pBCI-4) }x\leqy,y\leqx\Longrightarrowx=y
(pBCI-5) }x\leqy\Longleftrightarrowx*y=0\Longleftrightarrowx\diamondy=0
```

A pseudo-BCI-algebra \mathfrak{X} is called a pseudo-BCK-algebra if it satisfies the identities

$$
(\mathrm{pBCK}) 0 * x=0 \diamond x=0
$$

Definition 2.2 ([18]). A pseudo-BCH-algebra is an algebra $\mathfrak{X}=(X ; *, \diamond, 0)$ of type $(2,2,0)$ satisfying the axioms:

$$
\begin{aligned}
& \text { (pBCH-1) } x * x=x \diamond x=0 ; \\
& \text { (pBCH-2) }(x * y) \diamond z=(x \diamond z) * y ; \\
& \text { (pBCH-3) } x * y=y \diamond x=0 \Longrightarrow x=y ; \\
& \text { (pBCH-4) } x * y=0 \Longleftrightarrow x \diamond y=0 .
\end{aligned}
$$

We define a binary relation \leqslant on X by

$$
x \leqslant y \Longleftrightarrow x * y=0 \Longleftrightarrow x \diamond y=0
$$

Throughout this paper \mathfrak{X} will denote a pseudo-BCH-algebra.
Remark. Observe that if $(X ; *, 0)$ is a BCH-algebra, then letting $x \diamond y:=$ $x * y$, produces a pseudo-BCH-algebra $(X ; *, \diamond, 0)$. Therefore, every BCHalgebra is a pseudo-BCH-algebra in a natural way. It is easy to see that if $(X ; *, \diamond, 0)$ is a pseudo-BCH-algebra, then $(X ; \diamond, *, 0)$ is also a pseudo-BCHalgebra. From Proposition 3.2 of [3] we conclude that if $(X ; \leq, *, \diamond, 0)$ is a pseudo-BCI-algebra, then $(X ; *, \diamond, 0)$ is a pseudo- BCH -algebra.

Example 2.3 ([19]). Let $(G ; \cdot, e)$ be a group. Define binary operations * and \diamond on G by

$$
a * b=a b^{-1} \quad \text { and } \quad a \diamond b=b^{-1} a
$$

for all $a, b \in G$. Then $\mathfrak{G}=(G ; *, \diamond, e)$ is a pseudo-BCH-algebra.
We say that a pseudo-BCH-algebra \mathfrak{X} is proper if $* \neq \diamond$ and it is not a pseudo-BCI-algebra.

Remark. The class of all pseudo-BCH-algebras is a quasi-variety. Therefore, if $\left(\mathfrak{X}_{t}\right)_{t \in T}$ is an indexed family of pseudo-BCH-algebras, then the direct product $\mathfrak{X}=\prod_{t \in T} \mathfrak{X}_{t}$ is also a pseudo-BCH-algebra. In the case when at least one of \mathfrak{X}_{t} is proper, then \mathfrak{X} is proper.

Example 2.4. Let $X_{1}=\{0, a, b, c\}$. We define the binary operations $*_{1}$ and \diamond_{1} on X_{1} as follows:

$*_{1}$	0	a	b	c						
0	0	0	0	0						
a	a	0	a	0						
b	b	b	0	0						
c	c	b	c	0	\quad and \quad	\diamond_{1}	0	a	b	c
:---:	:---:	:---:	:---:	:---:						
0	0	0	0	0						
a	a	0	a	0						
b	b	b	0	0						
c		c	c	a						

On the set $X_{2}=\{0,1,2,3\}$ consider the operation $*_{2}$ given by the following table:

$*_{2}$	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	2	0	0
3	3	3	3	0

Then $\mathfrak{X}_{1}=\left(X_{1} ; *_{1}, \diamond_{1}, 0\right)$ and $\mathfrak{X}_{2}=\left(X_{2} ; *_{2}, *_{2}, 0\right)$ are pseudo-BCH-algebras (see [18]). Therefore, the direct product $\mathfrak{X}=\mathfrak{X}_{1} \times \mathfrak{X}_{2}$ is a (proper) pseudoBCH -algebra.

Let $\mathfrak{X}=(X ; *, \diamond, 0)$ be a pseudo-BCH-algebra satisfying (pBCK), and let $(G ; \cdot, e)$ be a group. Denote $Y=G-\{e\}$ and suppose that $X \cap Y=\emptyset$. Define the binary operations $*$ and \diamond on $X \cup Y$ by

$$
x * y= \begin{cases}x * y & \text { if } x, y \in X \tag{1}\\ x y^{-1} & \text { if } x, y \in Y \text { and } x \neq y \\ 0 & \text { if } x, y \in Y \text { and } x=y \\ y^{-1} & \text { if } x \in X, y \in Y \\ x & \text { if } x \in Y, y \in X\end{cases}
$$

and

$$
x \diamond y= \begin{cases}x \diamond y & \text { if } x, y \in X \tag{2}\\ y^{-1} x & \text { if } x, y \in Y \text { and } x \neq y \\ 0 & \text { if } x, y \in Y \text { and } x=y \\ y^{-1} & \text { if } x \in X, y \in Y \\ x & \text { if } x \in Y, y \in X\end{cases}
$$

Routine calculations give that $(X \cup Y ; *, \diamond, 0)$ is a pseudo-BCH-algebra; it is proper if \mathfrak{X} is proper.
Example 2.5. Consider the set $X=\{0, a, b, c\}$ with the operation $*$ defined by the following table:

$$
\begin{array}{c|cccc}
* & 0 & a & b & c \\
\hline 0 & 0 & 0 & 0 & 0 \\
a & a & 0 & c & c \\
b & b & 0 & 0 & b \\
c & c & 0 & 0 & 0
\end{array}
$$

Then $\mathfrak{X}=(X ; *, 0)$ is a BCH-algebra (see [10]). Let \mathfrak{G} be the group of all permutations of $\{1,2,3\}$. We have $G=\{\imath, d, e, f, g, h\}$, where $\imath=(1), d=$ (12), $e=(13), f=(23), g=(123)$, and $h=(132)$. Applying (1) and (2) we obtain the following tables:

$*$	0	a	b	c	d	e	f	g	h
0	0	0	0	0	d	e	f	h	g
a	a	0	c	c	d	e	f	h	g
b	b	0	0	b	d	e	f	h	g
c	c	0	0	0	d	e	f	h	g
d	d	d	d	d	0	h	g	e	f
e	e	e	e	e	g	0	h	f	d
f	f	f	f	f	h	g	0	d	e
g	g	g	g	g	e	f	d	0	h
h	h	h	h	h	f	d	e	g	0

and

\diamond	0	a	b	c	d	e	f	g	h
0	0	0	0	0	d	e	f	h	g
a	a	0	c	c	d	e	f	h	g
b	b	0	0	b	d	e	f	h	g
c	c	0	0	0	d	e	f	h	g
d	d	d	d	d	0	h	g	f	e
e	e	e	e	e	g	0	h	d	f
f	f	f	f	f	h	g	0	e	d
g	g	g	g	g	e	f	d	0	g
h	h	h	h	h	f	d	e	h	0

Then $(\{0, a, b, c, d, e, f, g, h\} ; *, \diamond, 0)$ is a pseudo- BCH -algebra. Observe that it is proper. Indeed, $(b * c) \diamond(b * a)=b \diamond 0=b \nless c=a * c$.

Let T be any set and, for each $t \in T$, let $\mathfrak{X}_{t}=\left(X_{t} ; *_{t}, \diamond_{t}, 0\right)$ be a pseudo-BCH-algebra satisfying (pBCK). Suppose that $X_{s} \cap X_{t}=\{0\}$ for $s \neq t$, $s, t \in T$. Set $X=\bigcup_{t \in T} X_{t}$ and define the binary operations $*$ and \diamond on X via

$$
x * y= \begin{cases}x *_{t} y & \text { if } x, y \in X_{t}, t \in T \\ x & \text { if } x \in X_{s}, y \in X_{t}, s \neq t, s, t \in T\end{cases}
$$

and

$$
x \diamond y= \begin{cases}x \diamond_{t} y & \text { if } x, y \in X_{t}, t \in T \\ x & \text { if } x \in X_{s}, y \in X_{t}, s \neq t, s, t \in T\end{cases}
$$

It is easy to check that $\mathfrak{X}=(X ; *, \diamond, 0)$ is a pseudo-BCH-algebra. Following the terminology for BCH-algebras (see [1]), the algebra \mathfrak{X} will be called the disjoint union of $\left(\mathfrak{X}_{t}\right)_{t \in T}$. We shall denote it by $\sum_{t \in T} \mathfrak{X}_{t}$.
Example 2.6. Let $\mathfrak{X}_{1}=\left(\{0, a, b, c\} ; *_{1}, \diamond_{1}, 0\right)$ be the pseudo-BCH-algebra from Example 2.4. Consider the set $X_{2}=\{0,1,2,3\}$ with the operation $*_{2}$ defined by the following table:

$*_{2}$	0	1	2	3
0	0	0	0	0
1	1	0	2	1
2	2	0	0	2
3	3	3	0	0

Routine calculations show that $\mathfrak{X}_{2}=\left(X_{2} ; *_{2}, *_{2}, 0\right)$ is a (pseudo)-BCHalgebra. Let $X=\{0, a, b, c, 1,2,3\}$. We define the binary operations * and \diamond on X as follows

$*$	0	a	b	c	1	2	3
0	0	0	0	0	0	0	0
a	a	0	a	0	a	a	a
b	b	b	0	0	b	b	b
c	c	b	c	0	c	c	c
1	1	1	1	1	0	2	1
2	2	2	2	2	0	0	2
3	3	3	3	3	3	0	0

\diamond	0	a	b	c	1	2	3
0	0	0	0	0	0	0	0
a	a	0	a	0	a	a	a
b	b	b	0	0	b	b	b
c	c	c	a	0	c	c	c
1	1	1	1	1	0	2	1
2	2	2	2	2	0	0	2
3	3	3	3	3	3	0	0

It is clear that $\mathfrak{X}=(X ; *, \diamond, 0)$ is the disjoint union of \mathfrak{X}_{1} and \mathfrak{X}_{2}. We have $(3 * 1) \diamond(3 * 2)=3 \diamond 0=3 \nless 0=2 * 1$, and therefore \mathfrak{X} is not a pseudo-BCI-algebra. Thus \mathfrak{X} is a proper pseudo-BCH-algebra.

From [18] it follows that in any pseudo-BCH-algebra \mathfrak{X} for all $x, y \in X$ we have:
(a1) $x *(x \diamond y) \leqslant y \quad$ and $\quad x \diamond(x * y) \leqslant y ;$
(a2) $x * 0=x \diamond 0=x$;
(a3) $0 * x=0 \diamond x$;
(a4) $0 *(0 *(0 * x))=0 * x$;
(a5) $0 *(x * y)=(0 * x) \diamond(0 * y)$;
(a6) $0 *(x \diamond y)=(0 * x) *(0 * y)$.
Following the terminology of [18], the set $\{a \in X: a=0 *(0 * a)\}$ will be called the centre of \mathfrak{X}. W shall denote it by Cen \mathfrak{X}. By Proposition 4.1 of [18], Cen \mathfrak{X} is the set of all minimal elements of \mathfrak{X}, that is,

$$
\text { Cen } \mathfrak{X}=\left\{a \in X: \forall_{x \in X}(x \leqslant a \Longrightarrow x=a)\right\} .
$$

By (a4),

$$
\begin{equation*}
0 * x \in \operatorname{Cen} \mathfrak{X} \tag{3}
\end{equation*}
$$

for all $x \in \mathfrak{X}$.
Minimal elements (also called atoms) were investigated in BCI/BCHalgebras ([17], [14]), pseudo-BCI-algebras ([7]), and in other algebras of logic (see for example [2], [4], and [5]).

Proposition 2.7 ([18]). Let \mathfrak{X} be a pseudo-BCH-algebra, and let $a \in X$. Then the following conditions are equivalent:
(i) $a \in \operatorname{Cen} \mathfrak{X}$.
(ii) $a * x=0 *(x * a) \quad$ for all $x \in X$.
(iii) $a \diamond x=0 *(x \diamond a) \quad$ for all $x \in X$.

Proposition 2.8 ([18]). Cen \mathfrak{X} is a subalgebra of \mathfrak{X}.

3. Ideals in pseudo-BCH-algebras.

Definition 3.1. A subset I of X is called an ideal of \mathfrak{X} if it satisfies for all $x, y \in X$,
(I1) $0 \in I$;
(I2) if $x * y \in I$ and $y \in I$, then $x \in I$.
We will denote by $\operatorname{Id}(\mathfrak{X})$ the set of all ideals of \mathfrak{X}. Obviously, $\{0\}, X \in$ $\operatorname{Id}(\mathfrak{X})$.

Proposition 3.2 ([18]). Let I be an ideal of \mathfrak{X}. For any $x, y \in X$, if $y \in I$ and $x \leqslant y$, then $x \in I$.

Proposition 3.3 ([18]). Let \mathfrak{X} be a pseudo-BCH-algebra and I be a subset of X satisfying (I1). Then I is an ideal of \mathfrak{X} if and only if for all $x, y \in X$,
(I2') if $x \diamond y \in I$ and $y \in I$, then $x \in I$.
Example 3.4. Consider the pseudo-BCH-algebra \mathfrak{G} given in Example 2.3. Let a be an element of G. It is clear that $\left\{a^{n}: n \in \mathbb{N} \cup\{0\}\right\}$ is an ideal of \mathfrak{G}.

Example 3.5. Let $\mathfrak{X}_{1}=\left(\{0, a, b, c\} ; *_{1}, \diamond_{1}, 0\right)$ be the pseudo-BCH-algebra from Example 2.4. It is easy to check that $I_{1}=\{0\}, I_{2}=\{0, a\}, I_{3}=\{0, b\}$, and $I_{4}=\{0, a, b, c\}$ are ideals of \mathfrak{X}_{1}. Let I be an ideal of \mathfrak{X}_{1} and suppose that $c \in I$. Since $a *_{1} c=b *_{1} c=0 \in I$, (I2) shows that $a, b \in I$, and therefore $I=X_{1}$. Similarly, if $a, b \in I$, then $I=X_{1}$. Thus $\operatorname{Id}\left(\mathfrak{X}_{1}\right)=\left\{I_{1}, I_{2}, I_{3}, I_{4}\right\}$.

Theorem 3.6. Let \mathfrak{X} be a pseudo-BCH-algebra and I be a subset of X containing 0. The following statements are equivalent:
(i) I is an ideal of \mathfrak{X}.
(ii) $x \in I, y \in X-I \Longrightarrow y * x \in X-I$.
(iii) $x \in I, y \in X-I \Longrightarrow y \diamond x \in X-I$.

Proof. (i) \Longrightarrow (ii): Assume that I is an ideal of \mathfrak{X}, let $x \in I$ and $y \in X-I$. If $y * x \in I$, then $y \in I$ by definition. Therefore $y * x \in X-I$.
(ii) \Longrightarrow (i): To prove that $I \in \operatorname{Id}(\mathfrak{X})$, let $y * x \in I$ and $x \in I$. If $y \notin I$, then (ii) implies $y * x \in X-I$, a contradiction. Hence $y \in I$, which gives that I is an ideal of \mathfrak{X}.

Thus we have (i) \Longleftrightarrow (ii). The proof of the equivalence of (i) and (iii) is similar.

For any pseudo-BCH-algebra \mathfrak{X}, we set

$$
\mathrm{K}(\mathfrak{X})=\{x \in X: 0 \leqslant x\} .
$$

Proposition 3.7 ([18]). Let \mathfrak{X}_{1} and \mathfrak{X}_{2} be pseudo- $B C H$-algebras. Then

$$
\mathrm{K}\left(\mathfrak{X}_{1} \times \mathfrak{X}_{2}\right)=\mathrm{K}\left(\mathfrak{X}_{1}\right) \times \mathrm{K}\left(\mathfrak{X}_{2}\right)
$$

Observe that

$$
\begin{equation*}
\text { Cen } \mathfrak{X} \cap \mathrm{K}(\mathfrak{X})=\{0\} . \tag{4}
\end{equation*}
$$

Indeed, $0 \in \operatorname{Cen} \mathfrak{X} \cap \mathrm{~K}(\mathfrak{X})$ and if $x \in \operatorname{Cen} \mathfrak{X} \cap \mathrm{~K}(\mathfrak{X})$, then $x=0 *(0 * x)=$ $0 * 0=0$.

Theorem 3.8.

(i) For any $t \in T$, let I_{t} be an ideal of a pseudo-BCH-algebra $\left(X_{t} ; *_{t}, \circ_{t}, 0_{t}\right)$. Then $I:=\prod_{t \in T} I_{t}$ is an ideal of $\mathfrak{X}:=\prod_{t \in T} \mathfrak{X}_{t}$.
(ii) If I is an ideal of \mathfrak{X} such that $I \subseteq \mathrm{~K}(\mathfrak{X})$, then $I_{t}:=\pi_{t}(I)$, where π_{t} is the t-th projection of \mathfrak{X} onto \mathfrak{X}_{t}, is an ideal of \mathfrak{X}_{t}, and $I \subseteq \prod_{t \in T} I_{t}$.
Proof. (i) The first part of the assertion is obvious.
(ii) The proof of this is similar to that of Theorem 5.1.35 [6].

Proposition 3.9. Let \mathfrak{X}_{1} and \mathfrak{X}_{2} be pseudo- $B C H$-algebras satisfying the condition (pBCK). Then

$$
\operatorname{Id}\left(\mathfrak{X}_{1} \times \mathfrak{X}_{2}\right)=\operatorname{Id}\left(\mathfrak{X}_{1}\right) \times \operatorname{Id}\left(\mathfrak{X}_{2}\right) .
$$

Proof. Let $\mathfrak{X}=\mathfrak{X}_{1} \times \mathfrak{X}_{2}$ and $I \in \operatorname{Id}(\mathfrak{X})$. By Proposition 3.7, $\mathrm{K}(\mathfrak{X})=$ $\mathrm{K}\left(\mathfrak{X}_{1}\right) \times \mathrm{K}\left(\mathfrak{X}_{2}\right)=X_{1} \times X_{2}=X$, and therefore $I \subseteq \mathrm{~K}(\mathfrak{X})$. From Theorem 3.8 (ii) it follows that $I \subseteq I_{1} \times I_{2}$, where $I_{1}=\pi_{1}(I), I_{2}=\pi_{2}(I)$. Let $a \in I_{1}$ and $b \in I_{2}$. There are $c \in X_{2}$ and $d \in X_{1}$ such that $(a, c),(d, b) \in I$. Since $(a, 0) \leqslant(a, c)$ and $(0, b) \leqslant(d, b)$, we conclude that $(a, 0),(0, b) \in I$. Observe that $(a, b) \in I$. Indeed, we have $(a, b) *(0, b)=(a, 0)$ and $(a, 0),(0, b) \in I$. From this $(a, b) \in I$. Therefore $I=I_{1} \times I_{2} \in \operatorname{Id}\left(\mathfrak{X}_{1}\right) \times \operatorname{Id}\left(\mathfrak{X}_{2}\right)$.

Conversely, let $I=I_{1} \times I_{2}$, where $I_{1} \in \operatorname{Id}\left(\mathfrak{X}_{1}\right)$ and $I_{2} \in \operatorname{Id}\left(\mathfrak{X}_{2}\right)$. By Theorem 3.8 (i), I is an ideal of \mathfrak{X}.

Example 3.10. Let $\mathfrak{X}=\mathfrak{X}_{1} \times \mathfrak{X}_{2}$ be the pseudo-BCH-algebra given in Example 2.4. We know that $\operatorname{Id}\left(\mathfrak{X}_{1}\right)=\left\{I_{1}, I_{2}, I_{3}, I_{4}\right\}$ where $I_{1}=\{0\}, I_{2}=$ $\{0, a\}, I_{3}=\{0, b\}$, and $I_{4}=X_{1}$ (see Example 3.5). It is easily seen that the only ideals of \mathfrak{X}_{2} are the following subsets of $X_{2}: J_{1}=\{0\}, J_{2}=\{0,1\}$, $J_{3}=\{0,1,2\}$, and $J_{4}=X_{2}$. Then, by Proposition 3.9, $\operatorname{Id}(\mathfrak{X})=\left\{I_{m} \times J_{n}:\right.$ $m, n=1,2,3,4\}$.

Theorem 3.11. Let $\left(\mathfrak{X}_{t}\right)_{t \in T}$ be an indexed family of pseudo-BCH-algebras satisfying (pBCK) and $\mathfrak{X}=\sum_{t \in T} \mathfrak{X}_{t}$. Let I_{t} be an ideal of \mathfrak{X}_{t} for $t \in T$. Then $\bigcup_{t \in T} I_{t}$ is an ideal of \mathfrak{X}. Conversely, every ideal of \mathfrak{X} is of this form.
Proof. Let $I=\bigcup_{t \in T} I_{t}$. Of course, $0 \in I$. Let $x * y \in I$ and $y \in I$. If $x \in X_{t}$ and $y \in X_{u}$, where $t \neq u$, then $x=x * y \in I$. Suppose that $x, y \in X_{t}$. Then $x * y, y \in I_{t}$. Since I_{t} is an ideal of \mathfrak{X}_{t}, we conclude that $x \in I_{t}$. Hence $x \in I$, and consequently, $I \in \operatorname{Id}(\mathfrak{X})$.

Now let I be an ideal of \mathfrak{X}. It is easy to see that $I_{t}:=I \cap X_{t} \in \operatorname{Id}\left(\mathfrak{X}_{t}\right)$ for $t \in T$. We have $I=I \cap \bigcup_{t \in T} X_{t}=\bigcup_{t \in T} I \cap X_{t}=\bigcup_{t \in T} I_{t}$.

Example 3.12. Consider the pseudo-BCH-algebras $\mathfrak{X}_{1}, \mathfrak{X}_{2}$, and \mathfrak{X}, which are described in Example 2.6. We know that $\operatorname{Id}\left(\mathfrak{X}_{1}\right)=\left\{\{0\},\{0, a\},\{0, b\}, X_{1}\right\}$ (by Example 3.5). It is easy to check that $\operatorname{Id}\left(\mathfrak{X}_{2}\right)=\left\{\{0\},\{0,3\}, X_{2}\right\}$. Applying Theorem 3.11, we get $\operatorname{Id}(\mathfrak{X})=\left\{\{0\},\{0, a\},\{0, b\}, X_{1},\{0,3\},\{0,3, a\}\right.$, $\left.\{0,3, b\}, X_{1} \cup\{3\}, X_{2}, X_{2} \cup\{a\}, X_{2} \cup\{b\}, X\right\}$.

Cen \mathfrak{X} is a subalgebra of \mathfrak{X} (see Proposition 2.8) but it may not be an ideal. For example, let $Y=\{0, a, b, c, d, e, f, g, h\}$ and $\mathfrak{Y}=(Y ; *, \diamond, 0)$ be the pseudo-BCH-algebra given in Example 2.5. Then Cen $\mathfrak{Y}=\{0, d, e, f, g, h\}$. It is easy to see that Cen \mathfrak{Y} is not an ideal of \mathfrak{Y}. Now we establish conditions for the set Cen \mathfrak{X} to be an ideal of a pseudo-BCH-algebra \mathfrak{X}.

Theorem 3.13. Let \mathfrak{X} be a pseudo-BCH-algebra. The following statements are equivalent:
(i) Cen \mathfrak{X} is an ideal of \mathfrak{X}.
(ii) $x=(x * a) *(0 * a)$ for $x \in X, a \in \operatorname{Cen} \mathfrak{X}$.
(iii) For all $x \in X, a \in \operatorname{Cen} \mathfrak{X}, x * a=0 * a$ implies $x=0$.
(iv) For all $x \in \mathrm{~K}(\mathfrak{X}), a \in \operatorname{Cen} \mathfrak{X}, x * a=0 * a$ implies $x=0$.

Proof. (i) \Longrightarrow (ii): Write $I=$ Cen \mathfrak{X}, and suppose that I is an ideal of \mathfrak{X}. Let $x \in X$ and $a \in I$. By ($\mathrm{pBCH}-2$) and ($\mathrm{pBCH}-1$),
$((x * a) *(0 * a)) \diamond x=((x * a) \diamond x) *(0 * a)=((x \diamond x) * a)) *(0 * a)=(0 * a) *(0 * a)=0$, and hence

$$
\begin{equation*}
(x * a) *(0 * a) \leqslant x . \tag{5}
\end{equation*}
$$

Using (pBCH-2) and (a1), we obtain

$$
\begin{equation*}
(x \diamond((x * a) *(0 * a))) * a=(x * a) \diamond((x * a) *(0 * a)) \leqslant 0 * a . \tag{6}
\end{equation*}
$$

By (3), $0 * a \in I$. From (6) and Proposition 3.2 we conclude that

$$
(x \diamond((x * a) *(0 * a))) * a \in I
$$

Since $a \in I$, by the definition of ideal we deduce that

$$
\begin{equation*}
x \diamond((x * a) *(0 * a)) \in I \tag{7}
\end{equation*}
$$

Applying (a6) and Proposition 2.7, we get
$0 *((x * a) *(0 * a))=(0 *(x * a)) \diamond(0 *(0 * a))=(a * x) \diamond a=(a \diamond a) * x=0 * x$.
Then $0 *(x \diamond((x * a) *(0 * a)))=(0 * x) *(0 * x)=0$, and hence

$$
x \diamond((x * a) *(0 * a)) \in \mathrm{K}(\mathfrak{X}) .
$$

From this and (7) we have $x \diamond((x * a) *(0 * a)) \in I \cap \mathrm{~K}(\mathfrak{X})=\{0\}($ see $(4))$, that is, $x \diamond((x * a) *(0 * a))=0$. Therefore

$$
\begin{equation*}
x \leqslant(x * a) *(0 * a) \tag{8}
\end{equation*}
$$

By (5) and (8) we obtain $x=(x * a) *(0 * a)$.
(ii) \Longrightarrow (iii): Let $x \in X, a \in \operatorname{Cen} \mathfrak{X}$, and $x * a=0 * a$. Then $x=$ $(x * a) *(0 * a)=(x * a) *(x * a)=0$.
(iii) \Longrightarrow (iv) is obvious.
(iv) $\Longrightarrow(\mathrm{i})$: To prove that Cen \mathfrak{X} is an ideal, let $a, x * a \in$ Cen \mathfrak{X}. Observe that $x \diamond(0 *(0 * x)) \in \mathrm{K}(\mathfrak{X})$. By (a6) and (a4), $0 *[x \diamond(0 *(0 * x))]=$ $(0 * x) *(0 *(0 *(0 * x)))=(0 * x) *(0 * x)=0$, and hence

$$
\begin{equation*}
x \diamond(0 *(0 * x)) \in \mathrm{K}(\mathfrak{X}) . \tag{9}
\end{equation*}
$$

We have

$$
\begin{aligned}
x * a & =0 *(0 *(x * a)) & & {[\text { since } x * a \in \operatorname{Cen} \mathfrak{X}] } \\
& =(0 *(0 * x)) *(0 *(0 * a)) & & {[\text { by }(\text { a5 }) \text { and }(\mathrm{a} 6)] } \\
& =(0 *(0 * x)) * a . & & {[\text { since } a \in \operatorname{Cen} \mathfrak{X}] }
\end{aligned}
$$

Then by (pBCH-2) and (pBCH-1),

$$
[x \diamond(0 *(0 * x))] * a=(x * a) \diamond(0 *(0 * x))=[(0 *(0 * x)) * a] \diamond(0 *(0 * x))=0 * a
$$

that is,

$$
[x \diamond(0 *(0 * x))] * a=0 * a
$$

Applying (iv) we get $x \diamond(0 *(0 * x))=0$. Hence $x \leqslant 0 *(0 * x)$. By (a3) and (a1), $0 *(0 * x)=0 *(0 \diamond x) \leqslant x$, and therefore $x=0 *(0 * x)$. From this $x \in \operatorname{Cen} \mathfrak{X}$. Thus Cen \mathfrak{X} is an ideal of \mathfrak{X}.

We also have theorem analogous to Theorem 3.13.
Theorem 3.14. Let \mathfrak{X} be a pseudo-BCH-algebra. The following statements are equivalent:
(i) Cen \mathfrak{X} is an ideal of \mathfrak{X}.
(ii) $x=(x \diamond a) \diamond(0 \diamond a)$ for $x \in X, a \in \operatorname{Cen} \mathfrak{X}$.
(iii) For all $x \in X, a \in \operatorname{Cen} \mathfrak{X}, x \diamond a=0 \diamond a$ implies $x=0$.
(iv) For all $x \in \mathrm{~K}(\mathfrak{X}), a \in \mathrm{Cen} \mathfrak{X}, x \diamond a=0 \diamond a$ implies $x=0$.

References

[1] Dudek, W. A., Thomys, J., On decompositions of BCH-algebras, Math. Japon. 35 (1990), 1131-1138.
[2] Dudek, W. A., Zhang, X., On atoms in BCC-algebras, Discuss. Math. Algebra Stochastic Methods 15 (1995), 81-85.
[3] Dudek, W. A., Jun, Y. B., Pseudo-BCI-algebras, East Asian Math. J. 24 (2008), 187-190.
[4] Dudek, W. A., Zhang, X., Wang, Y., Ideals and atoms of BZ-algebras, Math. Slovaca 59 (2009), 387-404.
[5] Dudek, W. A., Karamdin, B., Bhatti, S. A., Branches and ideals of weak BCCalgebras, Algebra Colloq. 18 (Special) (2011), 899-914.
[6] Dvurečenskij, A., Pulmannová, S., New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht; Ister Science, Bratislava, 2000.
[7] Dymek, G., Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012), 73-90.
[8] Dymek, G., On pseudo-BCI-algebras, Ann. Univ. Mariae Curie-Skłodowska Sect. A 69 (1) (2015), 59-71.
[9] Georgescu, G., Iorgulescu, A., Pseudo-BCK algebras: an extension of BCK algebras, in Proc. of DMTCS'01: Combinatorics, Computability and Logic, 97-114, Springer, London, 2001.
[10] Hu, Q. P., Li, X., On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
[11] Imai, Y., Iséki, K., On axiom systems of propositional calculi XIV, Proc. Japan Acad. 42 (1966), 19-22.
[12] Iséki, K., An algebra related with a propositional culculus, Proc. Japan Acad. 42 (1966), 26-29.
[13] Iorgulescu, A., Algebras of Logic as BCK-algebras, Editura ASE, Bucharest, 2008.
[14] Kim, K. H., Roh, E. H., The role of A^{+}and $A(X)$ in BCH-algebras, Math. Japon. 52 (2000), 317-321.
[15] Kim, Y. H., So, K. S., On minimality in pseudo-BCI-algebras, Commun. Korean Math. Soc. 27 (2012), 7-13.
[16] Lee, K. J, Park, C. H., Some ideals of pseudo-BCI-algebras, J. Appl. Math. Inform. 27 (2009), 217-231.
[17] Meng, J., Xin, X. L., Characterizations of atoms in BCI-algebras, Math. Japon. 37 (1992), 359-361.
[18] Walendziak, A., Pseudo-BCH-algebras, Discuss. Math. Gen. Algebra Appl. 35 (2015), $1-15$.
[19] Walendziak, A., Wojciechowska-Rysiawa, M., Fuzzy ideals of pseudo-BCH-algebras, Mathematica Aeterna 5 (2015), 867-881.

Andrzej Walendziak
Institute of Mathematics and Physics
Faculty of Science
Siedlce University of Natural Sciences and Humanities
3 Maja 54, PL-08110 Siedlce
Poland
e-mail: walent@interia.pl
Received January 17, 2016

[^0]: 2010 Mathematics Subject Classification. 03G25, 06F35.
 Key words and phrases. (Pseudo-)BCK/BCI/BCH-algebra, disjoint union, ideal, centre.

