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On canonical constructions on connections

Abstract. We study how a projectable general connection Γ in a 2-fibred
manifold Y 2 → Y 1 → Y 0 and a general vertical connection Θ in Y 2 → Y 1 →
Y 0 induce a general connection A(Γ,Θ) in Y 2 → Y 1.

Introduction. In Section 1, we introduce the concepts of projectable gen-
eral connections Γ and general vertical connections Θ in a 2-fibred manifold
Y 2 → Y 1 → Y 0. In Section 2, we construct a general connection Σ(Γ,Θ)
in Y 2 → Y 1 from a projectable general connection Γ in Y 2 → Y 1 → Y 0

by means of a general vertical connection Θ in Y 2 → Y 1 → Y 0. In Section
3 we observe the canonical character of the construction Σ(Γ,Θ). In Sec-
tion 4, we cite the concepts of natural operators. In Section 5, we describe
completely the natural operators A transforming tuples (Γ,Θ) as above into
general connections A(Γ,Θ) in Y 2 → Y 1. In Section 6, we prove that there
is no natural operator C producing general connections C(Γ) in Y 2 → Y 1

from projectable general connections Γ in Y 2 → Y 1 → Y 0. In Section 7, we
present a construction of a general connection Σ(Γ,Θ) in Y 2 → Y 1 from a
system Γ = (Γ2,Γ1) of a general connection Γ2 in Y 2 → Y 0 and a general
connection Γ1 in Y 1 → Y 0 by means of a general vertical connection Θ in
Y 2 → Y 1 → Y 0. In Section 8, we present an application of the obtained
result in prolongation of general connections to bundle functors.
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All manifolds considered in the note is Hausdorff, second countable, with-
out boundaries, finite dimensional and smooth (of class C∞). Maps between
manifolds are smooth (infinitely differentiable).

1. Connections. A fibred manifold is a surjective submersion p : Y →M
between manifolds. By [1], an r-th order holonomic connection in p : Y →
M is a section

Γ : Y → JrY

of the holonomic r-jet prolongation πr0 : JrY → Y of Y → M . If Y → M
is a vector bundle and Γ : Y → JrY is a vector bundle map, Γ is called
a linear r-th order holonomic connection in Y → M . A linear r-th order
holonomic connection in the tangent bundle Y = TM → M of M is called
an r-th order linear connection on M . A first order linear connection on M
is in fact a classical linear connection on M .

A 1-order holonomic connection Γ : Y → J1Y in a fibred manifold Y →
M is called a general connection in Y →M .

We have the following equivalent definitions of general connections in
Y →M , see [1].

A general connection in p : Y →M is a lifting map

Γ : Y ×M TM → TY ,

i.e. a vector bundle map covering the identity map idY : Y → Y such that

Tp ◦ Γ(y, w) = w

for any y ∈ Yx, w ∈ TxM , x ∈ M . (More precisely, Γ(y, w) = Txσ(w),
where Γ(y) = j1

xσ.)
A general connection in Y →M is a vector bundle decomposition

TY = V Y ⊕Y H
Γ

of the tangent bundle TY of Y , where V Y is the vertical bundle of Y . (More
precisely, HΓ

y = imTxσ, where Γ(y) = j1
xσ.)

A general connection in Y →M is a vector bundle projection (in direction
HΓ)

prΓ : TY → V Y

covering idY .
A 2-fibred manifold is a system Y 2 → Y 1 → Y 0 of two fibred manifolds

Y 2 → Y 1 and Y 1 → Y 0.
Let Y 2 → Y 1 → Y 0 be 2-fibred manifold and

pij : Y i → Y j , 0 ≤ j < i ≤ 2

be its projections. Of course, p20 = p10 ◦ p21. Let

V ijY i := ker(Tpij : TY i → TY j)

be the vertical bundle of pij : Y i → Y j , 0 ≤ j < i ≤ 2.
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We introduce the following concepts of projectable general connections
and of general vertical connections in 2-fibred manifolds Y 2 → Y 1 → Y 0.

A projectable general connection in Y 2 → Y 1 → Y 0 is a general connec-
tion

Γ : Y 2 ×Y 0 TY 0 → TY 2

in p20 : Y 2 → Y 0 such that there is a (unique) general connection

Γ : Y 1 ×Y 0 TY 0 → TY 1

in p10 : Y 1 → Y 0 satisfying

Tp21 ◦ Γ = Γ ◦ (p21 × idTY 0) .

Connection Γ is called the underlying connection of Γ.
A general vertical connection in Y 2 → Y 1 → Y 0 is a vector bundle map

Θ : Y 2 ×Y 1 V 10Y 1 → V 20Y 2

covering the identity map idY 2 : Y 2 → Y 2 such that

Tp21 ◦Θ(y2, v1) = v1

for any y2 ∈ Y 2
y1 , y1 ∈ Y 1 and v1 ∈ V 10

y1 Y
1.

Equivalently, a general vertical connection in Y 2 → Y 1 → Y 0 is a
smoothly parametrized system Θ = (Θx) of general connections

Θx : Y 2
x ×Y 1

x
TY 1

x → TY 2
x

in the fibred manifolds Y 2
x → Y 1

x for any x ∈ Y 0, where Y 2
x is the fibre of

p20 : Y 2 → Y 0 over x and Y 1
x is the fibre of p10 : Y 1 → Y 0 over x and

Y 2
x → Y 1

x is the restriction of the projection p21 : Y 2 → Y 1.

2. A construction. Let Γ be a projectable general connection in Y 2 →
Y 1 → Y 0 with the underlying connection Γ and Θ be a general vertical
connection in Y 2 → Y 1 → Y 0.

We define a map Σ(Γ,Θ) = Σ : Y 2 ×Y 1 TY 1 → TY 2 by

Σ(y2, w1) := Θ(y2, prΓ(w1)) + Γ(y2, Tp10(w1)) ,

y2 ∈ Y 2
y1 , y1 ∈ Y 1 , w1 ∈ Ty1Y

1, where prΓ : TY 1 → V 10Y 1 is the
Γ-projection.

Lemma 1. Σ is a general connection in p21 : Y 2 → Y 1.

Proof. It is sufficient to verify that Tp21 ◦ Σ(y2, w1) = w1. We consider
two cases.

(a) Let w1 ∈ V 10
y1 Y

1. Then Σ(y2, w1) = Θ(y2, w1), and then

Tp21 ◦ Σ(y2, w1) = Tp21 ◦Θ(y2, w1) = w1

as Θ is a general vertical connection in Y 2 → Y 1 → Y 0.
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(b) Let w1 ∈ H
Γ
y1
Y 1, the Γ-horizontal space. Denote w0 = Tp10(w1).

Then Σ(y2, w1) = Γ(y2, w0), and then

Tp21 ◦ Σ(y2, w1) = Tp21 ◦ Γ(y2, w0) = Γ(p21(y2), w0) = Γ(y1, w0) .

Then w′ := Tp21 ◦ Σ(y2, w1) ∈ HΓ
y1
Y 1, w1 ∈ HΓ

y1
Y 1 and

Tp10(w′) = Tp10 ◦ Tp21 ◦ Γ(y2, w0) = Tp20 ◦ Γ(y2, w0) = w0 = Tp10(w1) ,

and consequently w′ = w1. �

3. Invariance. Let Ỹ 2 → Ỹ 1 → Ỹ 0 be another 2-fibred manifold with
projections p̃ij : Ṽ i → Ṽ j , 0 ≤ j < i ≤ 2. Let Γ̃ be a projectable general
connection in Ỹ 2 → Ỹ 1 → Ỹ 0 and Θ̃ be a general vertical connection in
Ỹ 2 → Ỹ 1 → Ỹ 0. Let f = (f2, f1, f0) : (Y 2 → Y 1 → Y 0) → (Ỹ 2 → Ỹ 1 →
Ỹ 0) be a 2-fibred map, i.e. f i : Y i → Ỹ i for i = 0, 1, 2 and p̃ij ◦ f i = f j ◦ pij
for 0 ≤ j < i ≤ 2.

Lemma 2. If Γ is f -related with Γ̃, (i.e. Tf2 ◦ Γ = Γ̃ ◦ (f2 ×f0 Tf0) and
then Tf1◦Γ = Γ̃◦(f1×f0 Tf0)) and Θ is f -related with Θ̃ (i.e. V 20f2◦Θ =

Θ̃ ◦ (f2 ×f1 V 10f1)), then Σ = Σ(Γ,Θ) is f -related with Σ̃ = Σ(Γ̃, Θ̃) (i.e.
Tf2 ◦ Σ = Σ̃ ◦ (f2 ×f1 Tf1)).

Proof. If w ∈ HΓY 1, then w = Γ(y1, w0) for some y1 ∈ Y 1
y0 and w0 ∈ Y 0

y0 ,

and then Tf1(w) = Γ̃(f1(y1), T f0(w0)) ∈ H Γ̃. Then

Tf1(HΓY 1) ⊂ H Γ̃Ỹ 1 and (obviously) Tf1(V 10Y 1) ⊂ V 10Ỹ 1 .

Consequently, V 10f1 ◦ prΓ = prΓ̃ ◦ Tf1. Using this formula and the as-
sumption of the lemma and the formula defining Σ, one can easily verify
that

Tf2 ◦ Σ(y2, w1) = Σ̃ ◦ (f2(y2), T f1(w1))

for y2 ∈ Y 2
y1 , w1 ∈ Ty1Y 1, y1 ∈ Y 1. �

4. Natural operators. The general concept of natural operators can be
found in [1]. We need the following partial cases of this general concept.

Let FMm0,m1,m2 be the category of 2-fibred manifolds Y 2 → Y 1 → Y 0

with dim(Y 0) = m0, dim(Y 1) = m0 + m1, dim(Y 2) = m0 + m1 + m2 and
their 2-fibred local diffeomorphisms.

Definition 1. An FMm0,m1,m2-natural operator transforming projectable
general connections Γ and general vertical connections Θ in FMm0,m1,m2-
objects Y 2 → Y 1 → Y 0 into general connections A(Γ,Θ) in Y 2 → Y 1 is an
FMm0,m1,m2-invariant system A of regular operators (functions)

A : Conproj(Y
2 → Y 1 → Y 0)× Convert(Y

2 → Y 1 → Y 0)→ Con(Y 2 → Y 1)
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for any FMm0,m1,m2-objects Y 2 → Y 1 → Y 0, where Conproj(Y
2 → Y 1 →

Y 0) is the set of projectable general connections in Y 2 → Y 1 → Y 0,
Convert(Y

2 → Y 1 → Y 0) is the set of general vertical connections in
Y 2 → Y 1 → Y 0 and Con(Y 2 → Y 1) is the set of general connections
in Y 2 → Y 1.

The invariance of A means that if Γ ∈ Conproj(Y
2 → Y 1 → Y 0) is f -

related with Γ̃ ∈ Conproj(Ỹ
2 → Ỹ 1 → Ỹ 0) and Θ ∈ Convert(Y

2 → Y 1 →
Y 0) is f -related with Θ̃ ∈ Convert(Ỹ

2 → Ỹ 1 → Ỹ 0) for an FMm0,m1,m2-
morphism f = (f2, f1, f0) : (Y 2 → Y 1 → Y 0) → (Ỹ 2 → Ỹ 1 → Ỹ 0), then
A(Γ,Θ) is f -related with A(Γ̃, Θ̃).

The regularity of A means that A transforms smoothly parametrized
families into smoothly parametrized families.

Because of Lemma 2, the construction Σ(Γ,Θ) defines an FMm0,m1,m2-
natural operator in the sense of Definition 1. So, to describe all natural
operators A in the sense of Definition 1 it is sufficient to describe all natural
operators in the sense of the following definition.

Definition 2. An FMm0,m1,m2-natural operator transforming projectable
general connections Γ and general vertical connections Θ in FMm0,m1,m2-
objects Y 2 → Y 1 → Y 0 into sections B(Γ,Θ) : Y 2 → T ∗Y 1 ⊗ V 21Y 2

of T ∗Y 1 ⊗ V 21Y 2 → Y 2 is an FMm0,m1,m2-invariant system A of regular
operators

B :Conproj(Y
2→Y 1→Y 0)×Convert(Y

2→Y 1→Y 0)→C∞Y 2(T ∗Y 1⊗V 21Y 2)

for any FMm0,m1,m2-object Y 2 → Y 1 → Y 0, where C∞Y 2(T ∗Y 1 ⊗ V 21Y 2)

is the space of sections of the vector bundle T ∗Y 1 ⊗ V 21Y 2 over Y 2 (with
respect to the clear projection).

It is obvious that any natural operator A in the sense of Definition 1 is
of the form

A(Γ,Θ) = Σ(Γ,Θ) +B(Γ,Θ)

for a uniquely determined (by A) natural operator B in the sense of Defini-
tion 2.

A simple example of a natural operator in the sense of Definition 2 is the
one Bo defined by

Bo(Γ,Θ)(y2)(w1) = prΣ(Γ,Θ) ◦Θ(y2, prΓ(w1)) ∈ V 21
y2 Y

2

for any FMm0,m1,m2-object Y 2 → Y 1 → Y 0, Γ ∈ Conproj(Y
2 → Y 1 → Y 0),

Θ ∈ Convert(Y
2 → Y 1 → Y 0), y2 ∈ Y 2

y1 , y1 ∈ Y 1, w1 ∈ Ty1Y
1, where

prΣ(Γ,Θ) : TY 2 → V 21Y 2 is the Σ(Γ,Θ)-projection.
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5. A classification. Let Rm0,m1,m2 be the trivial FMm0,m1,m2-object
Rm0 ×Rm1 ×Rm2 → Rm0 ×Rm1 → Rm0 with the usual projections. Let
x1, ..., xm0 , y1, ..., ym1 , z1, ..., zm2 be the usual coordinates on Rm0,m1,m2 .

Consider a natural operator B in the sense of Definition 2. Because of the
invariance of B with respect to 2-fibred manifold charts, B is determined
by the linear maps

B(Γ,Θ)(0, 0, 0) : T(0,0)(R
m0 ×Rm1)→ V 21

(0,0,0)(R
m0 ×Rm1 ×Rm2)

for all Γ ∈ Conproj(R
m0,m1,m2) and all Θ ∈ Convert(R

m0,m1,m2) of the forms

Γ = Γo +
∑

Γp
i (x, y)dxi ⊗ ∂

∂yp
+
∑

Γq
i (x, y, z)dx

i ⊗ ∂

∂zq
,

Θ = Θo +
∑

Θq
p(x, y, z)dy

p ⊗ ∂

∂zq
,

where the sums are over i = 1, ...,m0, p = 1, ...,m1, q = 1, ...,m2, and
where Γo denotes the trivial projectable general connection in Rm0,m1,m2

and Θo =
∑
dyp ⊗ ∂

∂yp denotes the trivial general vertical connection in
Rm0,m1,m2 .

Eventually, using a new 2-fibred manifold chart one can additionally as-
sume Γp

i (0, 0) = 0 and Γq
i (0, 0, 0) = 0. (More precisely, denote j1

0σ :=
Γ(0, 0, 0) and σ(x) =: (x, σ̃(x), σ(x)). We consider the 2-fibred coordi-
nate system (x, y − σ̃(x), z − σ(x)). In the coordinate system Γ(0, 0, 0) =
Γo(0, 0, 0).)

Then using the invariance of B with respect to FMm0,m1,m2-map 1
t id

for t > 0 and then putting t→ 0, we can assume Γ = Γo and Θq
p(x, y, z) =

Θq
p(0, 0, 0) = const. Consequently, B is determined by the maps

B
(

Γo,Θo +
∑

Θq
pdy

p ⊗ ∂

∂zq

)
(0, 0, 0) : Rm0 ×Rm1 → Rm2

for all Θq
p ∈ R, p = 1, ...,m1, q = 1, ...,m2.

Using the invariance of B with respect to t idRm0 × idRm1 × idRm2 and
then putting t → 0, we deduce that B(Γo,Θo +

∑
Θq

pdyp ⊗ ∂
∂zq )(0, 0, 0) do

not depend on elements from Rm0 . Consequently, B is determined by the
map Φ : Rm∗

1 ⊗Rm2 → Rm∗
1 ⊗Rm2 given by

Φ((Θq
p)) = B

(
Γo,Θo +

∑
Θq

pdy
p ⊗ ∂

∂zq

)
(0, 0, 0) ∈ Rm∗

1 ⊗Rm2 .

Using the invariance of B with respect to linear isomorphisms from
{idRm0} × GL(m1) × GL(m2), we deduce that Φ is GL(m1) × GL(m2)-
invariant. Consequently, Φ is the constant multiple of the identity. Then
the space of all FMm0,m1,m2-natural operators B in the sense of Definition 2
is 1-dimensional. So, any natural operator B in the sense of Definition 2 is
the constant multiple of Bo.

Thus we proved the following classification theorem.
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Theorem 1. Any FMm0,m1,m2-natural operator A in the sense of Defini-
tion 1 is of the form

A(Γ,Θ) = Σ(Γ,Θ) + τBo(Γ,Θ)

for a uniquely (by A) real number τ .

6. Why do we use auxiliary a general vertical connection? We
prove the following theorem.

Theorem 2. There is no FMm0,m1,m2-natural operator

C : Conproj(Y
2 → Y 1 → Y 0)→ Con(Y 2 → Y 1)

transforming projectable general connections Γ in FMm0,m1,m2-objects
Y 2 → Y 1 → Y 0 into general connections C(Γ) in Y 2 → Y 1.

Proof. Suppose that such C exists. Let Γo be the trivial projectable general
connection in the 2-fibred manifold Rm0,m1,m2 . Then C(Γo) is ϕ-invariant by
any FMm0,m1,m2-map ϕ of the form ϕ(x0, x1, x2) = (x0, ϕ1(x1), ϕ2(x1, x2)),
x0 ∈ Rm0 , x1 ∈ Rm1 , x2 ∈ Rm2 (as Γo is). Then j1

(0,0)σ := C(Γo)(0, 0, 0) is
ϕ-invariant for any ϕ as above with ϕ(0, 0, 0) = (0, 0, 0). Then for ϕ1(x1) =
x1 and ϕ2(x1, x2) = x2 + (x1

1, 0, ..., 0) we get j1
(0,0)(ϕ ◦ σ) = j1

(0,0)σ, i.e.

j1
(0,0)η = 0, where η(x0, x1) = (x0, x1, x

1
1, 0, ..., 0). Contradiction. �

So, to construct canonically a general connection in Y 2 → Y 1 from a
projectable general connection in Y 2 → Y 1 → Y 0 the using of auxiliary
objects is unavoidable. In the present note we have used general vertical
connections as such auxiliary ones.

7. A generalization. Let Y 2 → Y 1 → Y 0 be a 2-fibred manifold.
A projectable general connection Γ in Y 2 → Y 1 → Y 0 is in fact a system

Γ = (Γ,Γ) of two general connections in p20 : Y 2 → Y 0 and p10 : Y 1 → Y 0

(respectively), and Γ is determined by Γ.
In this section, we present how to extend the construction of Σ(Γ,Θ)

for Γ = (Γ,Γ) into a construction Σ(Γ,Θ) for Γ = (Γ2,Γ1), where Γ2 :
Y 2 ×Y 0 TY 0 → TY 2 is a general connection in p20 : Y 2 → Y 0 and Γ1 :
Y 1 ×Y 0 TY 0 → TY 1 is a general connection in p10 : Y 1 → Y 0.

Let Γ = (Γ2,Γ1) and Θ be in question. We define a map Σ(Γ,Θ) = Σ :
Y 2 ×Y 1 TY 1 → TY 2 by

Σ(y2, w1) := Θ(y2, prΓ1
(w1)) + Γ2(y2, w0)−Θ(y2, prΓ1 ◦ Tp21 ◦Γ2(y2, w0)) ,

y2 ∈ Y 2
y1 , y1 ∈ Y 1, w1 ∈ Ty1Y 1, w0 = Tp10(w1) .

Lemma 3. Σ is a general connection in p21 : Y 2 → Y 1.

Proof. We are going to prove that Tp21 ◦Σ(y2, w1) = w1. We consider two
cases.
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(a) Let w1 ∈ V 10
y1 Y

1. Then Σ(y2, w1) = Θ(y2, w1), and next we proceed
as in the part (a) of the proof of Lemma 1.

(b) Let w1 ∈ HΓ1

y1 Y
1. Then

Σ(y2, w1) = Γ2(y2, w0)−Θ(y2, prΓ1 ◦ Tp21 ◦ Γ2(y2, w0)) ,

and then

Tp21 ◦ Σ(y2, w1) = Tp21 ◦ Γ2(y2, w0)− prΓ1 ◦ Tp21 ◦ Γ2(y2, w0) .

So, w′ := Tp21 ◦ Σ(y2, w1) ∈ HΓ1

y1 Y
1 and w1 ∈ HΓ1

y1 Y
1 ∈ HΓ1

y1 Y
1 and

Tp10(w′) = Tp20 ◦ Γ2(y2, w0)− 0 = w0 = Tp10(w1) ,

and consequently w′ = w1. �

8. An application. We can use the construction Σ(Γ,Θ) from the pre-
vious section in prolongation of connections to bundle functors.

Namely, let F : FMm,n → FM be a bundle functor in the sense of [1] of
order r, where FM is the category of fibred manifolds and fibred maps and
FMm,n is the category of fibred manifolds with m-dimensional bases and
n-dimensional fibres and their local fibred diffeomorphisms. Let p : Y →M
be an FMm,n-object. Let Ξ be a general connection in p : Y → M and λ
be an r-th order linear connection on M (i.e. r-th order linear connection
in TM →M). Thus we have the F -prolongation F(Ξ, λ) (of Ξ with respect
to λ) in the sense of [1, Def. 45.4]. F(Ξ, λ) is a general connection in
FY →M . Let λ1 be an r-th order linear connection in V Y → Y . Using the
construction Σ(Γ,Θ) from the previous section, we can construct a general
connection F(Ξ, λ1, λ) in FY → Y as follows.

Let Y 2 = FY → Y 1 = Y → Y 0 = M be the 2-fibred manifold. We
have a general vertical connection Θ = Θ(λ1) : Y 2 ×Y 1 V 10Y 1 → V 20Y 2 in
Y 2 → Y 1 → Y 0 by

Θ(λ1)(y2, v1) := FX(y2) , jry1(X) := λ1(v1) ,

y2 ∈ Y 2
y1 , y

1 ∈ Y 1 , v1 ∈ V 10
y1 Y

1, where FX is the flow lift of X with
respect to F . Denote Γ = (F(Ξ, λ),Ξ). Consequently, we have a general
connection F(Ξ, λ, λ1) in FY → Y by

F(Ξ, λ, λ1) := Σ(Γ,Θ(λ1)) .

Let Ξ and λ be as above and Λ be an r-th order linear connection on Y
(i.e. r-th order linear connection in TY → Y ). Using the above construction
F(Ξ, λ, λ1), we can construct a general connection F(Ξ, λ,Λ) in FY → Y
as follows.

We have an r-th order linear connection λ1 = λ1(Λ,Ξ) in V Y → Y by

λ1(v) = jry(prΞ ◦X) , jryX := Λ(v) , v ∈ VyY , y ∈ Y ,
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where prΞ : TY → V Y is the Ξ-projection. Then we have a general connec-
tion F(Ξ, λ,Λ) in FY → Y by

F(Ξ, λ,Λ) := F(Ξ, λ, λ1(Λ,Ξ)) .
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[1] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry,
Springer-Verlag, Berlin, 1993.

Jan Kurek
Institute of Mathematics
Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1
Lublin
Poland
e-mail: kurek@hektor.umcs.lublin.pl

Włodzimierz M. Mikulski
Institute of Mathematics
Jagiellonian University
ul. S. Łojasiewicza 6
Cracow
Poland
e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

Received November 9, 2015


