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for starlike and convex functions
with respect to symmetric points

Abstract. The objective of this paper is to obtain best possible upper bound
to theH3(1)Hankel determinant for starlike and convex functions with respect
to symmetric points, using Toeplitz determinants.

1. Introduction. Let A denote the class of functions f of the form

(1.1) f(z) = z +
∞∑
n=2

anz
n

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting
of univalent functions. For any two analytic functions g and h respectively
with their expansions as g(z) =

∑∞
k=0 akz

k and h(z) =
∑∞

k=0 bkz
k, the

Hadamard product or convolution of g(z) and h(z) is defined as the power
series

(g ∗ h)(z) =
∞∑
k=0

akbkz
k.
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The Hankel determinant of f for q ≥ 1 and n ≥ 1 was defined by Pom-
merenke [9] as

(1.2) Hq(n) =

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

, (a1 = 1).

One can easily observe that the Fekete–Szegő functional is H2(1). Fekete–
Szegő then further generalized the estimate |a3−µa22| with µ real and f ∈ S.
Ali [1] found sharp bounds on the first four coefficients and sharp estimate
for the Fekete–Szegő functional |γ3 − tγ22 |, where t is real, for the inverse
function of f defined as f−1(w) = w +

∑∞
n=2 γnw

n, when f ∈ S̃T (α), the
class of strongly starlike functions of order α (0 < α ≤ 1). Further, sharp
bounds for the functional

H2(2) =
a2 a3
a3 a4

= |a2a4 − a23|,

when q = 2 and n = 2, known as the second Hankel determinant, were
obtained for various subclasses of univalent and multivalent analytic func-
tions. For our discussion, in this paper, we consider the Hankel determinant
in the case of q = 3 and n = 1, denoted by H3(1), given by

(1.3) H3(1) =
a1 a2 a3
a2 a3 a4
a3 a4 a5

.

For f ∈ A, a1 = 1, so that, we have

H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22)

and by applying triangle inequality, we obtain

(1.4) |H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a2a3 − a4|+ |a5||a3 − a22|.

Babalola [2] obtained sharp upper bounds to the functional |a2a3 − a4|
and |H3(1)| for the familiar subclasses namely starlike and convex functions
respectively denoted by ST and CV of S. The sharp upper bounds to the
second Hankel determinant |a2a4 − a23| for the classes ST and CV were
obtained by Janteng et al. [6].

Motivated by the results obtained by Babalola [2] and recently by Raja
and Malik [11] in finding the sharp upper bound to the Hankel determinant
|H3(1)| for certain subclasses of S, in this paper, we obtain an upper bound
to the functional |a2a3 − a4| and hence for |H3(1)|, for the function f given
in (1.1), belonging to the classes namely starlike with respect to symmetric
points and convex with respect to symmetric points denoted by STs and
CVs respectively, defined as follows.
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Definition 1.1. A function f(z) ∈ A is said to be in the class STs, if it
satisfies the condition

(1.5) Re

{
2zf ′(z)

f(z)− f(−z)

}
> 0, ∀z ∈ E.

The class STs was introduced and studied by Sakaguchi [15]. Further, he
has shown that the functions in STs are close-to-convex and hence are uni-
valent. The concept of starlike functions with respect to symmetric points
have been extended to starlike functions with respect to N -symmetric points
by Ratanchand [14] and Prithvipalsingh [10]. RamReddy [12] studied the
class of close-to-convex functions with respect to N -symmetric points and
proved that this class is closed under convolution with convex univalent
functions.

Definition 1.2. A function f(z) ∈ A is said to be in CVs, if it satisfies the
condition

(1.6) Re

{
2 {zf ′(z)}′

{f(z)− f(−z)}′
}
> 0, ∀z ∈ E.

The class CVs was introduced and studied by Das and Singh [3]. From the
Definitions 1.1 and 1.2, it is evident that f ∈ CVs if and only if zf ′ ∈ STs.
Some preliminary lemmas required for proving our results are as follows:

2. Preliminary Results. Let P denote the class of functions consisting
of p, such that

(2.1) p(z) = 1 + c1z + c2z
2 + c3z

3 + · · · = 1 +
∞∑
n=1

cnz
n,

which are regular in the open unit disc E and satisfy Re p(z) > 0, for any
z ∈ E. Here p(z) is called the Carathéodory function [4].

Lemma 2.1 ([8, 16]). If p ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the
inequality is sharp for the function 1+z

1−z .

Lemma 2.2 ([5]). The power series for p(z) = 1 +
∑∞

n=1 cnz
n given in

(2.1) converges in the open unit disc E to a function in P if and only if
the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1
c−2 c−1 2 · · · cn−2
...

...
...

...
...

c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3 . . . .

and c−k = ck, are all non-negative. They are strictly positive except for
p(z) =

∑m
k=1 ρkp0(e

itkz), with
∑m

k=1 ρk = 1, tk real and tk 6= tj , for k 6= j,
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where p0(z) = 1+z
1−z ; in this case Dn > 0 for n < (m − 1) and Dn

.
= 0 for

n ≥ m.

This necessary and sufficient condition found in [5] is due to Carathéodory
and Toeplitz. We may assume without restriction that c1 > 0. On using
Lemma 2.2, for n = 2, we have

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

= 8 + 2Re {c21c2} − 2 | c2 |2 − 4|c1|2 ≥ 0

⇔ 2c2 = c21 + x(4− c21),(2.2)

for some x, |x| ≤ 1. For n = 3,

D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

≥ 0

and is equivalent to

(2.3) |(4c3−4c1c2+c
3
1)(4−c21)+c1(2c2−c21)2| ≤ 2(4−c21)2−2|(2c2−c21)|2.

Simplifying the expressions (2.2) and (2.3), we get

(2.4) 4c3 = c31 + 2c1(4 − c21)x − c1(4 − c21)x
2 + 2(4 − c21)(1 − |x|2)z,

with |z| ≤ 1. In obtaining our results, we refer to the classical method
devised by Libera and Złotkiewicz [7] and used by several authors in the
literature.

3. Main results.

Theorem 3.1. If f(z) ∈ STs then |a2a3 − a4| ≤ 1
2 .

Proof. For the function f(z) = z +
∑∞

n=2 anz
n ∈ STs, by virtue of Defi-

nition 1.1, there exists an analytic function p ∈ P in the unit disc E with
p(0) = 1 and Re p(z) > 0 such that

(3.1)
2zf ′(z)

f(z)− f(−z)
= p(z)⇔ 2zf ′(z) = [f(z)− f(−z)] p(z).

Replacing f(z), f ′(z) , f(−z) and p(z) with their equivalent series expres-
sions in (3.1), we have

2z

{
1 +

∞∑
n=2

nanz
n−1

}
=

[{
z +

∞∑
n=2

anz
n

}
−

{
−z +

∞∑
n=2

an(−z)n
}]

×

{
1 +

∞∑
n=1

cnz
n

}
.
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Upon simplification, we obtain

(3.2)
1 + 2a2z + 3a3z

2 + 4a4z
3 + 5a5z

4 . . .

= 1 + c1z + (c2 + a3)z
2 + (c3 + c1a3)z

3 + (c4 + c2a3 + a5)z
4 + . . . .

Equating the coefficients of like powers of z, z2, z3 and z4 respectively in
(3.2), after simplifying, we get

(3.3) a2 =
c1
2
; a3 =

c2
2
; a4 =

1

8
(2c3 + c1c2); a5 =

1

8
(2c4 + c22).

Substituting the values of a2, a3 and a4 from (3.3) in the functional |a2a3−a4|
for the function f ∈ STs, we obtain

(3.4) |a2a3 − a4| =
1

8
|c1c2 − 2c3|.

From Lemma 2.2, substituting the values of c2 and c3 from (2.2) and (2.4)
respectively, on the right-hand side of the expression (3.4), we have∣∣c1c2 − 2c3

∣∣ = ∣∣∣c1 1
2

{
c21 + x(4− c21)

}
− 2 · 1

4

{
c31 + 2c1(4− c21)x

− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z
}∣∣∣.

Using the facts |z| < 1 and |pa+ qb| ≤ |p||a|+ |q||b|, where p, q, a and b are
real numbers, after simplifying, we get

(3.5) 2|c1c2 − 2c3| ≤ |2(4− c21) + c1(4− c21)|x|+ (c1 + 2)(4− c21)|x|2|.

Since c1 = c ∈ [0, 2], noting that c1 + a ≥ c1 − a where a ≥ 0, applying
triangle inequality and replacing |x| by µ on the right hand side of the above
inequality, we have

(3.6) 2|c1c2 − 2c3| ≤
{
2 + cµ+ (c− 2)µ2

}
(4− c2) = F (c, µ),

for 0 ≤ µ = |x| ≤ 1, where

(3.7) F (c, µ) =
{
2 + cµ+ (c− 2)µ2

}
(4− c2).

Now, we maximize the function F (c, µ) on the closed region [0, 2] × [0, 1].
From (3.7), we get

∂F

∂µ
= {c+ 2(c− 2)µ} (4− c2)(3.8)

and
∂F

∂c
=
{
µ+ µ2

}
(4− c2).(3.9)

The only stationary point for the function F (c, µ) in the region [0, 2]× [0, 1]
for which ∂F

∂c = 0 and ∂F
∂µ = 0 simultaneously is (0, 0), from the elementary
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calculus, we observe that the function F (c, µ) attains maximum value at
this point only and from (3.7), it is given by

(3.10) Gmax = F (0, 0) = 8.

Simplifying the expressions (3.4) and (3.6) together with (3.10), we obtain

|a2a3 − a4| ≤
1

2
.

This completes the proof of our Theorem 3.1. �

Theorem 3.2. If f(z) ∈ STs, then |a3−a22| ≤ 1 and the inequality is sharp
for the values c1 = c = 0, c2 = 2 and x = 1.

Proof. Substituting the values a2 and a3 from (3.3) into the functional
|a3 − a22|, we obtain

(3.11) 4|a3 − a22| =
∣∣2c2 − c21∣∣ .

Substituting the value of c2 from (2.2) of Lemma 2.2 on the right-hand side
of (3.11), we get

(3.12)
∣∣2c2 − c21∣∣ = ∣∣(4− c21)x∣∣ .

Since c1 = c ∈ [0, 2], replacing |x| by µ on the right hand side of the above
expression, we see that

(3.13)
∣∣2c2 − c21∣∣ ≤ (4− c2)µ = F (c, µ),

for 0 ≤ µ = |x| ≤ 1. Next, we maximize the function F (c, µ) on the closed
region [0, 2] × [0, 1]. Differentiating F (c, µ) in (3.13) partially with respect
to µ, we obtain

(3.14)
∂F

∂µ
= (4− c2).

From (3.14), we observe that ∂F
∂µ > 0, for 0 < µ < 1 and 0 < c < 2.

Therefore, F (c, µ) is an increasing function of µ and hence it cannot have
maximum value at any point in the interior of the closed region [0, 2]× [0, 1].

Moreover, for fixed c ∈ [0, 2], we have

(3.15) max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c) = (4− c2),

(3.16) G′(c) = −2c.
From the expression (3.16), we observe that G′(c) ≤ 0 for every c ∈ [0, 2].
Therefore, G(c) becomes a decreasing function of c, whose maximum value
occurs at c = 0 only, from (3.15), it is given by

(3.17) Gmax = G(0) = 4.

Simplifying the expressions (3.11), (3.13) along with (3.17), we obtain

(3.18) |a3 − a22| ≤ 1.
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This completes the proof of our Theorem 3.2. �

Theorem 3.3. If f(z) ∈ STs, then |ak| ≤ 1, for k ∈ {2, 3, 4, . . . } and the
inequality is sharp.

Proof. Using the fact that |cn| ≤ 2, for n ∈ N = {1, 2, 3, . . . }, with the
help of c2 and c3 values given in (2.2) and (2.4) respectively, together with
the values determined in (3.3), we obtain |ak| ≤ 1, for k ∈ {2, 3, 4, . . . }.
This completes the proof of our Theorem 3.3. �

Substituting the results of Theorems 3.1, 3.2 , 3.3 and the inequality
|a2a4 − a23| ≤ 1 (see [13]) in the inequality (1.4), we obtain the following
corollary.

Corollary 3.4. Let f(z) ∈ STs then |H3(1)| ≤ 5
2 .

Theorem 3.5. If f(z) ∈ CVs then |a2a3 − a4| ≤ 4
27 .

Proof. Let f(z) = z +
∑∞

n=2 anz
n ∈ CVs, from the Definition 1.2, there

exists an analytic function p ∈ P in the unit disc E with p(0) = 1 and
Re p(z) > 0 such that

(3.19)
2{zf ′(z)}′

f ′(z) + f ′(−z)
= p(z)⇔ 2{zf ′(z)}′ = {f ′(z) + f ′(−z)}p(z).

Replacing f ′(z) , f ′′(z), f ′(−z) and p(z) with their series equivalent expres-
sions in (3.20) and applying the same procedure as described in Theorem
3.1, we get

(3.20) a2 =
c1
4
; a3 =

c2
6
; a4 =

1

32
(2c3 + c1c2); a5 =

1

40
(2c4 + c22).

Substituting the values of a2, a3, and a4 from (3.21) in |a2a3 − a4| for the
function f ∈ CVs, upon simplification, we obtain

(3.21) |a2a3 − a4| =
1

96
|c1c2 − 6c3|.

Applying the same procedure as described in Theorem 3.1, we arrive at

(3.22) 2|c1c2 − 6c3| ≤ [2c3 + {6 + 5cµ+ 3(c− 2)µ2}(4− c2)] = F (µ),

for 0 ≤ µ ≤ 1, where

(3.23) F (µ) = 2c3 + {6 + 5cµ+ 3(c− 2)µ2}(4− c2).

Next, we maximize the function F (µ) on the closed region [0, 2]×[0, 1]. Note
that F ′(µ) ≥ F ′(1) > 0. Then there exists c∗ ∈ [0, 2] such that F ′(µ) > 0
for c ∈ (c∗, 2] and F ′(µ) ≤ 0 otherwise. Then for c ∈ [c∗, 2], F (µ) ≤ F (1),
that is

2|c1c2 − 6c3| ≤ −6c3 + 32c = G(c),(3.24)
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where

G(c) = −6c3 + 32c,(3.25)

(3.26) G′(c) = −18c2 + 32.

For optimum value of G(c), consider G′(c) = 0. From the equation (3.26),
we obtain c = ±4

3 . Since c ∈ [0, 2], consider c = 4
3 (c∗) only. Further, we

observe that F (c, µ) attains the maximum value at the point [43 , 1] only and
from (3.25) it is given by

(3.27) Gmax =
256

9
.

Simplifying the expressions (3.21), (3.24) along with (3.27), we obtain

(3.28) |a2a3 − a4| ≤
4

27
.

This completes the proof of our Theorem 3.5. �

The following results are straightforward verification on applying the
same procedure of Theorems 3.2 and 3.3 respectively.

Theorem 3.6. If f(z) ∈ CVs, then |a3−a22| ≤ 1
3 and the inequality is sharp

for the values c1 = c = 0, c2 = 2 and x = 1.

Theorem 3.7. If f(z) ∈ CVs, then |ak| ≤ 1
k , for k ∈ {2, 3, 4, . . . } .

For f(z) ∈ CVs, using the result |a2a4 − a23| ≤ 1
9 (see [13]) along with

the results of Theorems 3.5, 3.6, 3.7 in the inequality (1.4), we have the
following corollary.

Corollary 3.8. If f(z) ∈ CVs then |H3(1)| ≤ 19
135 .
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