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A kinetic equation for repulsive coalescing
random jumps in continuum

Abstract. A continuum individual-based model of hopping and coalescing
particles is introduced and studied. Its microscopic dynamics are described
by a hierarchy of evolution equations obtained in the paper. Then the passage
from the micro- to mesoscopic dynamics is performed by means of a Vlasov-
type scaling. The existence and uniqueness of solutions of the corresponding
kinetic equation are proved.

1. Introduction. In this paper, we introduce and study the dynamics of
an infinite system of particles located in Rd, which jump and merge (coa-
lesce). Both jumping and coalescing are repulsive. The proposed model is
individual based, which means that the description of its Markov dynamics
is performed in terms of random changes of states of individual particles.
In the proposed model, such changes include: (a) the particle located at a
given x ∈ Rd changes its position to y ∈ Rd (jumping); (b) two particles,
located at x ∈ Rd and y ∈ Rd, merge into a single particle located at z ∈ Rd
(coalescing). The rates of these events depend on the configuration of all
particles. Similar single type population models are used to describe pre-
dation in ecology, see, e.g., [6]. The model proposed can be viewed as an
extension of the Kawasaki model with repulsion studied in [5] where only
random jumps with repulsion are taken into account. To the best of our
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knowledge, the microscopic modeling of this kind of merging is performed
here for the first time. Previous theories, see, e.g., [1, 2, 3, 4, 11, 13, 14],
deal with the particle densities and hence do not take into account the cor-
puscular structure of the system or, see, e.g., [15, 16], while introducing
individual-based models, describe only finite systems with coalescence be-
tween two particles dependent on characteristics of the particles involved
and the mass of entire population. Interactions between particles are not
taken into account. The most important aspects of the model proposed
in this paper are: (a) the coalescence rate depends on the neighbourhood
of the coalescing particles; (b) infinite systems of particles are described.
However, the particle mass is not taken into account, which is supposed to
be done in an extension of the present model.

The state space of the system considered is the configuration space, that
is, the set of all locally finite subsets of Rd

Γ = Γ(Rd) =
{
γ ⊂ Rd : γ ∩ Λ is finite for every compact Λ ⊂ Rd

}
.

It can be given a measurability structure. Take

F = σ(Γn,Λ : n ∈ N0,Λ ⊂ Rd - compact),

that is the smallest σ-field generated by the cylinders

Γn,Λ = {γ ∈ Γ : |γ ∩ Λ| = n}.

This allows one to consider probability measures on standard Borel space
(Γ,F) as states of the system. To characterize them one uses observables,
which are appropriate functions F : Γ → R. For an observable F and a
state µ, the number ∫

Γ
Fdµ

is the µ-expected value of F . Then the evolution of states µ0 7→ µt can
be described via the dual evolution F0 7→ Ft based on the following duality
relation ∫

Γ
F0dµt =

∫
Γ
Ftdµ0, t > 0.

The evolution of observables is obtained in turn from the Kolmogorov equa-
tion

d

dt
Ft = LFt, Ft|t=0 = F0,
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in which the “operator” L characterizes the model, see [7, 8, 9, 10] for more
details. In the proposed model, it has the following form

(1.1)

LF (γ) =
∑
{x,y}⊂γ

∫
Rd

c̃1(x, y; z; γ)
(
F
(
γ\{x, y} ∪ z

)
− F (γ)

)
dz

+
∑
x∈γ

∫
Rd

c̃2(x; y; γ)
(
F
(
γ\x ∪ y

)
− F (γ)

)
dy.

The first term of L describes the coalescence occurring with intensity
c̃1(x, y; z; γ). The particles located at x and y merge into a new particle
located at a point z. The second term describes the jump of the particle
located at x to a point y with intensity c̃2(x; y; γ). The model with L con-
sisting of the second term only is the Kawasaki model studied in [5]. The
kernels c̃1 and c̃2 take into account also the influence of the whole configu-
ration, which is supposed to be repulsive, see (3.2) below. Note that L is
linear and independent of time and hence we deal with Markov dynamics.

In the present research, we follow the statistical approach, see, e.g., [5,
7, 8, 9, 10], in which the dynamics of the model are described by means of
that of the corresponding correlation functions obtained from the following
Cauchy problem

d

dt
kt = L∆kt, kt=0 = k0,

in which the “operator” L∆ is related to L in a certain way. In Section 3,
we calculate L∆ following the scheme developed in [10]. Usually, equations
for kt are studied in scales of the corresponding Banach spaces. However, as
the structure of L∆ obtained below is too complicated, in this work we do
not study this equation, which is supposed to be done in a separate work.
Instead, in Section 4 we consider a simplified version obtained by means of a
Vlasov-type scaling procedure developed in, e.g., [8], which is equivalent to
passing to the so-called mesoscopic description. In particular, we informally
obtain the kinetic equation and study its local solutions in an appropriate
Banach space, showing their existence and uniqueness. In the next section,
we introduce necessary notions and technical tools.

2. Basic notions and tools. In this section we introduce basic notions
and tools used for proving the results in the following sections. We give
only a short description with references to the corresponding sources.

Note that each element γ ∈ Γ is at most countable without finite limiting
points. Γ is endowed with the vague topology, which is the weakest topology
that makes continuous the mappings

γ →
∑
x∈γ

f(x)
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for all continuous compactly supported functions f : Rd → R. For the
general discussion on configuration spaces we recommend [7, 9].

One can also consider the space of all finite configurations

Γ0 = Γ0(Rd) =
{
η ∈ Γ : η is finite

}
,

By Bbs(Γ0) we denote the set of all bounded measurable functions G :
Γ0 → R such that for some N ∈ N0 and compact Λ ⊂ Rd, we have
G(n)(x1, . . . , xn) = 0, whenever n ≥ N or one of the arguments xi /∈ Λ. Then
the K-transform is defined as follows. For any G ∈ Bbs(Γ0), KG : Γ→ R is

(2.1) (KG)(γ) =
∑
ηbγ

G(η),

where η b γ means that η is a finite sub-configuration of γ. Obviously, the
K-transform is linear. It acts to the set of all measurable cylinder functions
F : Γ → R, that is satisfying F (γ) = F (γΛ) for some compact Λ ⊂ Rd,
where γΛ = γ ∩ Λ. See [12] for more details. It is also invertible with the
inverse given by

(K−1F )(η) =
∑
ξ⊂η

(−1)|η\ξ|F (ξ).

For G1, G2 ∈ Bbs(Γ0), it is known that

(2.2) (KG1) · (KG2) = K(G1 ? G2),

where G1 ? G2 is the “convolution” given by the formula

(2.3) (G1 ? G2)(η) =
∑
ξ⊂η

G1(ξ)
∑
ζ⊂ξ

G2(η\ξ ∪ ζ) ∈ Bbs(Γ0).

Denote

(2.4) e(f, γ) =
∏
x∈γ

f(x).

For a measurable compactly supported function f : Rd → R, the following
holds

(2.5) K
(
e(f, ·)

)
(γ) = e(1 + f, γ).

A probability measure µ on (Γ,B(Γ)) is said to have finite local moments
of all orders if for any n ∈ N and a bounded Borel Λ ⊂ Rd,∫

Γ0

|γΛ|nµ(dγ) <∞,

where |η| stands for the cardinality of η ∈ Γ0. For such a measure µ, one
can define a correlation measure, ρµ, on (Γ0,B(Γ0)) by∫

Γ0

G(η)ρµ(dη) =

∫
Γ

(KG)(γ)µ(dγ), G ∈ Bbs(Γ0).
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By λ we denote the Lebesgue–Poisson measure on (Γ0,B(Γ0)), that is,
the correlation measure for the homogeneous Poisson measure with unit in-
tensity. The Lebesgue–Poisson measure is uniquely defined by the following
formula

(2.6)
∫
Γ0

G(η)λ(dη) = G(0)+
∞∑
n=1

1

n!

∫
(Rd)n

G(n)(x1, x2, . . . , xn)dx1dx2 · · · dxn,

which has to hold for all G ∈ Bbs(Γ0). The Minlos lemma (see, e.g., [7, eq.
(2.2)]), states that

(2.7)

∫
Γ0

. . .

∫
Γ0

G(η1∪ η2∪ · · · ∪ ηn)H(η1, η2, . . . , ηn)λ(dη1)λ(dη2) . . . λ(dηn)

=

∫
Γ0

G(η)
∑

H(η1, η2, . . . , ηn)λ(dη),

where n is a positive integer, G : Γ0 → R, H : (Γ0)n → R are positive and
measurable and the sum is taken over all n-part partitions (η1, . . . , ηn) of η,
where parts being empty configurations are also considered. For n = 2, we
can rewrite (2.7) in the following form

(2.8)
∫
Γ0

∫
Γ0

G(η ∪ ξ)H(η, ξ)λ(dη)λ(dξ) =

∫
Γ0

G(η)
∑
ξ⊂η

H(ξ, η\ξ)λ(dη).

By taking

H(η1, η2) =

{
h(x, η2), η1 = {x},
0, |η1| 6= 1

and using (2.6) we obtain the following special case of the Minlos lemma

(2.9)
∫
Γ0

∫
Rd

G(η ∪ x)h(x, η)dxλ(dη) =

∫
Γ0

∑
x∈η

G(η)h(x, η\x)λ(dη).

Analogously, for

H(η1, η2, η3) =

{
h(x, y, η3), η1 = {x}, η2 = {y},
0, |η1| 6= 1 or |η2| 6= 1,

we have

(2.10)

1

2

∫
Γ0

∫
Rd

∫
Rd

G(η ∪ {x, y})h(x, y, η)dxdyλ(dη)

=

∫
Γ0

∑
{x,y}⊂η

G(η)h(x, y, η\{x, y})λ(dη).
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3. Dynamics of the correlation functions. In this section, we follow
the approach described in [10], obtaining operator L∆ acting on correlation
functions, corresponding to (1.1). First, by using the K-transform (2.1) we
obtain the operator L̂ (see (3.4) below) and then L∆ related to L̂ by

(3.1)
∫
Γ0

(L̂G)(η)k(η)λ(dη) =

∫
Γ0

G(η)(L∆k)(η)λ(dη).

Recall, that

L = L1 + L2,

where

L1F (γ) =
∑
{x,y}⊂γ

∫
Rd

c̃1(x, y; z; γ)
(
F
(
γ\{x, y} ∪ z

)
− F (γ)

)
dz

and

L2F (γ) =
∑
x∈γ

∫
Rd

c̃2(x; y; γ)
(
F
(
γ\x ∪ y

)
− F (γ)

)
dy.

We assume that (see notion (2.4) for definition of e(f, γ))

(3.2)
c̃1(x, y; z; γ) = c1(x, y; z)e(t(1)

z , γ\{x, y}),

c̃2(x; y; γ) = c2(x; y)e(t(2)
y , γ\x),

with

t(1)
z (u) = e−φ1(z−u), t(2)

y (u) = e−φ2(y−u).

and c1, c2, φ1, φ2 being positive real functions.
The above assumptions are important part of the model, as they guar-

antee that both jumping and coalescing are repulsive. Indeed, if γ\{x, y}
is nonempty and at least one of its elements, say u, is such that z − u lies
in the support of φ1, then the coalescence rate c̃1(x, y; z; γ) is smaller than
c1(x, y; z). If there are no such elements in γ\{x, y}, then c̃1(x, y; z; γ) =
c1(x, y; z). It means that the particles which are not involved in the co-
alescence, may influence it and this influence is repulsive. The analogous
reasoning is valid for the jump rate c̃2(x; y; γ).

We add some technical assumptions listed below. Namely, let

(3.3)
c̃1(x, y; z; γ) = (KC1

x,y;z)(γ\{x, y}),
c̃2(x; y; γ) = (KC2

x;y)(γ\x)
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for some C1
x,y;z and C2

x;y. We discuss the form of these functions later in
this section. Additionally,

c1(x, y; z) = c1(y, x; z),∫
(Rd)2

c1(x1, x2;x3)dxidxj = 〈c1〉 <∞, i, j = 1, 2, 3, i 6= j,

∫
Rd

c2(x; y)dx =

∫
Rd

c2(x; y)dy = 〈c2〉 <∞,

∫
Rd

φ1(x)dx = 〈φ1〉 <∞,
∫
Rd

φ2(x)dx = 〈φ2〉 <∞.

Suppose that F = KG, where G : Γ0 → R. Then, by writing KL̂G = LF ,
we define

(3.4) L̂ = K−1LK.

By the properties of the K-transform we derive an explicit formula for L̂.

Proposition 3.1. L̂ defined as above has the following form

L̂G(η) =

∫
Rd

∑
{x,y}⊂η

[
C1
x,y;z ? H

1
x,y;z

]
(η\{x, y})dz

+

∫
Rd

∑
x∈η

[
C2
x;y ? H

2
x;y

]
(η\x)dy,

where

(3.5)
H1
x,y;z(η) = G(η ∪ z)−G(η ∪ x)−G(η ∪ y)−G(η ∪ {x, y}),
H2
x;y(η) = G(η ∪ y)−G(η ∪ x).

The next step is to pass with the action of the operator L̂ to the cor-
relation functions, i.e. to obtain L∆. The latter is defined by the pairing
〈〈L̂G, k〉〉 = 〈〈G,L∆k〉〉, see (3.1). Let us consider the integral on the left
hand side of equation (3.1). Using the Minlos lemma (2.7), we can transform
it so that we can obtain L∆.

Proposition 3.2. L∆ defined as above is of the form

L∆ = L∆
1 + L∆

2 ,
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where

L∆
1 k(η) =

1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

c1(x, y; z)k(η\z ∪ ξ ∪ {x, y})

× e(t(1)
z − 1, ξ)e(t(1)

z , η\z)λ(dξ)dxdy

− 1

2

∫
(Rd)2

∫
Γ0

∑
x∈η

c1(x, y; z)k(η ∪ ξ ∪ y)

× e(t(1)
z − 1, ξ)e(t(1)

z , η\x)λ(dξ)dydz

− 1

2

∫
(Rd)2

∫
Γ0

∑
y∈η

c1(x, y; z)k(η ∪ ξ ∪ x)

× e(t(1)
z − 1, ξ)e(t(1)

z , η\y)λ(dξ)dxdz

−
∫
Rd

∫
Γ0

∑
{x,y}⊂η

c1(x, y; z)k(η ∪ ξ)

× e(t(1)
z − 1, ξ)e(t(1)

z , η\{x, y})λ(dξ)dz

and

L∆
2 k(η) =

∫
Rd

∫
Γ0

∑
y∈η

k(η\y ∪ ξ ∪ x)c2(x; y)

× e(t(2)
y − 1, ξ)e(t(2)

y − 1, η\y)λ(dξ)dx

−
∫
Rd

∫
Γ0

k(η ∪ ξ)
∑
x∈η

c2(x; y)

×
∏
u∈ξ

e(t(2)
y − 1, ξ)e(t(2)

y − 1, η\x)λ(dξ)dy.

Proof of Proposition 3.1. First let us rewrite the operator L in a more
convenient form. Using (3.3) and recalling that any configuration treated
as a subset of Rd is Lebesgue measure-zero as it is countable, we have

L1F (γ) =
∑
{x,y}⊂γ

∫
Rd\γ

(
KC1

x,y;z(·)
[
KG

(
· ∪z

)
−KG

(
· ∪{x, y}

)])(
γ\{x, y}

)
dz.

Observe that for any ξ ∈ Γ, x, y, z /∈ ξ we have

KG(ξ ∪ z) =
∑
ηbξ∪z

G(η) =
∑
ηbξ

[
G(η) +G(η ∪ z)

]
= K

[
G(·) +G(· ∪ z)

]
(ξ)
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and analogously

KG(ξ ∪ {x, y}) = K
[
G(·) +G(· ∪ x) +G(· ∪ y) +G(· ∪ {x, y})

]
(ξ).

Using linearity of the K-transform and above observations, we obtain

L1F (γ) =
∑
{x,y}⊂γ

∫
Rd

(
KC1

x,y;z(·)K
[
G(· ∪ z)−G(· ∪ x)

−G(· ∪ y)−G(· ∪ {x, y})
]
(·)
)

(γ\{x, y})dz.

Considering the second part of the operator, we have

L2F (γ) =
∑
x∈γ

∫
Rd

KC2
x;y(γ\x)

[
KG(γ\x ∪ y)−KG(γ)

]
dy

=
∑
x∈γ

∫
Rd

(
KC2

x;y(·)K
[
G(· ∪ y)−G(· ∪ x)

]
(·)
)

(γ\x)dy.

Using notion (3.5) and property (2.2) of the product of K-transforms, we
derive

L1F (γ) =
∑
{x,y}⊂γ

∫
Rd

K
[
C1
x,y;z ? H

1
x,y;z

]
(γ\{x, y})dz,

L2F (γ) =
∑
x∈γ

∫
Rd

K
[
C2
x;y ? H

2
x;y

]
(γ\x)dy.

Therefore

LF (γ) =
∑
{x,y}⊂γ

∫
Rd

K
[
C1
x,y;z ? H

1
x,y;z

]
(γ\{x, y})dz

+
∑
x∈γ

∫
Rd

K
[
C2
x;y ? H

2
x;y

]
(γ\x)dy.

Recalling the definition (3.4) of the operator L̂ and denoting

L̂1G(η) = K−1L1F (η), L̂2G(η) = K−1L2F (η),
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we obtain

L̂1G(η) =
∑
ξ⊂η

(−1)|η\ξ|
∑
{x,y}⊂ξ

∫
Rd

K
[
C1
x,y;z ? H

1
x,y;z

]
(ξ\{x, y})dz

=

∫
Rd

∑
{x,y}⊂η

∑
ξ⊂η\{x,y}

(−1)|η\{x,y}\ξ|K
[
C1
x,y;z ? H

1
x,y;z

]
(ξ)dz

=

∫
Rd

∑
{x,y}⊂η

K−1K
[
C1
x,y;z ? H

1
x,y;z

]
(η\{x, y})dz

=

∫
Rd

∑
{x,y}⊂η

[
C1
x,y;z ? H

1
x,y;z

]
(η\{x, y})dz

and analogously

L̂2G(η) =
∑
ξ⊂η

(−1)|η\ξ|
∑
x∈ξ

∫
Rd

K
[
C2
x;y ? H

2
x;y

]
(ξ\x)dy

=

∫
Rd

∑
x∈η

∑
ξ⊂η\x

(−1)|η\x\ξ|K
[
C2
x;y ? H

2
x;y

]
(ξ)dy

=

∫
Rd

∑
x∈η

K−1K
[
C2
x;y ? H

2
x;y

]
(η\x)dy

=

∫
Rd

∑
x∈η

[
C2
x;y ? H

2
x;y

]
(η\x)dy.

Therefore

L̂G(η) =

∫
Rd

∑
{x,y}⊂η

[
C1
x,y;z ? H

1
x,y;z

]
(η\{x, y})dz

+

∫
Rd

∑
x∈η

[
C2
x;y ? H

2
x;y

]
(η\x)dy.

�

Proof of Proposition 3.2. Using the special case (2.10) of the Minlos
lemma and proposition (3.1), we have∫

Γ0

(L̂1G)(η)k(η)λ(dη)

=

∫
Γ0

∫
Rd

∑
{x,y}⊂η

[
C1
x,y;z ? H

1
x,y;z

]
(η\{x, y})k(η)dzλ(dη)
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=
1

2

∫
(Rd)3

∫
Γ0

[
C1
x,y;z ? H

1
x,y;z

]
(η)k(η ∪ {x, y})λ(dη)dxdydz.

Recalling the definition (2.3) of the convolution ? and using the Minlos
lemma in the form (2.8) twice, we obtain∫

Γ0

(L̂1G)(η)k(η)λ(dη) =
1

2

∫
(Rd)3

∫
Γ0

∑
ξ⊂η

C1
x,y;z(ξ)

∑
ζ⊂ξ

H1
x,y;z(η\ξ ∪ ζ)

× k(η ∪ {x, y})λ(dη)dxdydz

=
1

2

∫
(Rd)3

∫
Γ0

∫
Γ0

C1
x,y;z(ξ)

∑
ζ⊂ξ

H1
x,y;z(η ∪ ζ)

× k(η ∪ ξ ∪ {x, y})λ(dη)λ(dξ)dxdydz

=
1

2

∫
(Rd)3

∫
Γ0

∫
Γ0

∫
Γ0

C1
x,y;z(ξ ∪ ζ)H1

x,y;z(η ∪ ζ)

× k(η ∪ ξ ∪ ζ ∪ {x, y})λ(dη)λ(dξ)λ(dζ)dxdydz.

Using again the Minlos lemma (2.8), but in the opposite direction, we have∫
Γ0

(L̂1G)(η)k(η)λ(dη) =
1

2

∫
(Rd)3

∫
Γ0

∫
Γ0

∑
ζ⊂η

C1
x,y;z(ξ ∪ ζ)H1

x,y;z(η)

× k(η ∪ ξ ∪ {x, y})λ(dη)λ(dξ)dxdydz

=
1

2

∫
(Rd)3

∫
Γ0

H1
x,y;z(η)

[ ∫
Γ0

k(η ∪ ξ ∪ {x, y})

×
∑
ζ⊂η

C1
x,y;z(ξ ∪ ζ)λ(dξ)

]
λ(dη)dxdydz.

Let us rewrite above using the definition (3.5) of H1
x,y;z(η).∫

Γ0

(L̂1G)(η)k(η)λ(dη)

=
1

2

∫
(Rd)3

∫
Γ0

[
G(η ∪ z)−G(η ∪ x)−G(η ∪ y)−G(η ∪ {x, y})

]

×
[ ∫

Γ0

k(η ∪ ξ ∪ {x, y})
∑
ζ⊂η

C1
x,y;z(ξ ∪ ζ)λ(dξ)

]
λ(dη)dxdydz.
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Using the special cases (2.9) and (2.10) of the Minlos lemma, we obtain∫
Γ0

(L̂1G)(η)k(η)λ(dη)

=

∫
Γ0

G(η)
[1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

k(η\z ∪ ξ ∪ {x, y})
∑
ζ⊂η\z

C1
x,y;z(ξ ∪ ζ)λ(dξ)dxdy

− 1

2

∫
(Rd)2

∫
Γ0

∑
x∈η

k(η ∪ ξ ∪ y)
∑
ζ⊂η\x

C1
x,y;z(ξ ∪ ζ)λ(dξ)dydz

− 1

2

∫
(Rd)2

∫
Γ0

∑
y∈η

k(η ∪ ξ ∪ x)
∑
ζ⊂η\y

C1
x,y;z(ξ ∪ ζ)λ(dξ)dxdz

−
∫
Rd

∫
Γ0

∑
{x,y}⊂η

k(η ∪ ξ)
∑

ζ⊂η\{x,y}

C1
x,y;z(ξ ∪ ζ)λ(dξ)dz

]
λ(dη).

Employing the same technique to the second part of the operator L̂, we
derive ∫

Γ0

(L̂2G)(η)k(η)λ(dη)

=

∫
(Rd)2

∫
Γ0

∫
Γ0

∑
ζ⊂η

C2
x;y(ξ ∪ ζ)H2

x;y(η)k(η ∪ ξ ∪ x)λ(dη)λ(dξ)dxdy

=

∫
Γ0

G(η)

[ ∫
Rd

∫
Γ0

∑
y∈η

k(η\y ∪ ξ ∪ x)
∑
ζ⊂η\y

C2
x;y(ξ ∪ ζ)λ(dξ)dx

−
∫
Rd

∫
Γ0

k(η ∪ ξ)
∑
x∈η

∑
ζ⊂η\x

C2
x;y(ξ ∪ ζ)λ(dξ)dy

]
λ(dη).

Therefore, we obtain

L∆k(η) =

=
1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

k(η\z ∪ ξ ∪ {x, y})
∑
ζ⊂η\z

C1
x,y;z(ξ ∪ ζ)λ(dξ)dxdy(3.6)

− 1

2

∫
(Rd)2

∫
Γ0

∑
x∈η

k(η ∪ ξ ∪ y)
∑
ζ⊂η\x

C1
x,y;z(ξ ∪ ζ)λ(dξ)dydz(3.7)

− 1

2

∫
(Rd)2

∫
Γ0

∑
y∈η

k(η ∪ ξ ∪ x)
∑
ζ⊂η\y

C1
x,y;z(ξ ∪ ζ)λ(dξ)dxdz(3.8)
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−
∫
Rd

∫
Γ0

∑
{x,y}⊂η

k(η ∪ ξ)
∑

ζ⊂η\{x,y}

C1
x,y;z(ξ ∪ ζ)λ(dξ)dz(3.9)

+

∫
Rd

∫
Γ0

∑
y∈η

k(η\y ∪ ξ ∪ x)
∑
ζ⊂η\y

C2
x;y(ξ ∪ ζ)λ(dξ)dx(3.10)

−
∫
Rd

∫
Γ0

∑
x∈η

k(η ∪ ξ)
∑
ζ⊂η\x

C2
x;y(ξ ∪ ζ)λ(dξ)dy.(3.11)

Note that so far we have not used any assumption about coefficients c̃1 and
c̃2 apart from that they can be written as results of action of theK-transform
on corresponding functions C1

x,y;z and C2
x;y. Let us calculate explicit forms

of these functions. Recall that

c̃1(x, y; z; γ) = c1(x, y; z)
∏

u∈γ\{x,y}

e−φ1(z−u),

c̃2(x; y; γ) = c2(x; y)
∏
u∈γ\x

e−φ2(y−u).

We have

KC1
x,y;z = c1(x, y; z) e(t(1)

z , ·),

that is

C1
x,y;z = K−1c1(x, y; z) e(1 + t(1)

z − 1, ·) = c1(x, y; z)K−1
∑
ξ⊂·

e(t(1)
z − 1, ξ)

= c1(x, y; z)K−1Ke(t(1)
z − 1, ·) = c1(x, y; z) e(t(1)

z − 1, ·).

Therefore

(3.12) C1
x,y;z(η) = c1(x, y; z) e(t(1)

z − 1, η).

Analogously we can derive

(3.13) C2
x;y(η) = c2(x; y) e(t(2)

y − 1, η).

Using the above, we can rewrite the operator L∆. For convenience let us
denote the part of it corresponding to the coalescence, that is the terms
(3.6)–(3.9), as L∆

1 and the part corresponding to the jumps, that is the
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terms (3.10)–(3.11), as L∆
2 . Substituting (3.12), we derive

L∆
1 k(η) =

1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

k(η\z ∪ ξ ∪ {x, y})
∑
ζ⊂η\z

c1(x, y; z)

× e(t(1)
z − 1, ξ ∪ ζ)λ(dξ)dxdy

− 1

2

∫
(Rd)2

∫
Γ0

∑
x∈η

k(η ∪ ξ ∪ y)
∑
ζ⊂η\x

c1(x, y; z)e(t(1)
z − 1, ξ ∪ ζ)λ(dξ)dydz

− 1

2

∫
(Rd)2

∫
Γ0

∑
y∈η

k(η ∪ ξ ∪ x)
∑
ζ⊂η\y

c1(x, y; z)e(t(1)
z − 1, ξ ∪ ζ)λ(dξ)dxdz

−
∫
Rd

∫
Γ0

∑
{x,y}⊂η

k(η ∪ ξ)
∑

ζ⊂η\{x,y}

c1(x, y; z)e(t(1)
z − 1, ξ ∪ ζ)λ(dξ)dz

and analogously using (3.13), we obtain

L∆
2 k(η) =

∫
Rd

∫
Γ0

∑
y∈η

k(η\y ∪ ξ ∪ x)
∑
ζ⊂η\y

c2(x; y)e(t(2)
y − 1, ξ ∪ ζ)λ(dξ)dx

−
∫
Rd

∫
Γ0

k(η ∪ ξ)
∑
x∈η

∑
ζ⊂η\x

c2(x; y)e(t(2)
y − 1, ξ ∪ ζ)λ(dξ)dy.

Consider the first component of L∆
1 and denote it as

L∆
11k(η) =

1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

k(η\z ∪ ξ ∪ {x, y})

×
∑
ζ⊂η\z

c1(x, y; z)e(t(1)
z − 1, ξ ∪ ζ)λ(dξ)dxdy.

Next, for a given η let us introduce C(η) = {ξ ∈ Γ0 : ξ ∩ η 6= ∅}. Then, be-
cause any configuration treated as a measurable subset of Rd is of Lebesgue
measure 0 and the empty configuration does not belong to C(η) for any
η ∈ Γ0, we have λ(C(η)) = 0 for every η ∈ Γ0. Indeed, using the char-
acterization (2.6) of the integral w.r.t. the Lebesgue–Poisson measure, we
obtain

λ(C(η)) =

∫
Γ0

IC(η)(ξ)λ(dξ) = I
(0)
C(η)+

∞∑
n=1

1

n!

∫
(Rd)n

I
(n)
C(η)(x1, . . . , xn)dx1 . . . dxn.

First, notice that I(0)
C(η) = 0, as empty configuration cannot have common

part with any configuration. Then, because

I
(n)
C(η)(x1, . . . , xn) ≤ I(1)

C(η)(x1) + I
(1)
C(η)(x2) + · · ·+ I

(1)
C(η)(xn)
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we have for every n ∈ N∫
(Rd)n

I
(n)
C(η)(x1, . . . , xn)dx1 . . . dxn ≤ n

∫
(Rd)n−1

[ ∫
Rd

I
(1)
C(η)(x)dx

]
dx1 . . . dxn−1.

Taking into account that∫
Rd

I
(1)
C(η)(x)dx =

∫
Rd

Iη(x)dx = l(η) = 0,

where l denotes the Lebesgue measure, one can clearly see that λ(C(η)) = 0.
Therefore, when integrating over Γ0\C(η) instead of Γ0, the result is the
same. However, all subconfigurations ζ of η are disjoint with any ξ ∈
Γ0\C(η), which allows us to separate the product taken over ξ ∪ ζ into
one taken over ξ and another taken over ζ. Thus we can write

L∆
11k(η) =

1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

c1(x, y; z)k(η\z ∪ ξ ∪ {x, y})

× e(t(1)
z − 1, ξ)

∑
ζ⊂η\z

e(t(1)
z − 1, ζ)λ(dξ)dxdy.

Recalling the definition (2.1) of the K-transform and its property (2.5), we
have ∑

ζ⊂η\z

e(t(1)
z − 1, ζ) = K

(
e(t(1)

z − 1, ·)
)
(η\z) = e(t(1)

z , η\z).

Therefore we can rewrite the action of L∆
11 in the form

L∆
11k(η) =

1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

c1(x, y; z)k(η\z ∪ ξ ∪ {x, y})

× e(t(1)
z − 1, ξ)e(t(1)

z , η\z)λ(dξ)dxdy.

Applying the same method for the rest of the L∆
1 and for the L∆

2 , we obtain
the result. �

4. The Vlasov scaling and the kinetic equation.

4.1. The Vlasov scaling. We follow the scaling technique described in
[8]. Let us introduce the scale parameter ε ∈ [0, 1] with ε = 1 corresponding
to the unscaled case (microscopic level) and ε→ 0 to the fully rescaled case,
where the description of the system is based on the density of a medium
(mesoscopic level), instead of the corpuscular structure. Evolution of density
in time is characterized by the corresponding kinetic equation. The scaling
is performed in such a way that the evolution of the rescaled case preserves
poissonity of a correlation function. This allows us to identify above abstract
density of the medium with density of the Poisson measure, which is concrete
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mathematical object. We alter the operator L∆ by scaling c1 → εc1, φ1 →
εφ1 and φ2 → εφ2 for ε ∈ (0, 1], which can be interpreted as weakening the
interactions between particles. Altered in such a way operator we denote
by L∆

ε . Next, we renormalize it, defining

Lrenε k(η) = ε|η|L∆
ε (ε−|η|k(η)).

Let us consider the first component of the operator Lrenε . We have (cf.
Proposition 3.2)

Lren11,εk(η) =
1

2
ε|η|

∫
(Rd)2

∫
Γ0

∑
z∈η

εc1(x, y; z)ε−|η\z∪ξ∪{x,y}|k(η\z ∪ ξ ∪ {x, y})

×
∏
u∈ξ

(e−εφ1(z−u) − 1)
∏
u∈η\z

e−εφ1(z−u)λ(dξ)dxdy.

Note that integrating over (Rd)2\(η × η) instead of (Rd)2 and over Γ0\(η ∪
{x, y}) instead of Γ0 does not influence the result, so we have

Lren11,εk(η) =
1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

c1(x, y; z)k(η\z ∪ ξ ∪ {x, y})

×
∏
u∈ξ

1

ε

(
e−εφ1(z−u) − 1

) ∏
u∈η\z

e−εφ1(z−u)λ(dξ)dxdy.

Let us pass with ε to the limit. Noting that

lim
ε→0

1

ε

(
e−εφ1(z−u) − 1

)
= −φ1(z − u),

we can write

lim
ε→0

Lren11,εk(η) =
1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

c1(x, y; z)k(η\z ∪ ξ ∪ {x, y})

×
∏
u∈ξ

(
− φ1(z − u)

)
λ(dξ)dxdy.

Let us denote V = lim
ε→0

Lrenε . Calculating analogously as above, one derives

V k(η) =
1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

c1(x, y; z)k(η\z ∪ ξ ∪ {x, y})

×
∏
u∈ξ

(−φ1(z − u))λ(dξ)dxdy

− 1

2

∫
(Rd)2

∫
Γ0

∑
x∈η

c1(x, y; z)k(η ∪ ξ ∪ y)
∏
u∈ξ

(−φ1(z − u))λ(dξ)dydz
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− 1

2

∫
(Rd)2

∫
Γ0

∑
y∈η

c1(x, y; z)k(η ∪ ξ ∪ x)
∏
u∈ξ

(−φ1(z − u))λ(dξ)dxdz

+

∫
Rd

∫
Γ0

∑
y∈η

k(η\y ∪ ξ ∪ x)c2(x; y)
∏
u∈ξ

(−φ2(y − u))λ(dξ)dx

−
∫
Rd

∫
Γ0

k(η ∪ ξ)
∑
x∈η

c2(x; y)
∏
u∈ξ

(−φ2(y − u))λ(dξ)dy.

Consider the following problem

(4.1)
d

dt
rt = V rt, rt=0 = r0

in the Banach space

Kθ = {r : Γ0 → R : ||r||θ <∞},
where

||r||θ = ess sup
η∈Γ0

eθ|η||r(η)|.

As usual in the Vlasov scaling, we assume that the initial state is a Poisson
measure and hence r0 is of the form

r0(η) =
∏
x∈η

ρ0(x).

If rt is of the product form

rt(η) =
∏
x∈η

ρt(x),

then
d

dt
rt(η) =

d

dt

∏
x∈η

ρt(x) =
∑
x∈η

( ∏
y∈η\x

ρt(y)
) d
dt
ρt(x).

Therefore, by expressing V rt in the form

V rt(η) =
∑
x∈η

( ∏
y∈η\x

ρt(y)
)
v(ρt, x),

for some v(ρt, x) (which is done below), we can obtain a problem for ρt
corresponding to (4.1), namely a kinetic equation

(4.2)
d

dt
ρt(x) = v(ρt, x), ρt=0 = ρ0.

If ρt is a solution of (4.2), then we can easily check that

rt(η) =
∏
x∈η

ρt(x)

is a solution of (4.1). Therefore by showing existence of solution of (4.2), we
obtain the existence of (4.1). As we show the local existence and uniqueness
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of the kinetic equation (see Theorem 4.1 below), we obtain the local exis-
tence of (4.1). It is possible to show its uniqueness using the Ovsyannikov’s
method, but it is beyond the scope of this paper.

Let us denote the first component of V by V1. We have

V1rt(η) =
1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

c1(x, y; z)rt(η\z ∪ ξ ∪ {x, y})

×
∏
u∈ξ

(−φ1(z − u))λ(dξ)dxdy

=
1

2

∫
(Rd)2

∫
Γ0

∑
z∈η

c1(x, y; z)
∏

v∈η\z∪ξ∪{x,y}

ρt(v)

×
∏
u∈ξ

(−φ1(z − u))λ(dξ)dxdy.

Because l(η) = 0 and λ(C(η ∪ {x, y})) = 0, one can rewrite above as

V1rt(η) =
∑
z∈η

( ∏
v∈η\z

ρt(v)
)(1

2

∫
(Rd)2\(η×η)

∫
Γ0\C(η∪{x,y})

c1(x, y; z)

× ρt(x)ρt(y)
∏
u∈ξ

(−ρt(u)φ1(z − u))λ(dξ)dxdy
)
.

Therefore

V1rt(η) =
∑
z∈η

( ∏
v∈η\z

ρt(v)
)
v1(ρt, z),

where

v1(ρt, z) =
1

2

∫
(Rd)2

c1(x, y; z)ρt(x)ρt(y)

∫
Γ0

∏
u∈ξ

(−ρt(u)φ1(z − u))λ(dξ)dxdy.

Noting that for a(u) = −ρt(u)φ1(z − u)∫
Γ0

∏
u∈ξ

a(u)λ(dξ) = 1 +

∞∑
n=1

1

n!

∫
(Rd)n

a(x1) . . . a(xn)dx1 . . . dxn

= 1 +

∞∑
n=1

1

n!

(∫
Rd

a(u)du
)n

= exp
(∫
Rd

a(u)du
)
,

we can reformulate the above, obtaining

v1(ρt, x) =
1

2

∫
(Rd)2

c1(y, z;x)ρt(y)ρt(z) exp
(
−
∫
Rd

φ1(x− u)ρt(u)du
)
dydz.
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Calculating analogously as above, one can obtain explicit form of v and thus
the following kinetic equation

d

dt
ρt(x) =

1

2

∫
(Rd)2

c1(y, z;x) exp
(
−
∫
Rd

φ1(x− u)ρt(u)du
)
ρt(y)ρt(z)dydz

− 1

2

∫
(Rd)2

(
c1(x, y; z) + c1(y, x; z)

)

× exp
(
−
∫
Rd

φ1(z − u)ρt(u)du
)
ρt(x)ρt(y)dydz(4.3)

+

∫
Rd

c2(y;x) exp
(
−
∫
Rd

φ2(x− u)ρt(u)du
)
ρt(y)dy

−
∫
Rd

c2(x; y) exp
(
−
∫
Rd

φ2(y − u)ρt(u)du
)
ρt(x)dy,

ρt=0 = ρ0.

4.2. The kinetic equation. Let us rewrite the problem (4.3) as

(4.4)
d

dt
ρt(x) = R1(ρt, x) +R2(ρt, x), ρt=0(x) = ρ0(x),

where

R1(ρt, x) = − 1

2
ρt(x)

∫
(Rd)2

(
c1(x, y; z) + c1(y, x; z)

)
ρt(y)dydz

− h(ρt, x)

∫
Rd

c2(x; y)dy

= − ρt(x)h(ρt, x)

for

h(ρt, x) =
1

2

∫
(Rd)2

(
c1(x, y; z) + c1(y, x; z)

)
ρt(y)dydz + 〈c2〉

and

R2(ρt, x) =
1

2

∫
(Rd)2

c1(y, z;x) exp
(
−
∫
Rd

φ1(x− u)ρt(u)du
)
ρt(y)ρt(z)dydz

+
1

2

∫
(Rd)2

(
c1(x, y; z) + c1(y, x; z)

)
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×
[
1− exp

(
−
∫
Rd

φ1(z − u)ρt(u)du
)]
ρt(x)ρt(y)dydz

+

∫
Rd

c2(y;x) exp
(
−
∫
Rd

φ2(x− u)ρt(u)du
)
ρt(y)dy

+

∫
Rd

c2(x; y)
[
1− exp

(
−
∫
Rd

φ2(y − u)ρt(u)du
)]
ρt(x)dy.

Note that from (4.4) we can obtain the equivalent integral equation

(4.5)

ρt(x) = ρ0(x) exp
(
−

t∫
0

h(ρs, x)ds
)

+

t∫
0

R2(ρs, x) exp
(
−

t∫
s

h(ρσ, x)dσ
)
ds.

Theorem 4.1. Problem (4.4) with the initial condition ρ0 ∈ L∞(Rd), ρ0 ≥
0 has the unique local classical solution.

Consider XT = C([0, T ]→ L∞(Rd)), T > 0 with the norm

||ρ||T,γ = sup
t∈[0,T ]

e−γ〈c2〉t||ρt||L∞ .

Denote

BT,γ(r) = {ρ ∈ XT : ||ρ||T,γ ≤ r, ρt ≥ 0 ∀t ∈ [0, T ]},
BT,γ(r, ρ0) = {ψ ∈ BT,γ(r) : ψ0 = ρ0},

where ρ0 ∈ L∞(Rd), ρ0 ≥ 0, r ≥ ||ρ0||L∞ and T, γ > 0.

Lemma 4.2. Given r > 0, there exist γ, T̃ > 0 such that F defined by the
RHS of (4.5) with the domain BT ∗,γ(r) ⊂ XT ∗ acts again to the BT ∗,γ(r)

for any T ∗ ∈ [0, T̃ ].

Lemma 4.3. Let ρ0 ∈ L∞(Rd), ρ0 ≥ 0 and r ≥ ||ρ0||L∞. Let T̃ , γ satisfy
Lemma 4.2 for this r. We can choose T ∗ ∈ [0, T̃ ] in such a way that for
any ρ, ψ in BT ∗,γ(r, ρ0) the inequality ||F (ρ)− F (ψ)||T ∗,γ ≤ C||ρ− ψ||T ∗,γ
holds for some constant C < 1.

Proof of Theorem 4.1. Choose r > ||ρ0||L∞ and take corresponding γ, T̃
from Lemma 4.2. Take T ∗ as in Lemma 4.3. Define the sequence of Picard
iterations (ρ(n))n∈N0 in the following way

(4.6)
ρ

(0)
t = ρ0 ∀t ∈ [0, T ∗],

ρ(n) = F (ρ(n−1)), n ∈ N.
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Obviously, ρ(0) ∈ BT ∗,γ(r). Therefore, by Lemma 4.2, ρ(n) ∈ BT ∗,γ(r) for
all n ∈ N0 and from Lemma 4.3 we obtain

||ρ(n+k)− ρ(n)||T ∗,γ ≤ ||ρ(1)− ρ(0)||T ∗,γ
k∑
i=1

Cn+i−1 ≤ ||ρ(1)− ρ(0)||T ∗,γ
Cn

1− C
,

where C < 1 is a positive constant. Therefore
(
ρ(n)

)
n∈N0

defined by (4.6) is
a Cauchy sequence. As BT ∗,γ(r) is a closed subset of a Banach space, there
exists

lim
n→∞

ρ(n) = ρ ∈ BT ∗,γ(r).

Clearly F (ρ) = ρ and therefore ρt satisfies the integral equation (4.5) for
t ∈ [0, T ∗]. Thus it is a local classical solution of (4.4).

Now suppose there is another local classical solution of this equation, say
ψ. Then ψ0 = ρ0 and for r, γ, T ∗ as above, there exists T ≤ T ∗ such that
ψ ∈ BT,γ(r). However, from Lemma 4.3 we have

||ρ− ψ||T,γ = ||F (ρ)− F (ψ)||T,γ ≤ C||ρ− ψ||T,γ

for C < 1, which means that

||ρ− ψ||T,γ = 0

and thus ρ is the unique local classical solution. �

Proof of Lemma 4.2. Take arbitrary T, γ > 0 and ρ ∈ BT,γ(r). Note
that

(4.7)

h(ρt, x) ≥ 〈c2〉,

R2(ρt, x) ≤ 3

2
||ρt||2L∞〈c1〉+ 2||ρt||L∞〈c2〉,

ρt(x) ≤ ||ρt||L∞ ≤ eγ〈c2〉t||ρ||T,γ .

It is obvious that F preserves positiveness of ρ. Furthermore, using above
estimates and the definition of BT,γ(r), we derive

(
F (ρ)

)
t
(x) = ρ0(x) exp

(
−

t∫
0

h(ρs, x)ds
)

+

t∫
0

R2(ρs, x) exp
(
−

t∫
s

h(ρσ, x)dσ
)
ds

≤ ||ρ0||L∞e−t〈c2〉 +

t∫
0

R2(ρs, x)e(s−t)〈c2〉ds
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≤ e−t〈c2〉
[
||ρ||T,γ +

t∫
0

(3

2
〈c1〉e(2γ+1)〈c2〉s||ρ||2T,γ

+ 2〈c2〉e(γ+1)〈c2〉s||ρ||T,γ
)
ds
]
.

Therefore, we obtain∣∣∣∣∣∣(F (ρ)
)
t

∣∣∣∣∣∣
L∞
≤ e−t〈c2〉r

[
1 +

3〈c1〉r
2(2γ + 1)〈c2〉

(
e(2γ+1)〈c2〉t − 1

)
+

2

γ + 1

(
e(γ+1)〈c2〉t − 1

)]
.

Thus ∣∣∣∣∣∣(F (ρ)
)∣∣∣∣∣∣

T,γ
≤ r sup

t∈[0,T ]
f(t),

where

f(t) = e−(γ+1)〈c2〉t
[
1 +

3〈c1〉r
2(2γ + 1)〈c2〉

(
e(2γ+1)〈c2〉t − 1

)
+

2

γ + 1

(
e(γ+1)〈c2〉t − 1

)]
.

Note that f(0) = 1. Additionally

f ′(t) = − (γ + 1)〈c2〉e−(γ+1)〈c2〉t
[
1 +

3〈c1〉r
2(2γ + 1)〈c2〉

(
e(2γ+1)〈c2〉t − 1

)
+

2

(γ + 1)

(
e(γ+1)〈c2〉t − 1

)]
+ e−(γ+1)〈c2〉t

[3〈c1〉r
2

e(2γ+1)〈c2〉t + 2〈c2〉e(γ+1)〈c2〉t
]

and hence

f ′(0) = −(γ + 1)〈c2〉+
(3

2
〈c1〉r + 2〈c2〉

)
.

Choosing γ > 1 + 3〈c1〉r
2〈c2〉 , we have f ′(0) < 0, which guarantees existence of

T̃ such that sup
t∈[0,T̃ ]

f(t) = 1. Taking T = T ∗ for T ∗ ∈ [0, T̃ ] yields

||F (ρ)||T ∗,γ ≤ r.

Therefore F (ρ) ∈ BT ∗,γ(r) for ρ ∈ BT ∗,γ(r). �
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Proof of Lemma 4.3. We have

(4.8)

(
F (ρ)− F (ψ)

)
t
(x) = ρ0(x) exp

(
−

t∫
0

h(ρs, x)ds
)

+

t∫
0

R2(ρs, x) exp
(
−

t∫
s

h(ρσ, x)dσ
)
ds

− ρ0(x) exp
(
−

t∫
0

h(ψs, x)ds
)

−
t∫

0

R2(ψs, x) exp
(
−

t∫
s

h(ψσ, x)dσ
)
ds

= D1 +

t∫
0

D2ds,

where

D1 = ρ0(x)
[

exp
(
−

t∫
0

h(ρs, x)ds
)
− exp

(
−

t∫
0

h(ψs, x)ds
)]

and

D2 =

t∫
0

[
R2(ρs, x) exp

(
−

t∫
s

h(ρσ, x)dσ
)

−R2(ψs, x) exp
(
−

t∫
s

h(ψσ, x)dσ
)]
ds.

Take an arbitrary T ∗ ∈ [0, T̃ ]. We have

(4.9) |D1| ≤ ||ρ0||L∞〈c1〉
t∫

0

||ρs − ψs||L∞ds ≤ r〈c1〉teγ〈c2〉t||ρ− ψ||T ∗,γ .

To estimate |D2|, consider two cases. First, suppose

t∫
s

(
h(ρσ, x)− h(ψσx)

)
dσ ≥ 0.
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Then

|D2| ≤
∣∣∣R2(ρs, x) exp

[
−

t∫
s

(
h(ρσ, x)− h(ψσ, x)

)
dσ
]

−R2(ψs, x) exp
[
−

t∫
s

(
h(ρσ, x)− h(ψσ, x)

)
dσ
]∣∣∣

+
∣∣∣R2(ψs, x) exp

[
−

t∫
s

(
h(ρσ, x)− h(ψσ, x)

)
dσ
]
−R2(ψs, x)

∣∣∣
≤
∣∣∣R2(ρs, x)−R2(ψs, x)

∣∣∣
+R2(ψs, x)

{
1− exp

[
−

t∫
s

(
h(ρσ, x)− h(ψσ, x)

)
dσ
]}
.

In the other case, when
t∫
s

(
h(ρσ, x)−h(ψσ, x)

)
dσ < 0, we have analogously

|D2| ≤
∣∣∣R2(ρs, x)−R2(ψs, x)

∣∣∣
+R2(ρs, x)

{
1− exp

[
−

t∫
s

(
h(ψσ, x)− h(ρσ, x)

)
dσ
]}
.

Note that both R2(ρs, x) and R2(ψs, x), as both belong to BT ∗,γ(r), satisfy
the same estimate (cf. (4.7))

R2(ρs, x), R2(ψs, x) ≤ 3

2
〈c1〉e2γ〈c2〉sr2 + 2〈c2〉eγ〈c2〉sr,

which allows us to write

(4.10)

|D2| ≤
∣∣∣R2(ρs, x)−R2(ψs, x)

∣∣∣+
(3

2
〈c1〉e2γ〈c2〉sr2 + 2〈c2〉eγ〈c2〉sr

)
×
{

1− exp
[
−

t∫
s

∣∣∣h(ψσ, x)− h(ρσ, x)
∣∣∣dσ]}.

We have

1− exp
[
−

t∫
s

∣∣∣h(ψσ, x)− h(ρσ, x)
∣∣∣dσ] ≤ t∫

s

∣∣∣h(ψσ, x)− h(ρσ, x)
∣∣∣dσ

=
1

2

t∫
s

∣∣∣ ∫
(Rd)2

(
c1(x, y; z) + c1(y, x; z)

)(
ρσ(y)− ψσ(y)

)
dydz

∣∣∣dσ
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≤
t∫
s

〈c1〉||ρσ − ψσ||L∞dσ ≤
t∫
s

〈c1〉eγ〈c2〉σ||ρ− ψ||T ∗,γdσ

≤ 〈c1〉eγ〈c2〉t(t− s)||ρ− ψ||T ∗,γ ,

which yields

(4.11) 1− exp
[
−

t∫
s

∣∣∣h(ψσ, x)− h(ρσ, x)
∣∣∣dσ] ≤ 〈c1〉teγ〈c2〉t||ρ− ψ||T ∗,γ .

Let us estimate∣∣∣R2(ρs, x)−R2(ψs, x)
∣∣∣

≤ 1

2

∫
(Rd)2

c1(y, z;x)
∣∣∣ exp

(
−
∫
Rd

φ1(x− u)ρs(u)du
)
ρs(y)ρs(z)

− exp
(
−
∫
Rd

φ1(x− u)ψs(u)du
)
ψs(y)ψs(z)

∣∣∣dydz
+

1

2

∫
(Rd)2

(
c1(x, y; z) + c1(y, x; z)

) ∣∣∣[1− exp
(
−
∫
Rd

φ1(z − u)ρs(u)du
)]

× ρs(x)ρs(y)−
[
1− exp

(
−
∫
Rd

φ1(z − u)ψs(u)du
)]
ψs(x)ψs(y)

∣∣∣dydz
+

∫
Rd

c2(y;x)
∣∣∣ exp

(
−
∫
Rd

φ2(x− u)ρs(u)du
)
ρs(y)

− exp
(
−
∫
Rd

φ2(x− u)ψs(u)du
)
ψs(y)

∣∣∣dy
+

∫
Rd

c2(x; y)
∣∣∣[1− exp

(
−
∫
Rd

φ2(y − u)ρs(u)du
)]
ρs(x)

−
[
1− exp

(
−
∫
Rd

φ2(y − u)ψs(u)du
)]
ψs(x)

∣∣∣dy.
Denote by Ii the i-th component of the RHS of the above inequality for
i = 1, 2, 3, 4. Then estimating analogously as above, we derive

I3, I4 ≤ 〈c2〉
(
e2γ〈c2〉s〈φ2〉r + eγ〈c2〉s

)∣∣∣∣∣∣ρ− ψ∣∣∣∣∣∣
T ∗,γ

.
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Moreover, noting that∣∣∣ρs(y)ρs(z)− ψs(y)ψs(z)
∣∣∣

≤ 1

2

(
ρs(z) + ψs(z)

)∣∣∣ρs(y)− ψs(y)
∣∣∣+

1

2

(
ρs(y) + ψs(y)

)∣∣∣ρs(z)− ψs(z)∣∣∣,
we obtain

I1 ≤
1

2
〈c1〉

(
2e2γ〈c2〉sr + e3γ〈c2〉s〈φ1〉r2

)∣∣∣∣∣∣ρ− ψ∣∣∣∣∣∣
T ∗,γ

,

I2 ≤ 〈c1〉
(

2e2γ〈c2〉sr + e3γ〈c2〉s〈φ1〉r2
)∣∣∣∣∣∣ρ− ψ∣∣∣∣∣∣

T ∗,γ
.

Therefore,

(4.12)

∣∣∣R2(ρs, x)−R2(ψs, x)
∣∣∣ ≤ [3

2
〈c1〉eγ〈c2〉s

(
2eγ〈c2〉sr + e2γ〈c2〉s〈φ1〉r2

)
+ 2〈c2〉eγ〈c2〉s

(
eγ〈c2〉s〈φ2〉r + 1

)]∣∣∣∣∣∣ρ− ψ∣∣∣∣∣∣
T ∗,γ

.

Substituting (4.11) and (4.12) into (4.10) and using it together with (4.9),
we obtain (cf. (4.8))∣∣∣(F (ρ)− F (ψ)

)
t
(x)
∣∣∣ ≤ eγ〈c2〉tf(t)

∣∣∣∣∣∣ρ− ψ∣∣∣∣∣∣
T ∗,γ

,

where

f(t) = t
[3

2
r2〈c1〉e2γ〈c2〉t

(
〈c1〉t+ 〈φ1〉

)
+ reγ〈c2〉t

(
2〈c1〉〈c2〉t+ 3〈c1〉+ 2〈c2〉〈φ2〉

)
+ 2〈c2〉

]
.

Therefore, ∣∣∣∣∣∣F (ρ)− F (ψ)
∣∣∣∣∣∣
T ∗,γ
≤ sup

t∈[0,T ∗]
f(t)

∣∣∣∣∣∣ρ− ψ∣∣∣∣∣∣
T ∗,γ

.

Note that f(t) is continuous, increasing function of t and f(0) = 0. Thus,
there exists T ∗∗ > 0 such that f(T ∗∗) < 1 and f(t) ∈ [0, f(T ∗∗)] for t ∈
[0, T ∗∗]. Choosing T ∗ = min(T ∗∗, T̃ ), we obtain∣∣∣∣∣∣F (ρ)− F (ψ)

∣∣∣∣∣∣
T ∗,γ
≤ C

∣∣∣∣∣∣ρ− ψ∣∣∣∣∣∣
T ∗,γ

with C = f(T ∗) ≤ f(T ∗∗) < 1. �
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