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Application of the Euler’s gamma function
to a problem related to

F. Carlson’s uniqueness theorem

Abstract. In his work on F. Carlson’s uniqueness theorem for entire func-
tions of exponential type, Q. I. Rahman [5] was led to consider an infinite
integral and needed to determine the rate at which the integrand had to go
to zero for the integral to converge. He had an estimate for it which he was
content with, although it was not the best that could be done. In the present
paper we find a result about the behaviour of the integrand at infinity, which
is essentially best possible. Stirling’s formula for the Euler’s Gamma function
plays an important role in its proof.

1. Introduction.

1.1. Carlson’s theorem. Carlson’s theorem says (see [1, Chapter 9]) that
if f is an entire function such that |f(z)| = O(eb|z|) as |z| → ∞ for some
b < π and f(n) = 0 for n = 0,±1,±2, . . ., then f(z) is identically zero. The
example f(z) := sinπz shows that here b = π is inadmissible. The following
generalization of Carlson’s theorem appears in [5] as Theorem 7.

Theorem A. Let {λn}∞−∞ be a sequence of real numbers such that |n−λn| ≤
L for all n ∈ Z and |λn − λm| ≥ 2δ > 0 for m 6= n. Also, let f(z) be an
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entire function and denote the maximum of |f(z)| on |z| = r by M(r).
Suppose that

(1.1)

∫ ∞
0

r2QM(r) e−πr dr <∞, Q := L+ L/2δ

and that f(λn) = 0 for all n ∈ Z. Then f(z) ≡ 0.

The proof of Theorem A is, in part, based on the following auxiliary result
presented in [5] as Lemma 6.

Proposition A. Let M(r) := max|z|=r |f(z)|, where f is an entire function
and let Q be a positive number. Furthermore, let

∫∞
0 r2QM(r) e−πr dr <∞.

Then, r2QM(r) e−πr → 0 as r →∞.

Unless f is a constant, M(r) is an increasing function of r. This is all
that was needed in the proof of Proposition 1, as given in [5]. Here we prove
a result (Theorem 1) from which it follows that

(1.2) r2Q+1/2M(r) e−πr = O(1) as r →∞ .

Our approach to the problem is different. We relate it to Euler’s Gamma
function and make effective use of Stirling’s formula to obtain the result.
In our proof of Theorem 1 we also use the fact that logM(r) is a convex
function of log r and not simply a non-decreasing function r. Our proof
clearly suggests how to prove that (1.2) is best possible, as far as the number
1/2 in r2Q+1/2 goes.

Theorem 1. Let M(r) = M(r, f) := max|z|=r |f(z)|, where f is an entire
function and suppose that

∫∞
0 rαM(r) e−βr dr < ∞ for some α > 0 and

some β > 0. Then rα+1/2M(r) e−βr = O(1) as r →∞ .

2. Some facts about M(r) and the Stirling’s formula.

2.1. Convexity of logM(r) as a function of log r. Hadamard’s three-
circles theorem [6, p. 172] says: Let f(z) be an analytic function, regular
for r1 ≤ |z| ≤ r3. Furthermore, let r1 < r2 < r3, and let M1,M2,M3 be the
maxima of |f(z)| on the three circles |z| = r1, r2, r3, respectively. Then

(2.1) M
log(r3/r1)
2 ≤M log(r3/r2)

1 M
log(r2/r1)
3 .

Since we may write (2.1) in the form

(2.2) logM(r2) ≤
log r3 − log r2
log r3 − log r1

logM(r1) +
log r2 − log r1
log r3 − log r1

logM(r3) ,

Hadamard’s three-circles theorem may be expressed by saying that logM(r)
is a convex function of log r.

In our case, M(r) := max|z|=r |f(z)|, where f is an entire function. Unless
f is a constant, M(r) is a strictly increasing function of r. It is easily seen
that f(z) is a polynomial of degree n, that is f(z) :=

∑n
ν=0 aνz

ν , an 6= 0 if
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and only if logM(r)/(log r) → n as r → ∞. From (2.2) it follows that if
f(z) is a transcendental entire function, then there exists a number r0 such
that logM(r)/(log r) is an unbounded strictly increasing function of r for
r ≥ r0.

We know that logM(r) is continuous. In addition, it is a convex function
of log r. It is known (see [2, p. 142]) that a continuous convex function
has finite right-hand and left-hand derivatives at each point, and that these
derivatives themselves are nondecreasing functions.

2.2. Stirling’s formula. Our proof of Theorem 1 uses Stirling’s formula
for the Gamma function defined by the Eulerian integral of the second kind
Γ(z) =

∫∞
0 e−t tz−1 dt whenever this integral converges (it being understood

that tz−1 has its principal value), and defined by analytical continuation
elsewhere. Stirling’s formula says [4, p. 42] that

(2.3) Γ(z) =
√

2πzz−1/2e−zeJ(z) ,

where the power of z has its principal value and

(2.4) 0 < J(x) < 1/(12x) (x > 0) .

3. Proof of Theorem 1. Setting βr = u, we see that∫ ∞
0

rαM(r, f) e−βr dr =
1

βα+1

∫ ∞
0

uαM(u, g) e−u du ,

where g(z) := f(z/β) is an entire function. It is therefore enough to prove
Theorem 1 in the special case where β = 1. Thus, we have to prove that if
f(z) is an entire function such that

(3.1)

∫ ∞
0

rαM(r, f) e−r dr <∞

for some α > 0, then

(3.2) rα+1/2M(r, f) e−r = O(1) as r →∞ .

The result is trivial if f(z) is a polynomial. So, let f(z) be a transcendental
entire function. By considering F (z) := f(z)−f(0)+1 if necessary, we may
suppose that logM(r, f) is a positive increasing convex function of log r in
−∞ < log r <∞. Note that (3.1) holds if and only if∫ ∞

0
rαM(r, F ) e−r dr <∞

and that (3.2) holds if and only if rα+1/2M(r, F ) e−r = O(1) as r →∞.
Hereafter we shall simply write M(r) for M(r, f) and M(s) for M(s, f)

because we see no confusion in doing so.
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In view of all that has been said in § 2.1, for any s > 0 there is a constant
C = C(s) such that

logM(r) ≥ logM(s) + C log(r/s) (r > 0) ,

and that there is an s0 such that C(s) ≥ 1 for all s ≥ s0. Hence, for any
s ≥ S0 := max{s0, 10}, we have

A :=

∫ ∞
0

rαM(r) e−r dr ≥M(s)

∫ ∞
0

rα(r/s)Ce−r dr

= M(s) s−C Γ(C + α+ 1) .

Taking (2.4) into account, it follows from (2.3) that

Γ(C + α+ 1) >

√
2π

e
(C + α)C+α+1/2 e−(C+α) ,

and so

sαM(s) < A
e√
2π

eC+α sC+α 1

(C + α)C+α+1/2
.

Thus we see that

(3.3) sαM(s) < A
e√
2π

max
t≥1

{
(e s/t)t t−1/2

}
.

Let us define

(3.4) ϕ(t) := (e s/t)t t−1/2 .

In order to obtain a good upper estimate for maxt≥1 ϕ(t) we note that
ϕ′(t) = 0 if and only if

B(t) := log s−
(

log t+
1

2t

)
= 0 .

From this it is easily seen that ϕ′(t) has one and only one zero in (1,∞).
Let us call it τs. We claim that

s− 1

2
− 1

s− (1/2)
≤ τs ≤ s−

1

2
(s > S0) .
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For this, note that

B

(
s− 1

2
− 1

s− (1/2)

)
= log

s
(
s− 1

2

)(
s− 1

2

)2 − 1
− 1

2

s− 1
2(

s− 1
2

)2 − 1

= log

{
1 +

1
2

(
s− 1

2

)
+ 1(

s− 1
2

)2 − 1

}
− 1

2

s− 1
2(

s− 1
2

)2 − 1
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1
2

(
s− 1

2

)
+ 1(

s− 1
2

)2 − 1
− 1

2

1
4

(
s− 1

2

)2
+ s+ 1

2{(
s− 1

2

)2 − 1
}2 −

1
2

(
s− 1

2

)(
s− 1

2

)2 − 1

=
7
4

(
s− 1

2

)2 − (s− 1
2

)
− 3

2
{(
s− 1

2

)2 − 1
}2 > 0 ,

whereas

B

(
s− 1

2

)
= log

s

s− (1/2)
− 1

2s− 1
= log

(
1 +

1

2s− 1

)
− 1

2s− 1
< 0 .

It follows that if ϕ(t) is as in (3.4) then

max
t≥1

ϕ(t) = max

{
t−1/2 et (s/t)t : s− 1

2
− 1

s− (1/2)
≤ t ≤ s− 1

2

}
∼ s−1/2 es as s→∞

since

t−1/2 ∼ s−1/2, et ∼ e−1/2 es and (s/t)t → e1/2 as s→∞ .

Using this fact about maxt≥1 ϕ(t) in (3.3), we obtain the desired result. 2

Remark 1. The proof of Theorem 1 is of a somewhat wider scope than it
might appear. In fact, the property of the function M(r) by which logM(r)
is a convex function of log r is shared by some other functions associated
with an entire function f . For example, if

Mp(r) :=

(
1

2π

∫ 2π

0

∣∣∣f(r eiθ)
∣∣∣p dθ

)1/p

, p > 0 ,

then, logMp(r) is a convex function of log r for any p > 0. This is a well-
known result of G. H. Hardy [3]. If f(z) :=

∑∞
n=0 anz

n, then for any r > 0,
the maximum of |an|rn for n ∈ {0, 1, 2, . . .} is called the maximum term.
It is usually denoted by µ(r) and logµ(r) is known [7, pp. 30–31] to be a
convex function of log r.

Remark 2. Infinite integrals arise in various areas of pure and applied
mathematics as well as in Statistics. They are also of interest to physicists
and engineers. So, a result like Theorem 1 has the potential to be useful in
the future. As an immediate application of the result, we state the following
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generalization of Theorem A where condition (1.1) has been replaced by a
less restrictive one.

Corollary 1. Let {λn}∞−∞, L and Q be as in Theorem A. Also, let f(z)
be an entire function and denote the maximum of |f(z)| on |z| = r by
M(r). Suppose that

∫∞
0 r2Q−γM(r) e−πr dr < ∞ for some γ < 1/2 and

that f(λn) = 0 for all n ∈ Z. Then f(z) ≡ 0.

The proof of Corollary 1 requires only a minor modification in the proof
of Theorem A, as given in [7], and so we omit it.
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