ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXVI, NO. 1, 2012

SECTIO A

1 - 5

ANNA BEDNARSKA

The vertical prolongation of the projectable connections

ABSTRACT. We prove that any first order $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator transforming projectable general connections on an (m_1, m_2, n_1, n_2) -dimensional fibred-fibred manifold $p = (p, \underline{p}) \colon (p_Y \colon Y \to \underline{Y}) \to (p_M \colon M \to \underline{M})$ into general connections on the vertical prolongation $VY \to M$ of $p \colon Y \to M$ is the restriction of the (rather well-known) vertical prolongation operator \mathcal{V} lifting general connections $\overline{\Gamma}$ on a fibred manifold $Y \to M$ into $\mathcal{V}\overline{\Gamma}$ (the vertical prolongation of $\overline{\Gamma}$) on $VY \to M$.

The aim of this paper is to describe all $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operators transforming projectable general connections on an (m_1, m_2, n_1, n_2) dimensional fibred-fibred manifolds into general connections on the vertical prolongation $VY \to M$ of $p: Y \to M$. The similar problem for the case of fibred manifolds was solving in [7]. In the paper [1], authors described natural operators transforming connections on fibred manifolds $Y \to M$ into connections on $VY \to M$.

A fibred-fibred manifold is a fibred surjective submersion

$$p = (p, p) \colon (p_Y \colon Y \to \underline{Y}) \to (p_M \colon M \to \underline{M})$$

between two fibred manifolds $p_Y \colon Y \to \underline{Y}$ and $p_M \colon M \to \underline{M}$ covering $\underline{p} \colon \underline{Y} \to \underline{M}$ such that the restrictions of p to the fibres are submersions. Equivalently, the fibred-fibred manifold is a fibred square $p = (p, p_Y, p_M, \underline{p})$, i.e. a commutative square diagram with arrows being surjective submersions

²⁰⁰⁰ Mathematics Subject Classification. Primary 58A20, Secondary 58A32.

 $Key\ words\ and\ phrases.$ Fibred-fibred manifold, natural operator, projectable connection.

 $p: Y \to M, p_Y: Y \to \underline{Y}, p_M: M \to \underline{M} \text{ and } \underline{p}: \underline{Y} \to \underline{M} \text{ such that the system}$ $(p, p_Y): Y \to M \times_{\underline{M}} \underline{Y} \text{ of maps } p \text{ and } p_Y \text{ is a submersion, [2], [6].}$

If $p^1 = (p^1, \underline{p}^1) \colon (p_{Y^1}^1 \colon Y^1 \to \underline{Y}^1) \to (p_{M^1}^1 \colon M^1 \to \underline{M}^1)$ is another fibred-fibred manifold, then a fibred-fibred map $f \colon Y \to Y^1$ is the system $f = (f, f_1, f_2, \underline{f})$ of four maps $f \colon Y \to Y^1$, $f_1 \colon \underline{Y} \to \underline{Y}^1$, $f_2 \colon M \to M^1$ and $f \colon \underline{M} \to \underline{M}^1$ such that the relevant cubic diagram is commutative.

A fibred-fibred manifold $p = (p, \underline{p}) \colon (p_Y \colon Y \to \underline{Y}) \to (p_M \colon M \to \underline{M})$ is of the dimension (m_1, m_2, n_1, n_2) if dim $Y = m_1 + m_2 + n_1 + n_2$, dim $M = m_1 + m_2$, dim $\underline{Y} = m_1 + n_1$ and dim $\underline{M} = m_1$. All fibred-fibred manifolds of the dimension (m_1, m_2, n_1, n_2) and their all local fibred-fibred diffeomorphisms form the local admissible category over manifolds in the sense of [3], which we denote by $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$. Any $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$ -object is locally isomorphic to the trivial fibred square $\mathbb{R}^{m_1,m_2,n_1,n_2}$ with vertices $\mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$, $\mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$, $\mathbb{R}^{m_1} \times \mathbb{R}^{n_1}$, \mathbb{R}^{m_1} and arrows being obvious projections.

The vertical functor $V: \mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2} \to \mathcal{F} \mathcal{M}$ (on (m_1, m_2, n_1, n_2) dimensional fibred-fibred manifolds) is the usual vertical functor $V: \mathcal{F} \mathcal{M} \to \mathcal{F} \mathcal{M}$ on fibred manifolds, where $\mathcal{F} \mathcal{M}$ is the category of all fibred manifolds and their morphisms. More precisely, $V: \mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2} \to \mathcal{F} \mathcal{M}$ is the functor assigning to any (m_1, m_2, n_1, n_2) -dimensional fibred-fibred manifold $p = (p, \underline{p}): (p_Y: Y \to \underline{Y}) \to (p_M: M \to \underline{M})$ the vertical bundle $VY \to Y$ of the corresponding fibred manifold $p: Y \to M$ and to any $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$ -map $f = (f, f_1, f_2, \underline{f})$ between (m_1, m_2, n_1, n_2) -dimensional fibred-fibred manifolds $p = (p, \underline{p}): (p_Y: Y \to \underline{Y}) \to (p_M: M \to \underline{M})$ and $p^1 = (p^1, \underline{p}^1): (p_{Y^1}^1: Y^1 \to \underline{Y}^1) \to (p_{M^1}^1: M^1 \to \underline{M}^1)$ the vertical prolongation $Vf: VY \to VY^1$ of the corresponding fibred map $f = (f, f_2)$ between corresponding fibred manifolds $p: Y \to M$ and $p^1: Y^1 \to M^1$. Obviously, $V: \mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2} \to \mathcal{F} \mathcal{M}$ is a bundle functor in the sense of [3].

A projectable general connection on a fibred-fibred manifold $p = (p, \underline{p})$: $(p_Y: Y \to \underline{Y}) \to (p_M: M \to \underline{M})$ is a pair $\Gamma = (\overline{\Gamma}, \underline{\Gamma})$ of general connections $\overline{\Gamma}: Y \times_M TM \to TY$ and $\underline{\Gamma}: \underline{Y} \times_{\underline{M}} T\underline{M} \to T\underline{Y}$ on fibred manifolds $p: Y \to M$ and $\underline{p}: \underline{Y} \to \underline{M}$, respectively, such that $Tp_Y \circ \overline{\Gamma} = \underline{\Gamma} \circ (p_Y \times_{p_M} Tp_M)$, [3], [5].

The vertical prolongation $\mathcal{V}\Gamma$ of a projectable general connection $\Gamma = (\overline{\Gamma}, \underline{\Gamma})$ on an $\mathcal{F}^2 \mathcal{M}_{m_1, m_2, n_1, n_2}$ -object $p = (p, \underline{p}) \colon (p_Y \colon Y \to \underline{Y}) \to (p_M \colon M \to \underline{M})$ is the vertical prolongation $\mathcal{V}\overline{\Gamma}$ on $VY \to M$ of the corresponding general connection $\overline{\Gamma}$ on the corresponding fibred manifold $p \colon Y \to M$. (The vertical prolongation of a general connection $\overline{\Gamma}$ on a fibred manifold $Y \to M$ is the general connection $\mathcal{V}\overline{\Gamma}$ on $VY \to M$ as in Section 31.1 in [3]. The vertical prolongation of connections on fibred manifolds was also described in [4].)

The general concept of natural operator can be found in [3]. In particular, an $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator D transforming projectable general connections $\Gamma = (\overline{\Gamma}, \underline{\Gamma})$ on an (m_1, m_2, n_1, n_2) -dimensional fibred-fibred manifold $p = (p, \underline{p}) \colon (p_Y \colon Y \to \underline{Y}) \to (p_M \colon M \to \underline{M})$ into general connections $D(\Gamma)$ on $VY \to M$ is a family of $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$ -invariant regular operators

$$D: Con_{proj}(Y \to M) \to Con(VY \to M)$$

for all $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -objects $p = (p, \underline{p}) \colon (p_Y \colon Y \to \underline{Y}) \to (p_M \colon M \to \underline{M})$, where $Con_{proj}(Y \to M)$ is the set of all projectable general connections on $p = (p, \underline{p})$ and $Con(VY \to M)$ is the set of all general connections on $VY \to M$. The $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -invariance means that if $\Gamma \in Con_{proj}(Y \to M)$ and $\Gamma^1 \in Con_{proj}(Y^1 \to M^1)$ are f-related by $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -map $f \colon Y \to Y^1$ (i.e. $Tf \circ \Gamma = \Gamma^1 \circ (f \times Tf_2)$), then $D(\Gamma)$ and $D(\Gamma^1)$ are Vf-related (i.e. $TVf \circ D(\Gamma) = D(\Gamma^1) \circ (f \times Tf_2)$). The regularity for D means that Dtransforms smoothly parametrized families of connections into smoothly parametrized families of connections.

Thus (by the canonical character of the vertical prolongation of projectable general connections) the family \mathcal{V} of operators

$$\mathcal{V}\colon Con_{proj}(Y \to M) \to Con(VY \to M), \qquad \mathcal{V}(\Gamma) \coloneqq \mathcal{V}\overline{\Gamma}$$

for all $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -objects $p = (p,\underline{p}) \colon (p_Y \colon Y \to \underline{Y}) \to (p_M \colon M \to \underline{M})$ is an $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator.

One can verify that \mathcal{V} is the first order operator (it means that if $\Gamma, \Gamma^1 \in Con_{proj}(Y \to M)$ have the same 1-jets $j_x^1(\Gamma) = j_x^1(\Gamma^1)$ at $x \in M$, then it holds $\mathcal{V}(\Gamma) = \mathcal{V}(\Gamma^1)$ over x).

Theorem 1. The operator \mathcal{V} is the unique first order $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ natural operator transforming projectable general connections on (m_1, m_2, n_1, n_2) -dimensional fibred-fibred manifolds $p = (p, p) \colon (p_Y \colon Y \to \underline{Y}) \to (p_M \colon M \to \underline{M})$ into general connections on $VY \to \overline{M}$.

For $j = 1, \ldots, m_2$, $s = 1, \ldots, n_2$ we put $[j] \coloneqq m_1 + j$ and $\langle s \rangle \coloneqq n_1 + s$. Let $x^i, x^{[j]}, y^q, y^{\langle s \rangle}$ be the usual coordinates on the trivial fibred square $\mathbb{R}^{m_1, m_2, n_1, n_2}$.

Lemma 1. Let $\Gamma = (\overline{\Gamma}, \underline{\Gamma})$ be a projectable general connection on an (m_1, m_2, n_1, n_2) -dimensional fibred-fibred manifold $p = (p, p) \colon (p_Y \colon Y \to \underline{Y}) \to (p_M \colon M \to \underline{M})$ and let $y_0 \in Y$ be a point. Then there exists an $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -chart ψ on Y satisfying conditions $\psi(y_0) = (0,0,0,0)$ and $j^1_{(0,0,0,0)}\psi_*\Gamma = j^1_{(0,0,0,0)}\widetilde{\Gamma}$, where

$$\begin{split} \widetilde{\Gamma} &= \sum_{i=1}^{m_1} dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{j=1}^{m_2} dx^{[j]} \otimes \frac{\partial}{\partial x^{[j]}} \\ &+ \sum_{i_1,i_2=1}^{m_1} \sum_{q=1}^{n_1} A_{i_1i_2}^q x^{i_1} dx^{i_2} \otimes \frac{\partial}{\partial y^q} + \sum_{i_1,i_2=1}^{m_1} \sum_{s=1}^{n_2} B_{i_1i_2}^s x^{i_1} dx^{i_2} \otimes \frac{\partial}{\partial y^{~~}} \\ &+ \sum_{i=1}^{m_1} \sum_{j=1}^{m_2} \sum_{s=1}^{n_2} C_{ij}^s x^i dx^{[j]} \otimes \frac{\partial}{\partial y^{~~}} + \sum_{i=1}^{m_1} \sum_{j=1}^{m_2} \sum_{s=1}^{n_2} D_{ji}^s x^{[j]} dx^i \otimes \frac{\partial}{\partial y^{~~}} \\ &+ \sum_{j_1,j_2=1}^{m_2} \sum_{s=1}^{n_2} E_{j_1j_2}^s x^{[j_1]} dx^{[j_2]} \otimes \frac{\partial}{\partial y^{~~}} \end{split}~~~~~~~~$$

for some real numbers $A^q_{i_1i_2}$, $B^s_{i_1i_2}$, C^s_{ij} , D^s_{ji} and $E^s_{j_1j_2}$ satisfying

(2)
$$A_{i_1i_2}^q = -A_{i_2i_1}^q, \ B_{i_1i_2}^s = -B_{i_2i_1}^s, \ C_{ij}^s = -D_{ji}^s, \ E_{j_1j_2}^s = -E_{j_2j_1}^s$$

for
$$i, i_1, i_2 = 1, \dots, m_1, j, j_1, j_2 = 1, \dots, m_2, q = 1, \dots, n_1, s = 1, \dots, n_2$$
.

Proof. Choose a projectable torsion-free classical linear connection ∇ on $p_M \colon M \to \underline{M}$, i.e. a torsion-free classical linear connection ∇ on M such that there exists a unique classical linear connection $\underline{\nabla}$ on \underline{M} which is p_M -related with ∇ . By Lemma 4.2 [5], there exists an $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -chart ψ on Y covering a ∇ -normal fiber coordinate system on M with the center $x_0 = p(y_0)$ such that $\psi(y_0) = (0,0,0,0)$ and such that $j^1_{(0,0,0,0)}(\psi_*\Gamma) = j^1_{(0,0,0,0)}\widetilde{\Gamma}$, where $\widetilde{\Gamma}$ means (1) for some real numbers: $A^q_{i_1i_2}, B^s_{i_1i_2}, C^s_{ij}, D^s_{ji}$ and $E^s_{j_1j_2}$ satisfying the condition (2) for $i, i_1, i_2 = 1, \ldots, m_1, j, j_1, j_2 = 1, \ldots, m_2, q = 1, \ldots, n_1, s = 1, \ldots, n_2$.

Using Lemma 1, one can prove Theorem 1 as follows.

Proof. Let D be an $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural operator of the first order. Put $\nabla(\Gamma) \coloneqq D(\Gamma) - \mathcal{V}(\Gamma) \colon VY \to T^*M \otimes V(VY)$. It is sufficient to prove that it holds $\nabla(\Gamma) = 0$. Because of Lemma 1, the first order of Δ and invariance of ∇ with respect to charts of the fibred-fibred manifold, it is sufficient to prove that $\langle \Delta(\Gamma)|_v, u \rangle = 0$ for any $u \in T_{(0,0)}(\mathbb{R}^{m_1} \times \mathbb{R}^{m_2})$, any $v \in (V\mathbb{R}^{m_1,m_2,n_1,n_2})_{(0,0,0,0)}$ and any projectable general connection Γ on $\mathbb{R}^{m_1,m_2,n_1,n_2}$ of the form (1) for any real numbers $A_{i_1i_2}^q$, $B_{i_1i_2}^s$, C_{ij}^s , D_{ji}^s and $E_{j_1j_2}^s$ satisfying (2) for $i, i_1, i_2 = 1, \ldots, m_1, j, j_1, j_2 = 1, \ldots, m_2, q = 1, \ldots, n_1, s = 1, \ldots, n_2$. Using the invariance of Δ with respect to the base homotheties $(tx^i, tx^{[j]}, y^q, y^{<s>})$ for t > 0, we obtain the condition of homogeneity of the form

$$\langle \Delta(\Gamma^t)|_v, u \rangle = t \langle \Delta(\Gamma)|_v, u \rangle,$$

where Γ^t means Γ with the coefficients $t^2 A^q_{i_1 i_2}$, $t^2 B^s_{i_1 i_2}$, $t^2 C^s_{ij}$, $t^2 D^s_{ji}$, $t^2 E^s_{j_1 j_2}$ instead of $A^q_{i_1 i_2}$, $B^s_{i_1 i_2}$, C^s_{ij} , D^s_{ji} , $E^s_{j_1 j_2}$.

5

By the homogeneous function theorem this type of homogeneity yields directly that $\langle \Delta(\Gamma)|_{v}, u \rangle = 0.$

In case of $m_1 = m$, $n_1 = n$, $m_2 = 0$, $n_2 = 0$ we have $\mathcal{F}^2 \mathcal{M}_{m,0,n,0} = \mathcal{F} \mathcal{M}_{m,n}$, the category of the (m, n)-dimensional fibred manifolds and their local fibre diffeomorphisms. In this case, the projectable general connections are the general connections.

Corollary 1. The operator \mathcal{V} is a unique $\mathcal{FM}_{m,n}$ -natural operator of the first order transforming the general connections on an (m, n)-dimensional fibred manifold $p: Y \to M$ into the general connections on $VY \to M$.

References

- Doupovec, M., Mikulski, W. M., On the existence of prolongation of connections, Czechoslovak Math. J., 56 (2006), 1323–1334.
- [2] Kolář, I., Connections on fibered squares, Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 (2005), 67–76.
- [3] Kolář, I., Michor, P. W. and Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
- [4] Kolář, I., Mikulski, W. M., Natural lifting of connections to vertical bundles, The Proceedings of the 19th Winter School "Geometry and Physics" (Srní, 1999). Rend. Circ. Mat. Palermo (2) Suppl. No. 63 (2000), 97–102.
- [5] Kurek, J., Mikulski, W. M., On prolongations of projectable connections, Ann. Polon. Math, 101 (2011), no. 3, 237–250.
- [6] Mikulski, W. M., The jet prolongations of fibered-fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (2001), no. 3–4, 441–458.
- [7] Kolář, I., Some natural operations with connections, J. Nat. Acad. Math. India 5 (1987), no. 2, 127–141.

Anna Bednarska Institute of Mathematics Maria Curie-Skłodowska University pl. Marii Curie-Skłodowskiej 1 20-031 Lublin Poland e-mail: bednarska@hektor.umcs.lublin.pl

Received June 15, 2011