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On certain general integral operators
of analytic functions

Abstract. In this paper, we obtain new sufficient conditions for the op-
erators Fα1,α2,...,αn,β(z) and Gα1,α2,...,αn,β(z) to be univalent in the open
unit disc U , where the functions f1, f2, . . . , fn belong to the classes S?(a, b)
and K(a, b). The order of convexity for the operators Fα1,α2,...,αn,β(z) and
Gα1,α2,...,αn,β(z) is also determined. Furthermore, and for β = 1, we obtain
sufficient conditions for the operators Fn(z) and Gn(z) to be in the class
K(a, b). Several corollaries and consequences of the main results are also con-
sidered.

1. Introduction and definitions. Let A denote the class of functions of
the form

f(z) = z +
∞∑
n=2

anz
n

which are analytic in the open unit disc U = {z : |z| < 1}. Further, by S
we shall denote the class of all functions in A which are univalent in U . A
function f(z) ∈ A is said to be starlike of order γ (0 ≤ γ < 1) if it satisfies

(1.1) Re

(
zf ′(z)

f(z)

)
> γ (z ∈ U).
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Also, we say that a function f(z) ∈ A is said to be convex of order γ (0 ≤
γ < 1) if it satisfies

(1.2) Re

(
1 +

zf ′′(z)

f ′(z)

)
> γ (z ∈ U).

We denote by S?(γ) and K(γ) , respectively, the usual classes of starlike and
convex functions of order γ (0 ≤ γ < 1) in U .

A function f ∈ A is said to be in the class S?(a, b) if

(1.3)
∣∣∣∣zf ′(z)f(z)

− a
∣∣∣∣ < b (z ∈ U ; |a− 1| < b ≤ a)

and a function f ∈ A is said to be in the class K(a, b) if

(1.4)
∣∣∣∣1 + zf ′′(z)

f ′(z)
− a
∣∣∣∣ < b (z ∈ U ; |a− 1| < b ≤ a).

From (1.3) and (1.4), we have

Re

(
zf ′(z)

f(z)

)
> a− b (z ∈ U ; |a− 1| < b ≤ a)

and

Re

(
1 +

zf ′′(z)

f ′(z)

)
> a− b (z ∈ U ; |a− 1| < b ≤ a).

The class S?(a, b) was introduced by Jakubowski [12]. It is clear that a > 1
2 ,

S?(a, b) ⊂ S?(a − b) ⊂ S?(0) ≡ S? and K(a, b) ⊂ K(a − b) ⊂ K(0) ≡ K.
Further, applying the Briot-Bouquet differential subordination [9], we can
easily see that K(a, b) ⊂ S?(a, b).

Several authors (e.g., see [4, 5, 6, 8, 10, 11, 15, 16]), obtained many
sufficient conditions for the univalency of the integral operators

(1.5) Fα1,α2,...,αn,β(z) =

β
z∫

0

tβ−1
n∏
i=1

(
fi(t)

t

)αi
dt


1
β

and

(1.6) Gα1,α2,...,αn,β(z) =

β
z∫

0

tβ−1
n∏
i=1

(
f ′i(t)

)αi dt


1
β

,

where the functions f1, f2, . . . , fn belong to the class A and the parame-
ters α1, α2, . . . , αn, and β are complex numbers such that the integrals in
(1.5) and (1.6) exist. Here and throughout in the sequel every many-valued
function is taken with the principal branch.
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For β = 1, we obtain the integral operators

(1.7) Fn(z) =

z∫
0

(
f1(t)

t

)α1

. . .

(
fn(t)

t

)αn
dt

and

(1.8) Gn(z) =

z∫
0

(
f ′1(t)

)α1 . . .
(
f ′n(t)

)αn dt
introduced and studied by Breaz and Breaz [5] and Breaz et al. [7], respec-
tively.

In this paper, we obtain new sufficient conditions for the operators
Fα1,α2,...,αn,β(z) and Gα1,α2,...,αn,β(z) defined by (1.5) and (1.6) to be univa-
lent in the open unit disc U , where the functions f1, f2, . . . , fn belong to the
above classes S?(a, b) and K(a, b). The order of convexity for the operators
Fα1,α2,...,αn,β(z) and Gα1,α2,...,αn,β(z) is also determined. Furthermore, we
obtain sufficient conditions for the operators Fn(z) and Gn(z) defined by
(1.5) and (1.6) to be in the class K(a, b).

In the proofs of our main results we need the following univalence cri-
teria. The first result, i.e. Lemma 1.1 is a generalization of the well-
known univalence criterion of Becker [2] (which in fact corresponds to the
case β = δ = 1), while the second, i.e. Lemma 1.2 is a generalization of
Ahlfors’ and Becker’s univalence criterion [1, 3] (which corresponds to the
case β = 1).

Lemma 1.1 ([13]). Let δ be a complex number with Re(δ) > 0. If f ∈ A
satisfies

1− |z|2Re(δ)

Re(δ)

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U , then, for any complex number β with Re(β) ≥ Re(δ), the
integral operator

Fβ(z) =

β
z∫

0

tβ−1f ′(t)dt


1
β

is in the class S.

Lemma 1.2 ([14]). Let β be a complex number with Re(β) > 0 and c be
a complex number with |c| ≤ 1, c 6= −1. If f ∈ A satisfies∣∣∣∣c |z|2β + (1− |z|2β) zf ′′(z)βf ′(z)

∣∣∣∣ ≤ 1
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for all z ∈ U , then the integral operator

Fβ(z) =

β
z∫

0

tβ−1f ′(t)dt


1
β

is in the class S.

2. Univalence conditions for Fα1,α2,...,αn,β(z). We first prove

Theorem 2.1. Let fi(z) ∈ S?(ai, bi); |ai − 1| < bi ≤ ai, αi ∈ C for all
i = 1, . . . , n, and δ ∈ C with

(2.1) Re(δ) ≥ 2

n∑
i=1

|αi| bi.

Then for any β∈C with Re(β)≥Re(δ), the integral operator Fα1,α2,...,αn,β(z)
defined by (1.5) is analytic and univalent in U .

Proof. Defining

h(z) =

z∫
0

n∏
i=1

(
fi(t)

t

)αi
dt,

we observe that h(0) = h′(0)− 1 = 0, where

(2.2) h′(z) =

n∏
i=1

(
fi(z)

z

)αi
.

Differentiating both sides of (2.2) logarithmically, we obtain

zh′′(z)

h′(z)
=

n∑
i=1

αi

(
zf ′i(z)

fi(z)
− 1

)
which is equivalent to

(2.3)
zh′′(z)

h′(z)
=

n∑
i=1

αi

(
zf ′i(z)

fi(z)
− ai

)
+

n∑
i=1

αiai −
n∑
i=1

αi.

Since fi(z) ∈ S?(ai, bi); |ai − 1| < bi ≤ ai for all i = 1, 2, . . . , n, it follows
from (2.3) that

(2.4)

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤ n∑
i=1

|αi|
∣∣∣∣zf ′i(z)fi(z)

− ai
∣∣∣∣+ n∑

i=1

|αi| |ai − 1|

< 2
n∑
i=1

|αi| bi.
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Multiplying both sides of (2.4) by 1−|z|2Re(δ)

Re(δ) and making use of (2.1), we
obtain

1− |z|2Re(δ)

Re(δ)

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤ 2

(
1− |z|2Re(δ)

Re(δ)

)
n∑
i=1

|αi| bi

<
2

Re(δ)

n∑
i=1

|αi| bi ≤ 1.

Applying Lemma 1.1 for the function h(z), we prove that Fα1,α2,...,αn,β(z) ∈
S. �

Letting n = 1, α1 = α, a1 = a, b1 = b and f1 = f in Theorem 2.1, we
have

Corollary 2.2. Let f(z) ∈ S?(a, b); |a− 1| < b ≤ a, α ∈ C and δ ∈ C
with Re(δ) > 2 |α| b. Then for any β ∈ C with Re(β) ≥ Re(δ), the integral
operator

(2.5) Fα,β(z) =

β
z∫

0

tβ−1
(
f(t)

t

)α
dt


1
β

is analytic and univalent in U .

Making use of Lemma 1.2, we prove the following theorem:

Theorem 2.3. Let fi(z) ∈ S?(ai, bi); |ai − 1| < bi ≤ ai, αi ∈ C for all
i = 1, 2, . . . , n, and β ∈ C with

Re(β) ≥ 2
n∑
i=1

|αi| bi

and

(2.6) |c| ≤ 1− 2

Re(β)

n∑
i=1

|αi| bi (c ∈ C).

Then the integral operator Fα1,α2,...,αn,β(z) defined by (1.5) is analytic and
univalent in U .
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Proof. Let fi(z) ∈ S?(ai, bi); |ai − 1| < bi ≤ ai for all i = 1, 2, . . . , n, it
follows from (2.4) that∣∣∣∣c |z|2β + (1− |z|2β)zh

′′(z)

βh′(z)

∣∣∣∣ ≤ |c|+
∣∣∣∣∣1− |z|2ββ

∣∣∣∣∣
∣∣∣∣zh′′(z)h′(z)

∣∣∣∣
≤ |c|+ 2

∣∣∣∣∣1− |z|2ββ

∣∣∣∣∣
n∑
i=1

|αi| bi

< |c|+ 2

|β|

n∑
i=1

|αi| bi

< |c|+ 2

Re(β)

n∑
i=1

|αi| bi

which, in the light of the hypothesis (2.6), yields∣∣∣∣c |z|2β + (1− |z|2β)zh
′′(z)

βh′(z)

∣∣∣∣ ≤ 1.

Finally, by applying Lemma 1.2, we conclude that Fα1,α2,...,αn,β(z) ∈ S.
�

Letting n = 1, α1 = α, a1 = a, b1 = b and f1 = f in Theorem 2.3, we
have

Corollary 2.4. Let f(z) ∈ S?(a, b); |a− 1| < b ≤ a, α ∈ C, and β ∈ C
with

Re(β) ≥ 2 |α| b

and

|c| ≤ 1− 2

Re(β)
|α| b (c ∈ C).

Then the integral operator Fα,β(z) defined by (2.5) is analytic and univalent
in U .

3. Univalence conditions for Gα1,α2,...,αn,β(z). Now, we prove

Theorem 3.1. Let fi(z) ∈ K(ai, bi); |ai − 1| < bi ≤ ai, αi ∈ C for all
i = 1, . . . , n, and δ ∈ C with

Re(δ) ≥ 2

n∑
i=1

|αi| bi.

Then for any β∈C with Re(β)≥Re(δ), the integral operator Gα1,α2,...,αn,β(z)
defined by (1.6) is analytic and univalent in U .
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Proof. Defining

h(z) =

z∫
0

n∏
i=1

(
f ′i(t)

)αi dt,
we observe that h(0) = h′(0) − 1 = 0. On the other hand, it is easy to see
that

(3.1) h′(z) =

n∏
i=1

(
f ′i(z)

)αi .
Differentiating both sides of (3.1) logarithmically, we obtain

zh′′(z)

h′(z)
=

n∑
i=1

αi

(
zf ′′i (z)

f ′i(z)

)
.

Thus, we have

(3.2)
zh′′(z)

h′(z)
=

n∑
i=1

αi

(
1 +

zf ′′i (z)

f ′i(z)
− ai

)
+

n∑
i=1

αi(ai − 1).

Let fi(z) ∈ K(ai, bi); |ai − 1| < bi ≤ ai, for all i = 1, 2, . . . , n, and following
the same steps in the proof of Theorem 2.1, we get the required result. �

Letting n = 1, α1 = α, a1 = a, b1 = b and f1 = f in Theorem 3.1, we
have

Corollary 3.2. Let f(z) ∈ K(a, b); |a− 1| < b ≤ a, α and δ ∈ C with
Re(δ) ≥ 2 |α| b. Then for any β ∈ C with Re(β) ≥ Re(δ), the integral
operator

(3.3) Gα,β(z) =

β
z∫

0

tβ−1
(
f ′(t)

)α
dt


1
β

is analytic and univalent in U .

Using (3.1), (1.4) and applying Lemma 1.2, we prove the following theo-
rem:

Theorem 3.3. Let fi(z) ∈ K(ai, bi); |ai − 1| < bi ≤ ai, αi ∈ C for all
i = 1, . . . , n and β ∈ C with

Re(β) ≥ 2
n∑
i=1

|αi| bi

and

|c| ≤ 1− 2

Re(β)

n∑
i=1

|αi| bi (c ∈ C).

Then the integral operator Gα1,α2,...,αn,β(z) defined by (1.6) is analytic and
univalent in U .
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Letting n = 1, α1 = α, a1 = a, b1 = b and f1 = f in Theorem 3.3, we
have

Corollary 3.4. Let f(z) ∈ K(a, b); |a− 1| < b ≤ a, α and β ∈ C with

Re(β) ≥ 2 |α| b

and

|c| ≤ 1− 2

Re(β)
|α| b.

Then the integral operator Gα,β(z) defined by (3.3) is analytic and univalent
in U .

4. Order of convexity. Now, we prove

Theorem 4.1. Let fi(z) ∈ S?(ai, bi); |ai − 1| < bi ≤ ai, and αi > 0 for all
i = 1, . . . , n, with

0 ≤ 1−
n∑
i=1

αi

(
bi +

1

2

)
< 1 and

n∑
i=1

αi

(
bi +

1

2

)
≤ 1.

Then the integral operator Fn(z) defined by (1.7) is in the class

K

(
1−

n∑
i=1

αi

(
bi +

1

2

))
.

Proof. From (1.7), it follows that

(4.1) F ′n(z) =

n∏
i=1

(
fi(z)

z

)αi
.

Differentiating both sides of (4.1) logarithmically, we obtain

1 +
zF ′′n (z)

F ′n(z)
=

n∑
i=1

αi

(
zf ′i(z)

fi(z)

)
−

n∑
i=1

αi + 1.

Since fi(z) ∈ S?(ai, bi); |ai − 1| < bi ≤ ai and ai >
1
2 for all i = 1, 2, . . . , n,

we have

(4.2)

Re

(
1 +

zF ′′n (z)

F ′n(z)

)
=

n∑
i=1

αiRe

(
zf ′i(z)

fi(z)

)
−

n∑
i=1

αi + 1

≥
n∑
i=1

αi(ai − bi − 1) + 1

> 1−
n∑
i=1

αi

(
bi +

1

2

)
.

Therefore, Fn(z) is convex of order 1−
∑n

i=1 αi
(
bi +

1
2

)
in U . �
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Letting n = 1, α1 = α, a1 = a, b1 = b and f1 = f in Theorem 4.1, we
have

Corollary 4.2. Let f(z) ∈ S?(a, b); |a− 1| < b ≤ a, and α > 0 with 0 ≤

1−α
(
b+ 1

2

)
< 1 and α

(
b+ 1

2

)
≤ 1. Then

∫ z

0

(
f(t)
t

)α
dt ∈ K(1−α(b+ 1

2)).

Next, we prove

Theorem 4.3. Let fi(z) ∈ K(ai, bi); |ai − 1| < bi ≤ ai, and αi > 0 for all
i = 1, . . . , n, with

0 ≤ 1−
n∑
i=1

αi

(
bi +

1

2

)
< 1 and

n∑
i=1

αi

(
bi +

1

2

)
≤ 1.

Then the integral operator Gn(z) defined by (1.8) is in the class

K

(
1−

n∑
i=1

αi

(
bi +

1

2

))
.

Proof. From (1.8), we have

(4.3) 1 +
zG′′n(z)

G′n(z)
=

n∑
i=1

αi

(
1 +

zf ′′i (z)

f ′i(z)

)
−

n∑
i=1

αi + 1.

Let fi(z) ∈ K(ai, bi); |ai − 1| < bi ≤ ai; ai > 1
2 for all i = 1, 2, . . . , n, and

following the same steps in the proof of Theorem 4.1, we get the required
result. �

Letting n = 1, α1 = α, a1 = a, b1 = b and f1 = f in Theorem 4.3, we
have

Corollary 4.4. Let f(z) ∈ K(a, b); |a− 1| < b ≤ a, and α > 0 with 0 ≤
1−α

(
b+ 1

2

)
< 1 and α

(
b+ 1

2

)
≤ 1. Then

∫ z
0 (f ′(t))α dt ∈ K(1−α(b+ 1

2)).

5. Sufficient conditions for the operators Fn(z) and Gn(z).

Theorem 5.1. Let fi(z) ∈ S?(γi); 0 ≤ γi < 1, for all i = 1, 2, . . . , n.
Then the integral operator Fn(z) defined by (1.7) is in the class K(ai, bi),
where ai =

∑n
i=1 αiγi + 1, bi =

∑n
i=1 αi and

∑n
i=1 αi(1 − γi) ≤ 1 for all

i = 1, 2, . . . , n.

Proof. Let fi(z) ∈ S?(γi); 0 ≤ γi < 1, for all i = 1, 2, . . . , n. Then it follows
from (4.2) that

Re

(
1 +

zF ′′n (z)

F ′n(z)

)
=

n∑
i=1

αiRe

(
zf ′i(z)

fi(z)

)
+ 1−

n∑
i=1

αi

>

n∑
i=1

αiγi + 1−
n∑
i=1

αi
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which proves that Fn(z) ∈ K(ai, bi), where ai =
∑n

i=1 αiγi + 1 and bi =∑n
i=1 αi for all i = 1, 2, . . . , n. �

Letting n = 1, α1 = α, γ1 = γ, a1 = a, b1 = b and f1 = f in Theorem
5.1, we have

Corollary 5.2. Let f(z) ∈ S?(γ); 0 ≤ γ < 1. Then
∫ z

0

(
f(t)
t

)α
dt ∈

K(αγ + 1, α), where 0 < α(1− γ) ≤ 1.

Using (4.3), we can prove the following theorem:

Theorem 5.3. Let fi(z) ∈ K(γi); 0 ≤ γi < 1, for all i = 1, 2, . . . , n.
Then the integral operator Gn(z) defined by (1.8) is in the class K(ai, bi),
where ai =

∑n
i=1 αiγi + 1, bi =

∑n
i=1 αi and

∑n
i=1 αi(1 − γi) ≤ 1 for all

i = 1, 2, . . . , n.

Letting n = 1, α1 = α, γ1 = γ, a1 = a, b1 = b and f1 = f in Theorem
5.3, we have

Corollary 5.4. Let f(z) ∈ K(γ); 0 ≤ γ < 1. Then
∫ z
0 (f ′(t))α dt ∈ K(αγ +

1, α), where 0 < α(1− γ) ≤ 1.
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