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Resolvent and spectrum
of a nonselfadjoint differential operator

in a Hilbert space

Abstract. We consider a second order regular differential operator whose
coefficients are nonselfadjoint bounded operators acting in a Hilbert space.
An estimate for the resolvent and a bound for the spectrum are established.
An operator is said to be stable if its spectrum lies in the right half-plane. By
the obtained bounds, stability and instability conditions are established.

1. Introduction. The present paper is devoted to the spectrum localiza-
tion of regular nonselfadjoint differential operators whose coefficients are
bounded operators acting in a separable Hilbert space, and the norm esti-
mates for their resolvents.

The literature on the theory of abstract differential operators is rather
rich, but mainly is devoted to the coercitivity of operators and maximal
regularity of solutions of the relevant equations, cf. the well-known books
[11, 12, 14] and references therein. At the same time, the spectral theory
of differential operators with operator coefficients is not enough developed.
The works [1, 2, 3, 4] should be mentioned. In [3] the sum of subtraction
of the eigenvalues of two selfadjoint differential operators with unbounded
operator coefficient is investigated. In the monograph [2], the Hardy type
inequalities for abstract differential operators are established. In the paper
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[1] the authors consider the Sturm–Liouville operator with variable self-
adjoint operators in a Hilbert space. That paper extends some classical
results of the spectral theory of the Sturm–Liouville operators. In the pa-
per [4], a regularized trace formula for a differential operator of second or-
der with unbounded operator coefficients on a finite interval is established.
The monograph [13] considers the interplay between spectral and oscillatory
properties of both finite and infinite systems of linear ordinary differential
selfadjoint operators. These can be written as single differential equations
with matrix-valued and (bounded) operator-valued coefficients, respectively.

The aim of this paper is to generalize the main result from [8] to a non-
selfadjoint differential operator with coefficients from a class of bounded
operators in a Hilbert space.

Everywhere below H is a separable Hilbert space with a scalar product
(·, ·)H and the norm ‖.‖H =

√
(·, ·)H . I is the unit operator in the corre-

sponding space. All the considered operators are linear. For an operator
T , σ(T ) denotes the spectrum; Rλ(T ) = (T − λI)−1 (λ 6∈ σ(T )) is the re-
solvent, T ∗ is the adjoint operator, ‖T‖H is the operator norm in H; λj(T )
(j = 1, 2, . . .) are the eigenvalues of T , counted with their algebraic mul-
tiplicities; ρ(T, λ) := inft∈σ(T ) |λ − t| is the distance between σ(T ) and a
complex point λ.

Let B(x), C(x) be continuous in the operator norm functions defined on
a finite real segment [a, b] whose values are bounded operators acting in H.
The main object of this paper is the differential operator

(1.1) E = − d2

dx2
+ 2B(x)

d

dx
+ C(x) (a < x < b)

with the boundary value conditions

y(a) cosα+ y′(a) sin α = 0; y(b) cosβ + y′(b) sinβ = 0

for some α, β ∈ [0, 2π). Or y(a) = y(b); y′(a) = y′(b).
Introduce the Hilbert space L2 = L2([a, b], H) of functions defined on

[a, b] with values in H, the scalar product

(y, v)L2 :=

∫ b

a
(y(x), v(x))Hdx

and the norm ‖ · ‖L2 =
√

(·, ·)L2 .
The domain of operator (1.1) is defined as

Dom(E) =
{
y ∈ L2 = L2([a, b], H) :

d2y(x)

dx2
∈ L2,

y(a) cos α+ y′(a) sin α = 0; y(b) cos β + y′(b) sin β = 0
}
,

or

Dom(E) =
{
y ∈ L2 :

d2y(x)

dx2
∈ L2; y(a) = y(b), y′(a) = y′(b)

}
.
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2. Auxiliary results. Let V (x) be the Cauchy operator of the equation

(2.1) u′(x) = B(x)u(x),

at a point x0 ∈ [a, b]. That is, u(x) = V (x)u(x0) for any solution u(t) of
(2.3) and V ′(x) = B(x)V (x). So V (x0) = I. We have V −1(x)u(x) = u(x0).
Hence,

0 =
d

dx

[
V −1(x)u(x)

]
=

[
d

dx
V −1(x)

]
u(x) + V −1(x)u′(x)

=

[
d

dx
V −1(x)

]
u(x) + V −1(x)B(x)u(x).

Thus

(2.2)
d

dx
V −1(x) = −V −1(x)B(x).

Put
Φ(x) = V −1(x)C(x)V (x).

Then
d

dx
Φ(x) =

[
d

dx
V −1(x)

]
C(x)V (x) + V −1(x)C ′(x)V (x) + V −1(x)C(x)V ′(x)

= −V −1(x)B(x)C(x)V (x) + V −1(x)C ′(x)V (x) + V −1(x)C(x)B(x)V (x)

= V −1(x)([C(x), B(x)]c + C ′(x))V (x).

Here [C(x), B(x)]c := C(x)B(x)−B(x)C(x) is the commutator. But V (x0)
= I, Φ(x0) = C(x0), so

Φ(x)− C(x0) =

∫ x

x0

d

ds
Φ(s)ds.

We thus have proved:

Lemma 2.1. Let C(x) have the integrable first derivative. Then

V −1(x)C(x)V (x)− C(x0) =

∫ x

x0

V −1(s)([C(s), B(s)]c + C ′(s))V (s)ds.

In particular, if C and B are constant, then V (x) = eBx and

e−BxCeBx = C +

∫ x

0
e−Bs[C,B]ce

Bsds.

Moreover, if B(x) and its integral commute:

(2.3) B(x)

∫ x

x0

B(s)ds =

∫ x

x0

B(s)ds B(x),

then

V (x) = exp

[∫ x

x0

B(s)ds

]
.
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Indeed, put J(x) :=
∫ x
x0
B(s)ds, then

d

dx
exp

[∫ x

x0

B(s)ds

]
=

d

dx
exp [J(x)] =

d

dx

∞∑
k=0

Jk(x)

k!

=

∞∑
k=1

B(x)
Jk−1(x)

(k − 1)!
= B(x) exp

[∫ x

x0

B(s)ds

]
,

as claimed. In the case (2.3), by the previous lemma we have

(2.4)
Φ(x)−B(x0) =

∫ x

x0

exp

[
−
∫ s

x0

B(s1)ds1

]
([C(s), B(s)]c

+ C ′(s)) exp

[∫ s

x0

B(s1)ds1

]
ds.

If B(x) is selfcommuting: B(x)B(s) = B(s)B(x), then (2.3) and therefore,
(2.4) hold. If B(x) and C(x) commute, then

(2.5) Φ(x)− C(x0) =

∫ x

x0

V −1(s)C ′(s)V (s)ds.

3. The autonomous problem. We will investigate operator E as a per-
turbation of the operator

E0 = − d2

dx2
+M (0 < x < b)

with a constant bounded operator M acting in H. Besides the domain of
E0 is Dom(E). By aj = λj(S), j = 1, 2, . . . we denote the eigenvalues of
the operator S := −d2/dx2 defined on Dom(E). Let Pj be the orthogonal
eigenprojections of S, defined by

Pj = − 1

2πi

∫
|z−aj |=ε

(S − zI)−1dz

for a sufficiently small ε > 0. Then

S =
∞∑
j=1

ajPj ; MPj = PjM and E0 =

∞∑
j=1

(ajI +M)Pj .

Hence,

(3.1) Rλ(E0) =

∞∑
j=1

(M + (aj − λ)I)−1Pj

and

(3.2) ‖Rλ(E0)‖L2 ≤ sup
j
‖(M + (aj − λ)I)−1‖H .
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It is assumed that there is a continuous monotonically increasing function
FM , satisfying FM (0) = 0, FM (∞) =∞, such that

(3.3) ‖(M − λI)−1‖H ≤ FM (1/ρ(M,λ)).

Then ‖(M + (aj − λ)I)−1‖H ≤ FM (1/ρ(M,λ − aj)). But infj ρ(M,λ −
aj) = ρ(E0, λ). Here ρ(E0, λ) = inft∈σ(E0) |λ − t| = infs∈σ(M),j |s + aj − λ|.
Consequently, by (3.2) we obtain:

Lemma 3.1. Let the conditions (3.3) and

(3.4) λ 6= aj + s (j = 1, 2, . . . ; s ∈ σ(S))

hold. Then ‖Rλ(E0)‖L2 ≤ FM (1/ρ(E0, λ)).

4. The basic lemma. Let V (x) be the Cauchy operator of equation (2.1)
at a point x0, again. Put

Z(x) = −B′(x) +B2(x) + C(x)

and on Dom(E) introduce the operator T by

(Tf)(x) := f ′′(x) + V −1(x)Z(x)V (x)f(x) (f ∈ Dom(E)).

Lemma 4.1. Let B(x) have a bounded measurable derivative. Then oper-
ator E is similar to T . Namely,

(4.1) E = V (·)TV −1(·),

where (V (·)f)(x) = V (x)f(x).

Proof. Putting λI = λ, consider the equation

(4.2) (E−λ)y = − d2

dx2
y+2B(x)

dy(x)

dx
+(C(x)−λ)y = f(x) (a < x < b)

with f ∈ L2(H). Substitute y = V (x)v. Then

−[V ′′(x)v + 2V ′(x)v′ + V (x)v′′] + 2B(x)[V ′(x)v + V (x)v′]

+ (C(x)− λ)V (x)v = f(x).

Note that

V ′′(x) = (B(x)V (x))′ = B′(x)V (x)+B(x)V ′(x) = B′(x)V (x)+B2(x)V (x).

Hence,

−[B′(x)V (x)v+B2(x)V (x)v + 2B(x)V (x)v′ + V (x)v′′]

+ 2B(x)[B(x)v + V (x)v′] + C(x)V (x)v − λV (x)v = f(x).

Thus

−V (x)v′′ + (−B′(x)+B2(x) + C(x)− λ)V (x)v

= −V (x)v′′ + (Z(x)− λ)V (x)v = f(x).
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Therefore,

−v′′ + V −1(·)Z(·)V (·)v − λv = (T − λ)v = V −1(·)f.

Hence, v = Rλ(T )V −1(·)f and consequently,

Rλ(E)f = y = V (·)v = V (·)Rλ(T )V −1(·).

This proves the lemma. �

By the previous lemma the spectrum of E and T coincide. Moreover,

(4.3) ‖Rλ(E)‖L2 ≤ m0‖Rλ(T )‖L2 ,

where m0 := supx∈[a,b] ‖V (x)‖H supx∈[a,b] ‖V −1(x)‖H .

5. The main result. Recall that Z(x) = −B′(x) +B2(x) +C(x) and for
a fixed x0 ∈ [a, b], put

(5.1) M = Z(x0) = −B′(x0) +B2(x0) + C(x0)

and

q := sup
x

∥∥∥∥∫ x

x0

V −1(s)([Z(s), B(s)]c + Z ′(s))V (s)ds

∥∥∥∥
H

.

Note that

[Z(x), B(x)]c = −[B′(x), B(x)]c + [C(x), B(x)]c

and
dZ(x)

dx
= −B′′(x) +B′(x)B(x) +B(x)B′(x) + C ′(x).

Now we are in a position to formulate the main result of the paper.

Theorem 5.1. Let B(x) have an integrable second derivative, C(x) have
an integrable first derivative and M be defined by (5.1). Assume that the
conditions (3.3) and

(5.2) qFM (1/ρ(E0, λ)) < 1

hold. Then λ is regular for E, and

(5.3) ‖(E − λI)−1‖L2 ≤
m0FM (1/ρ(E0, λ))

1− qFM (1/ρ(E0, λ))
.

Proof. Thanks to Lemma 2.1,

(5.4)

‖V −1(x)Z(x)V (x)− Z(x0)‖H

=

∥∥∥∥∫ x

x0

V −1(s)([Z(s), B(s)]c + Z ′(s))V (s)ds

∥∥∥∥
H

≤ q

for all x ∈ [a, b]. So

‖T − E0‖L2 = sup
x
‖V −1(x)Z(x)V −1(x)− Z(x0)‖H = q.
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By the Hilbert identity for resolvents,

(T − λI)−1 − (E0 − λI)−1 = (T − λI)−1(T − E0)(E0 − λI)−1.

Thus, if the inequality

(5.5) q‖(λI − E0)
−1‖L2 < 1

holds, then λ is regular for T , and

‖(T − λI)−1‖L2 ≤ ‖(E0 − λI)−1‖L2(1− q‖(Iλ− E0)
−1‖L2)−1.

Now Lemma 3.1 and (4.3) imply the required result. �

There exist various estimates for the Cauchy operator. For instance,
recall the Wintner inequalities

(5.6) e
∫ x
x0
βR(v)dv ≤ ‖V (x)h‖H

‖h‖H
≤ e

∫ x
x0
αR(v)dv

where αR(x) and βR(x) are the largest and the smallest eigenvalues, respec-
tively, of the operator BR(x) = (B(x) +B∗(x))/2, e.g. [5, Theorem III.4.7].
Thus

(5.7) m0 ≤ m̂R where m̂R := sup
x∈[a,b]

e
−

∫ x
x0
βR(v)dv

sup
x∈[a,b]

e
∫ x
x0
αR(v)dv

.

Hence,

(5.8) q ≤ q̂ where q̂ := m̂R

∫ b

a
‖[Z(s), B(s)]c + Z ′(s)‖Hds.

6. Bounds for the spectrum. Thanks to Theorem 5.1, any µ ∈ σ(E)
satisfies the inequality qFM (E0, µ) ≥ 1. In other words, for any µ ∈ σ(E),
there is an s ∈ σ(E0), such that

qFM (1/|µ− s|) ≥ 1.

Taking into account the monotonicity of the left-hand part of this inequality
we get |µ − λ(E0)| ≤ r(q), where r(q) is the unique positive root of the
equation

(6.1) qFM (1/x) = 1.

We thus have proved the following:

Theorem 6.1. Let B(x) and C(x) satisfy the hypothesis of Theorem 5.1.
Let operator M be defined by (5.1). Then for any µ ∈ σ(E), there are
integers j ≥ 1 and s ∈ σ(M), such that |s + aj − µ| ≤ r(q), where r(q) is
the unique positive root of equation (6.1).
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Let A and Ã be two linear operators. Then

svA(Ã) := sup
s∈σ(Ã)

inf
µ∈σ(A)

|s− µ|

will be called the spectral variation of Ã with respect to A.
So Theorem 6.1 means that svE0(E) ≤ r(q).

Corollary 6.2. Under the hypothesis of Theorem 5.1, the spectrum of E
lies in the union of the sets

{z ∈ C : |z − s(M)− aj | ≤ r(q)},
s ∈ σ(M); j = 1, 2, . . . .

Operator E is said to be stable if Reσ(A) > 0. E is unstable if
inf Reσ(A) < 0.

Now Theorem 6.1 implies

Corollary 6.3. Under the hypothesis of Theorem 5.1, let

inf
j=1,2,...

aj + inf Reσ(M) > r(q).

Then E is stable. Conversely, if infj=1,2,... aj + inf Reσ(M) < −r(q), then
E is unstable.

7. Operators admitting triangular representations. For a compact
operator K in H, sk(A), k = 1, 2, . . . , are the singular numbers taken
with their multiplicities and enumerated in the decreasing order. By SNr

(1 ≤ r < ∞), the Schatten–von Neumann ideal is denoted. That is,
the ideal of compact operators K in H with the finite norm Nr(K) :=

[Trace (K∗K)r/2]1/r.
Let c0 be the space of all scalar sequences tending to zero, ĉ be the set of all

sequences from c0 having a finite number of nonzero entries. A real function
F (h) = F (h1, h2, . . . ) defined on c0 is called a norming function, if it satisfies
the following conditions: F (h) > 0, h 6= 0; F (ah) = |a|F (h) (a ∈ C) and
F (h + w) ≤ F (h) + F (w) for all h = {hk}, w = {wk} ∈ ĉ. In addition,
F (1, 0, 0, . . . ) = 1. A norming function F is called a symmetrically norming
function, if F (h1, h2, . . . , hn, 0, 0, . . . ) = F (|h1|, |h2|, . . . , |hn|, 0, 0, . . . ). The
following relations are well-known [9, Section 3.3]: if for h = {hk}, w =
{wk} ∈ ĉ, the inequalities |hk| ≤ |wk| hold, then F (h) ≤ F (w). Moreover, if

w1 ≥ w2 ≥ · · · ≥ 0;h1 ≥ h2 ≥ · · · ≥ 0 and
j∑

k=1

wk ≤
j∑

k=1

hk,

then F (w) ≤ F (h) for any symmetrically norming function F . Furthermore,
on the set of all compact operators K acting in H, introduce the norm
NW (K) by

NW (K) = F (s1(K), s2(K), . . . ).
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Then the set W = W (F ) of operators with the finite norm NW is a sym-
metrically normed ideal, e.g. [9, Section 3.4].

Let E(t) be a left-continuous orthogonal resolution of the identity in H,
defined on a real segment [a, b]. E is called a maximal resolution of the
identity (m.r.i.), if its every gap E(t0 + 0) − E(t0) (if it exists) is one-
dimensional, cf. [6].

A compact quasinilpotent operator will be called a Volterra operator.
We will say that an m.r.i. E(t) belongs to A (or A has an m.r.i. E(t)),
if E(t)AE(t) = AE(t) (t ∈ [a, b]). We will say that A is a E-triangular
operator if it has an m.r.i. E defined on [a, b] and admits the representation

(7.1) A = D + V

where D is a normal operator and V is a Volterra one, having the following
properties:

(7.2) E(t)V E(t) = V E(t) and DE(t) = E(t)D (t ∈ [a, b]).

An E-triangular operator A has the property

(7.3) σ(A) = σ(D),

cf. [6, Lemma 7.5.1]. Each compact operator is E-triangular [9] and each
operator having the Schatten-von Neumann Hermitian component is E-
triangular; for more details see [6, Chapter 7]. We will call D and V the
diagonal and nilpotent part of A, respectively.

Lemma 7.1. Let A be an E-triangular operator whose nilpotent part V
belongs to a symmetrically normed ideal W . In addition, let

(7.4) ‖(I − V )−1‖ ≤ φ(NW (V )),

where φ(x), x > 0 is a nondecreasing continuous function. Then

(7.5) ‖Rλ(A)‖ ≤ 1

ρ(A, λ)
φ

(
NW (V )

ρ(A, λ)

)
(λ 6∈ σ(A)).

Proof. Let λ be a regular point of the operator D. According to the trian-
gular representation (7.1), we obtain

Rλ(A) = (D + V − λI)−1 = Rλ(D)(I + V Rλ(D))−1.

Operator V Rλ(D) for a regular point λ of the operator D is a Volterra one
due to Lemma 7.3.4 from [6]. Therefore,

‖Rλ(A)‖ = ‖Rλ(D)(I − V Rλ(D)))−1‖ ≤ ‖Rλ(D)‖φ(NW (V Rλ(D))).

But NW (V Rλ(D)) ≤ ‖Rλ(D)‖NW (V ) and ‖Rλ(D)‖ = 1/ρ(A, λ). This
proves the result. �
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If φ(0) = 1, then the previous lemma is sharp: if A is a normal operator,
then V = 0 and inequality (7.5) becomes the equality ‖Rλ(A)‖ = 1

ρ(A,λ) .
By the Weyl inequalities,

NW (D) = F (λ1(A), λ2(A), . . . ) ≤ F (s1(A), s2(A), . . . ) = NW (A).

We thus have

(7.6) NW (V ) ≤ NW (D) +NW (A) ≤ 2NW (A).

Now the previous lemma implies:

Corollary 7.2. Let A ∈W and condition (7.4) hold. Then

‖Rλ(A)‖ ≤ 1

ρ(A, λ)
φ

(
2NW (A)

ρ(A, λ)

)
(λ 6∈ σ(A)).

8. Operators with Schatten–von Neumann components. In this sec-
tion we illustrate the results of the previous section in the case

(8.1) AI,t := (eitA− e−itA∗)/2i ∈ SNp (p = 1, 2, . . . )

for a t ∈ [0, 2π]. To this end we need the following result.

Lemma 8.1. Let V ∈ SN1 be a quasinilpotent operator. Then

‖(I − V )−1‖2 ≤
∞∏
k=1

(1 + sk(2VR − V ∗V )).

Here sk(2VR − V ∗V ) are the singular values of 2VR − V ∗V counted with
their multiplicities and enumerated in the decreasing way.

Proof. We have det(I − V )(I − V ∗) = det(I − V ) det(I − V ∗) = 1. So

1 = det(I − V )(I − V ∗) = det(I − T ), where T = 2VR − V V ∗.
Let λk = λk(T ). Then |λk| = sk(T ) = sk(2VR − V V ∗). Assume that
mink |1− λk| = |1− λj | for an index j. Then ‖(I − V )−1‖2 = |1− λj |−1. So

1 = |det(I − T )| = ‖(I − V )−1‖−2
∞∏

k=1,k 6=j
|1− λk|

and thus,

(8.2) ‖(I − V )−1‖2 =

∞∏
k=1,k 6=j

|1− λk| ≤
∞∏
k=1

(1 + |λk|),

as claimed. �

Introduce the function

Φ(t1, t2, . . . , tj) =

∞∏
k=1

(1 + tk) (t1 > t2 > · · · > tj ≥ 0).
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Clearly,
∂Φ

∂tk
=

Φ

1 + tk
>

∂Φ

∂tk+1
≥ 0.

But
j∑

k=1

sk(2VR − V ∗V ) ≤
j∑

k=1

sk(2VR) + sk(V
∗V ).

Therefore, by Lemma 2.7.5 [9],
∞∏
k=1

(1 + sk(2VR − V ∗V )) ≤
∞∏
k=1

(1 + 2sk(VR) + s2k(V )) =

∞∏
k=1

(1 + sk(V ))2.

Now the latter lemma yields our next result.

Corollary 8.2. Let V ∈ SN1 be a quasinilpotent operator. Then

(8.3) ‖(I − V )−1‖ ≤
∞∏
k=1

(1 + sk(V )).

Note that inequality (8.3) is a particular case of the well-known Theorem
V.5.1 from [9], but we suggest a considerably new approach. Besides, the
previous lemma is sharper than (8.3). Furthermore, clearly,

(8.4) (I − V )−1 = (I + V + · · ·+ V p−1)(I − V p)−1

for any positive integer p. Now Corollary 8.2 implies:

Lemma 8.3. Let V ∈ SNp (p = 1, 2, . . . ) be a quasinilpotent operator.
Then

‖(I − V )−1‖ ≤ ‖I + V + · · ·+ V p−1‖
∞∏
k=1

(1 + spk(V )) ≤ ψp(Np(V )),

where

ψp(x) := ex
p
p−1∑
k=0

xk (x ≥ 0).

This result and Lemma 7.1 yield the next result.

Corollary 8.4. Let A be an E-triangular operator whose nilpotent part
V ∈ SNp (p = 1, 2, . . . ). Then

‖Rλ(A)‖ ≤ 1

ρ(A, λ)
ψp

(
Np(V )

ρ(A, λ)

)
(λ 6∈ σ(A)).

As it is proved in Theorems III.6.2 and III.6.3 [10], if VI ∈ SNp, then
Np(V ) ≤ b̃pNp(VI), where b̃p is a constant dependent only on p, and b̃p ≤
1 + p

e2/3 ln 2
. Besides, b̃2 =

√
2. Since Np(V ) = Np(e

itV ) for a real t, we have

(8.5) Np(V ) ≤ b̃pNp(VI,t).
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But by the Weyl inequalities [9], Np(DI,t) ≤ Np(AI,t) and therefore,

(8.6) Np(V ) ≤ b̃pNp(VI,t) ≤ b̃pNp(AI,t) + b̃pNp(DI,t) ≤ 2b̃pNp(AI,t).

Thanks to Theorem 7.6.1 [6], under condition (8.1), A is an E-triangular
operator. Now Corollary 8.4 implies the following result.

Theorem 8.5. Let condition (8.1) hold. Then

(8.7) ‖R(A)‖ ≤ 1

ρ(A, λ)
ψp

(
bpNp(AI,t)

ρ(A, λ)

)
(bp = 2b̃p, λ 6∈ σ(A)).

Remark 8.6. In the case A ∈ SNp, p ≥ 1, we have Np(D) ≤ Np(A) and
therefore, Np(V ) ≤ 2Np(A). Thus in (8.7) one can replace bpNp(AI,t) by
2Np(A).

Note that (8.7) is a generalization of Theorem 7.7.1 [6], which is proved
in the case A−A∗ ∈ SN2r, r = 1, 2, . . . .

In the case MI,t = (Meit − e−itM∗)/2i ∈ SNp, 1 < p <∞, according to
Theorem 8.5, equation (6.1) takes the form

(8.8)
q0
x
ψp

(
bpNp(MI,t)

x

)
= 1.

To estimate the roots of this equation we need the following result.

Lemma 8.7. For any integer p ≥ 1, the unique positive root za of the
equation

(8.9)
p−1∑
j=0

1

yj+1
exp

[
1

yp

]
= a (a = const > 0)

satisfies the inequality za ≤ δp(a), where

δp(a) :=

{
pe/a if a ≤ pe,
p
√

2[ln(ae/p)]−1/p if a > pe.

Proof. Let

(8.10) pe ≥ a.

Since the function

f(y) =

p−1∑
j=0

1

yj+1
exp

[
1

yp

]
is nonincreasing and f(1) = pe, we have za ≥ 1. But because of (8.9),

za =
1

a

p−1∑
j=0

1

zja
exp[z−pa ] ≤ pe

a
.
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So in the case (8.10), the lemma is proved. Now let pe < a. Then za ≤ 1.
But

p−1∑
j=0

xj+1 ≤ pxp ≤ p exp[xp − 1] (x ≥ 1).

So

f(y) =

p−1∑
j=0

1

yj+1
exp

[
1

yp

]
≤ pe−1 exp

[
2

yp

]
(y ≤ 1).

We thus have a = f(za) ≤ pe−1 exp
[
2
zpa

]
. This finishes the proof. �

Put in (8.8) y = x
bpNp(MI,t)

. Then we obtain (8.9) with a = γ(q) with

γ(q) :=
bpNp(MI,t)

q0
.

Hence, a unique positive root r(q) of (8.8) satisfies the inequality

(8.11) r(q) ≤ δ(q) where δ(q) :=

{
pe/γ(q) if γ(q) ≤ pe,
p
√

2[ln(γ(q)e/p)]−1/p if γ(q) > pe.

Now Theorem 6.1 implies:

Corollary 8.8. Let B(x) and C(x) satisfy the hypothesis of Theorem 5.1
and MI,t ∈ SNp (t ∈ [0, 2π]; 1 < p < ∞). Then for any µ ∈ σ(E), there
is an integer j ≥ 1 and an s ∈ σ(M), such that |s+ aj − µ| ≤ r(q) ≤ δ(q),
where r(q) is the unique positive root of equation (8.8) and δ(q) is defined
by (8.11).

In particular, if infj=1,2,... aj + inf Reσ(M) > δ(q), then E is stable.
Conversely, if infj=1,2,... aj + inf Reσ(M) < −δ(q), then E is unstable.

9. Example. Let H = L2([−π, π],Cn) be a Hilbert space of functions de-
fined on [−π, π] with values in a complex Euclidean space Cn and equipped
with the scalar product

(f, h)H =

∫ π

−π
(f(s), h(s))Cnds,

where (·, ·)Cn is the scalar product in Cn. In addition, ‖ · ‖Cn =
√

(·, ·)Cn .
Consider the Dirichlet problem

(9.1) Eu = −∂
2u(x, y)

∂x2
+ b(x)

∂u(x, y)

∂x
+

∫ π

−π
K0(x− s)u(x, s)ds

(x ∈ (0, 1), y ∈ [−π, π]),

(9.2) u(0, y) = u(1, y) = 0

(y ∈ [−π, π]), where b(x) is a real twice continuously differentiable scalar
function, and K0 is a matrix-valued function defined on [−π, π] with
‖K0(x)‖Cn ∈ L2([−π, π],C). Here ‖A‖Cn means the operator (spectral)
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norm of an n×n-matrix A. In the considered case aj = j2, B(x)u = b(x)u,
and

(9.3) C(x)u(x, y) = C0u(x, y) =

∫ π

−π
K(y − s)u(x, s)ds

does not depend on x. Let

K0(y) =
1

2π

∞∑
k=−∞

τke
iky

be the Fourier expansion with the matrix Fourier coefficients

τk =

∫ π

−π
K0(s)e

−iksds.

We have C0e
ikx = τke

ikx. Let djk be an eigenvector of τk, corresponding to
an eigenvalue λj(τk) (j = 1, . . . , n). Then

C0e
ikxdjk =

∫ π

−π
K0(x− s)djkeiksds = eikxτkdjk = eikxλj(τk)djk.

So the spectrum of C0 consists of the points

λj(τk) (k = 0,±1,±2, . . . ; j = 1, . . . , n).

In addition, Z(x) = −B′(x) +B2(x) +C(x) = −b′(x) + b2(x) +C0. Hence,
[Z(x), B(x)]c = 0, and ‖Z ′(x)‖H =

√
2π|b′′(x) − 2b(x)b′(x)|. Take M =

Z(0) = −b′(0) + b2(0) +C0. Then the spectrum of M consists of the points

λjk(M) = b′(0) + b2(0) + λj(τk) (k = 0,±1,±2, . . . ; j = 1, . . . , n).

Furthermore, since C0 and B(x) commute, we have m0 = 1. By (5.8)

q ≤ q̂ :=

∫ 1

0
‖[Z(s), B(s)]c + Z ′(s)‖Hds =

∫ 1

0
|b′′(x)− 2b(x)b′(x)|dx.

Moreover,

N2
2 (MI) =

∫ π

−π

∫ π

−π
N2

2 (K0I(x− s))dx ds,

whereMI ,K0I(x) are the imaginary Hermitian components ofM andK0(x),
respectively. Thanks to Corollary 8.8, the spectrum of problem (9.1), (9.2)
lies in the union of the sets

{z ∈ C : |z − λjk(M)−m2| ≤ r(q̂)}

(j = 1, 2, . . . , n; k = 0,±1,±2, . . . ; m = 1, 2, . . . ). Here r(q̂) is the unique
positive root of equation (8.8) with p = 2, b2 =

√
2 and q = q̂. Besides, the

bound (8.11) is valid.
In particular, if 1 + infj,k Reλj,k(M) > r(q̂), then E is stable. If 1 +

infj,k Reλj,k(M) < −q̂, then it is unstable.
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