
doi: 10.2478/v10062-012-0015-z

ANNALES
U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A

L U B L I N – P O L O N I A

VOL. LXVI, NO. 2, 2012 SECTIO A 81–92

DARIUSZ PARTYKA and KEN-ICHI SAKAN

On a result by Clunie and Sheil-Small

Dedicated to Professor Bogdan Bojarski on the occasion of his 80th birthday

Abstract. In 1984 J. Clunie and T. Sheil-Small proved ([2, Corollary 5.8])
that for any complex-valued and sense-preserving injective harmonic mapping
F in the unit disk D, if F (D) is a convex domain, then the inequality |G(z2)−
G(z1)| < |H(z2) − H(z1)| holds for all distinct points z1, z2 ∈ D. Here H

and G are holomorphic mappings in D determined by F = H + G, up to a
constant function. We extend this inequality by replacing the unit disk by an
arbitrary nonempty domain Ω in C and improve it provided F is additionally
a quasiconformal mapping in Ω.

Introduction. Let Ω be a nonempty domain in C. Throughout the paper
we always assume that F : Ω → C is a sense-preserving injective harmonic
mapping in Ω of the following form

(0.1) F (z) = H(z) +G(z) , z ∈ Ω ,

where H and G are holomorphic mappings in Ω. Note that if Ω is a simply
connected domain, then each harmonic mapping F in Ω has a decomposi-
tion (0.1) up to a constant function; cf. e.g. [4]. From the classical Lewy’s
theorem it follows that the Jacobian J[F ] does not vanish on Ω; cf. [3]. Since

2000 Mathematics Subject Classification. Primary 30C55, 30C62.
Key words and phrases. Harmonic mappings, Lipschitz condition, bi-Lipchitz condi-

tion, co-Lipchitz condition, quasiconformal mappings.
The research of the second named author was supported by Grants-in-Aid for Scientific

Research No. 22340025 and No. 20340030, Japan Society for the Promotion of Science.



82 D. Partyka and K. Sakan

F is sense-preserving,

(0.2) |H ′(z)|2 − |G′(z)|2 = |∂F (z)|2 − |∂̄F (z)|2 = J[F ](z) > 0 , z ∈ Ω ,

where ∂ := 1
2(∂x− i∂y) and ∂̄ := 1

2(∂x + i∂y) are the so-called formal deriva-
tives operators. Therefore the complex dilatation

(0.3) µF (z) :=
∂̄F (z)

∂F (z)
=
G′(z)

H ′(z)
, z ∈ Ω ,

is well defined and for every nonempty set E ⊂ Ω, put

(0.4) ‖µF ‖E := sup
z∈E
|µF (z)| ≤ 1 .

Since G′/H ′ is a holomorphic mapping, we conclude from the maximum
principle that for every nonempty compact set E ⊂ Ω,

(0.5) ‖µF ‖E < 1 .

Let D(a, r) stand for the Euclidean disk with the center at a ∈ C and the
radius r > 0, i.e. D(a, r) := {z ∈ C : |z − a| < r}. In particular D := D(0, 1)
is the unit disk.

The classical result by J. Clunie and T. Sheil-Small [2, Corollary 5.8]
reads as follows.

Theorem A. If Ω = D and F (D) is a convex domain, then

(0.6) |G(z2)−G(z1)| < |H(z2)−H(z1)| , z1, z2 ∈ D , z1 6= z2 .

A little bit stronger version of Theorem A was proved in [1, Lemma 2.1].
Under the additional assumption that F is a quasiconformal mapping, the
conclusion (0.6) can be improved; cf. Theorem 2.1 and Corollary 2.3 in
Section 2 which are main results of this paper. To this end we show in
Section 1 several auxiliary properties involving the functions H and G with
the function F . In Section 3 we present several applications of the results
from the previous sections. They deal with the quasiconformality of the
function F and Lipschitz type relationships between the functions F and
H.

All results in this paper are strictly related to the ones presented by the
second named author during the XVI-th Conference on Analytic Functions
and Related Topics, June 26–29, 2011 Chełm (Poland).

A more general case where the convexity of F (D) is replaced by the so-
called α-convexity of F (D) is studied in [5].

1. Auxiliary properties of harmonic mappings. In this section we
study the holomorphic mappings H and G associated with the mapping F
by the equality (0.1).
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Lemma 1.1. Suppose that z1, z2 ∈ Ω are points such that z1 6= z2 and

(1.1) {(1− t)F (z1) + tF (z2) : 0 ≤ t ≤ 1} ⊂ F (E)

for a certain compact set E ⊂ Ω, i.e. the line segment with endpoints F (z1)
and F (z2) is included in F (E). Then

(1.2) − k

1− k
≤ Re

G(z2)−G(z1)

F (z2)− F (z1)
≤ k

1 + k

as well as

(1.3)
1

1 + k
≤ Re

H(z2)−H(z1)

F (z2)− F (z1)
≤ 1

1− k
,

where k := ‖µF ‖E. Moreover, the following inequalities hold∣∣∣Im H(z2)−H(z1)

F (z2)− F (z1)

∣∣∣ =
∣∣∣Im G(z2)−G(z1)

F (z2)− F (z1)

∣∣∣ ≤ k

1− k2
(1.4) ∣∣∣G(z2)−G(z1)

F (z2)− F (z1)

∣∣∣ ≤ k

1− k
(1.5) ∣∣∣H(z2)−H(z1)

F (z2)− F (z1)

∣∣∣ ≤ 1

1− k
.(1.6)

Proof. Take arbitrary distinct points z1, z2 ∈ Ω satisfying (1.1). Then the
function

(1.7) [0; 1] 3 t 7→ γ(t) := (1− t)F (z1) + tF (z2)

has the following properties:

(1.8) γ(0) = F (z1) , γ(1) = F (z2) and γ([0; 1]) ⊂ F (E) .

Hence σ := F−1 ◦ γ is an arc in E joining z1 with z2. Then by (0.5) we see
that

(1.9) |µF (σ(s))| ≤ ‖µF ‖E = k < 1 , 0 ≤ s ≤ 1 .

Write w := F (z2)− F (z1). Using the following formulas

∂F−1(F (z)) =
∂̄F

J[F ](z)
=

H ′(z)

|H ′(z)|2 − |G′(z)|2

∂̄F−1(F (z)) = − ∂̄F

J[F ](z)
= − G′(z)

|H ′(z)|2 − |G′(z)|2

(1.10)
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we obtain

G(z2)−G(z1) =

∫
σ
G′(z)dz =

∫ 1

0
G′(σ(s))

d

ds
σ(s)ds

=

∫ 1

0
G′(σ(s))[∂F−1(γ(s))γ′(s) + ∂̄F−1(γ(s))γ′(s)]ds

=

∫ 1

0
G′(σ(s))[∂F−1(F (σ(s)))w + ∂̄F−1(F (σ(s)))w]ds

=

∫ 1

0
G′(σ(s))

[
H ′(σ(s))

J[F ](σ(s))
w − G′(σ(s))

J[F ](σ(s))
w

]
ds

=

∫ 1

0

G′(σ(s))H ′(σ(s))w − |G′(σ(s))|2w
|H ′(σ(s))|2 − |G′(σ(s))|2

ds

=

∫ 1

0

µF (σ(s)) G
′(σ(s))

G′(σ(s))
w − |µF (σ(s))|2w

1− |µF (σ(s))|2
ds .

Hence

(1.11) (G(z2)−G(z1)) =

∫ 1

0

µF (σ(s)) G
′(σ(s))

G′(σ(s)) w − |µF (σ(s))|2w
1− |µF (σ(s))|2

ds .

Combining (1.11) with (1.9), we get

Re
[ 1

w
(G(z2)−G(z1))

]
≤
∫ 1

0

∣∣µF (σ(s)) G
′(σ(s))

G′(σ(s))
w
w

∣∣− |µF (σ(s))|2

1− |µF (σ(s))|2
ds

=

∫ 1

0

(|µF (σ(s))| − |µF (σ(s))|2)

1− |µF (σ(s))|2
ds

=

∫ 1

0

|µF (σ(s))|
1 + |µF (σ(s))|

ds

≤ ‖µF ‖E
1 + ‖µF ‖E

=
k

1 + k
,

which yields the second inequality in (1.2). On the other hand, we conclude
from (1.11) and (1.9) that

Re
[ 1

w
(G(z2)−G(z1))

]
≥
∫ 1

0

−|µF (σ(s))| − |µF (σ(s))|2

1− |µF (σ(s))|2
ds

= −
∫ 1

0

|µF (σ(s))|
1− |µF (σ(s))|

ds ≥ − ‖µF ‖E
1− ‖µF ‖E

= − k

1− k
,

which yields the first inequality in (1.2).
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From (0.1) it follows that F (z2)−F (z1) = H(z2)−H(z1)+G(z2)−G(z1),
and hence

Re
H(z2)−H(z1)

F (z2)− F (z1)
= 1− Re

G(z2)−G(z1)

F (z2)− F (z1)
;

Im
H(z2)−H(z1)

F (z2)− F (z1)
= − Im

G(z2)−G(z1)

F (z2)− F (z1)
.

This together with (1.2) yields the inequalities (1.3) and the equality in
(1.4). From (1.11) we conclude that

Im
[ 1

w
(G(z2)−G(z1))

]
=

∫ 1

0

Im
[
µF (σ(s)) G

′(σ(s))
G′(σ(s))

w
w

]
− Im |µF (σ(s))|2

1− |µF (σ(s))|2
ds

≤
∫ 1

0

|µF (σ(s))|
1− |µF (σ(s))|2

ds ≤ k

1− k2
,

which yields the inequality in (1.4). Applying (1.11) once again, we see that∣∣∣ 1

w
(G(z2)−G(z1))

∣∣∣ ≤ ∫ 1

0

|µF (σ(s))|+ |µF (σ(s))|2

1− |µF (σ(s))|2
ds ≤ k

1− k
,

which leads to (1.5). Using the formulas (1.10), we have

H(z2)−H(z1) =

∫
σ
H ′(z)dz =

∫ 1

0
H ′(σ(s))

d

ds
σ(s)ds

=

∫ 1

0
H ′(σ(s))[∂F−1(γ(s))γ′(s) + ∂̄F−1(γ(s))γ′(s)]ds

=

∫ 1

0
H ′(σ(s))[∂F−1(F (σ(s)))γ′(s) + ∂̄F−1(F (σ(s)))γ′(s)]ds

=

∫ 1

0
H ′(σ(s))

[
H ′(σ(s))

J[F ](σ(s))
w − G′(σ(s))

J[F ](σ(s))
w

]
ds

=

∫ 1

0

|H ′(σ(s))|2w −H ′(σ(s))G′(σ(s))w

|H ′((σ(s)))|2 − |G′((σ(s)))|2
ds

=

∫ 1

0

w − µF (σ(s)) G
′(σ(s))

G′(σ(s)) w

1− |µF (σ(s))|2
ds .

Hence and by (1.9) we see that

|H(z2)−H(z1)| ≤
∫ 1

0

|w|+ |µF (σ(s))||w|
1− |µF (σ(s))|2

ds =

∫ 1

0

|w|
1− |µF (σ(s))|

ds

≤ |w|
1− ‖µF ‖E

=
|F (z2)− F (z1)|

1− k
,

which leads to (1.6), and the proof is complete. �
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Corollary 1.2. If F (Ω) is a convex domain and F is a quasiconformal
mapping, then for all distinct points z1, z2 ∈ Ω the inequalities (1.2)–(1.6)
hold with k := ‖µF ‖Ω.

Proof. Let z1, z2 ∈ Ω be arbitrarily chosen points such that z1 6= z2. Since
the set F (Ω) is convex and the inverse mapping F−1 is continuous, we
deduce that

E := F−1
(
{(1− t)F (z1) + tF (z2) : 0 ≤ t ≤ 1}

)
is a compact subset of Ω. By (0.4), ‖µF ‖E ≤ ‖µF ‖Ω = k < 1. Since

t 7→ t

1 + t
, t 7→ 1

1− t
, t 7→ t

1− t
, t 7→ t

1− t2
and t 7→ −1

1 + t

are increasing functions of t ∈ [0; 1), Lemma 1.1 shows that all the inequal-
ities (1.2)–(1.6) hold with k := ‖µF ‖Ω. �

2. Variants of J. Clunie and T. Sheil-Small inequality. As an appli-
cation of Lemma 1.1 we can derive the following improvement of Theorem A
by J. Clunie and T. Sheil-Small.

Theorem 2.1. If V ⊂ F (Ω) is a nonempty convex set, then

(2.1) |G(z2)−G(z1)| ≤ S(‖µF ‖U )|H(z2)−H(z1)| , z1, z2 ∈ U ,
where U := F−1(V ) and S : [0; 1]→ R is the function defined by the formula

(2.2) S(k) := k ·

√
(1− k)2 + 1

(1− k)2 + k2
, 0 ≤ k ≤ 1 .

Proof. Fix z1, z2 ∈ U . If z1 = z2, then the inequality in (2.1) is obvious.
Therefore we may assume that z1 6= z2. Let γ be the function defined by
(1.7). By the convexity of V ,

γ([0; 1]) ⊂ V ⊂ F (Ω) .

Since the inverse mapping F−1 is continuous and γ([0; 1]) is a compact set,
the set E := F−1(γ([0; 1])) is compact subset of Ω. Furthermore,

(2.3) γ([0; 1]) = F (E) and E ⊂ U .
By (0.5), k := ‖µF ‖E < 1. Setting

a := Re
G(z2)−G(z1)

F (z2)− F (z1)
, b := Re

H(z2)−H(z1)

F (z2)− F (z1)
and c := Im

H(z2)−H(z1)

F (z2)− F (z1)

we deduce from (0.1) that a+ b = 1,

(2.4) Im
G(z2)−G(z1)

F (z2)− F (z1)
= −c and

∣∣∣∣G(z2)−G(z1)

F (z2)− F (z1)

∣∣∣∣2 = (1− b)2 + c2 .

From Lemma 1.1 it follows that

(2.5)
1

2
<

1

1 + k
≤ b ≤ 1

1− k
and c ≤ k

1− k2
.
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Hence

0 ≤
(
b− 1

1 + k

)( 1

1− k
− b
)

= −b2 +
2b

1− k2
− 1

1− k2
,

and consequently

b2 ≤ 2b

1− k2
− 1

1− k2
=

2b− 1

1− k2
.

Combining this with the last inequality in (2.5), we get

b2 + c2 ≤ 2b− 1

1− k2
+

k2

(1− k2)2
=

(2b− 1)(1− k2) + k2

(1− k2)2
.

Hence and by the first inequality in (2.5) we have

(2.6)
(1− b)2 + c2

b2 + c2
= 1− 2b− 1

b2 + c2
≤ 1− (2b− 1)(1− k2)2

(2b− 1)(1− k2) + k2
.

From the first inequality in (2.5) it follows that

(2b− 1)(1− k2) ≥
( 2

1 + k
− 1
)

(1− k)(1 + k) = (1− k)2 .

Combining this with (2.6) and (2.2), we see that

(1− b)2 + c2

b2 + c2
≤ 1− (1− k)2(1− k2)

(1− k)2 + k2
=

(1− k)2k2 + k2

(1− k)2 + k2
= S(k)2 .

Applying now (2.4), we obtain∣∣∣∣G(z2)−G(z1)

F (z2)− F (z1)

∣∣∣∣2 =

∣∣∣∣G(z2)−G(z1)

F (z2)− F (z1)

∣∣∣∣2 =
(1− b)2 + c2

b2 + c2
(b2 + c2)(2.7)

≤ S(k)2(b2 + c2) = S(k)2

∣∣∣∣H(z2)−H(z1)

F (z2)− F (z1)

∣∣∣∣2 .
By (0.4) and the second inclusion in (2.3), k = ‖µF ‖E ≤ ‖µF ‖U . Since S is
an increasing function, we see that S(k) ≤ S(‖µF ‖U ). This together with
(2.7) yields (2.1), which is the desired conclusion. �

Remark 2.2. From the formula (2.2) it follows easily that S is a strictly
increasing continuous function in [0; 1] and

(2.8) 0 = S(0) < k < S(k) < S(1) = 1 , 0 < k < 1 .

Corollary 2.3. If F (Ω) is a convex domain and G is not a constant func-
tion, then k := ‖µF ‖Ω > 0 and

(2.9) |G(z2)−G(z1)| < S(k)|H(z2)−H(z1)| , z1, z2 ∈ Ω , z1 6= z2 .

Proof. Take arbitrary points z1, z2 ∈ Ω such that z1 6= z2. As in the
proof of Theorem 1.1 we see that the function γ defined by (1.7) satisfies
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the equality in (2.3) with the compact set E := F−1(γ([0; 1])). Moreover,
‖µF ‖E ≤ ‖µF ‖Ω = k. Then by Lemma 1.1,

Re
H(z2)−H(z1)

F (z2)− F (z1)
≥ 1

1 + k
> 0 .

Hence H(z2) 6= H(z1), and therefore H is an injective mapping. Then the
function

(2.10) Ω 3 z 7→ ω(z) :=

{
G(z)−G(z1)
H(z)−H(z1) as z ∈ Ω \ {z1} ,
G′(z1)
H′(z1) as z = z1 ,

is well defined. Since H is an injective mapping, we see that ω is a holo-
morphic function in Ω. By Theorem 2.1,

(2.11) |ω(z)| ≤ S(k) , z ∈ Ω \ {z1} .

Suppose that |ω(z2)| = S(k). Then by the maximum principle for holomor-
phic functions we deduce that ω is a constant function, and so ω(z) = λ
for a certain λ ∈ C satisfying |λ| = S(k). Taking into account (2.10), we
conclude that

G(z)−G(z1)

H(z)−H(z1)
= λ , z ∈ Ω \ {z1} .

Hence F (z) = H(z) +λH(z) +G(z1)− λH(z1) for z ∈ Ω, and consequently

k = ‖µF ‖Ω = |λ| = S(k) .

Combining this with (2.8) we see that k = 0 or k = 1. If k = 1, then for
every z ∈ Ω,

J[F ](z)= |∂F (z)|2−|∂̄F (z)|2 = |H ′(z)|2−|λH ′(z)|2 = (1−|λ|2)|H ′(z)|2 = 0 ,

which is impossible. Therefore k = 0, and then (2.11) yields ω(z) = 0
as z ∈ Ω. Hence G(z) − G(z1) = 0 as z ∈ Ω. This means that G is a
constant function, which contradicts the assumption. Thus |ω(z2)| 6= S(k),
which together with (2.11) leads to |ω(z2)| < S(k). Then (2.9) follows from
(2.10), which completes the proof. �

Remark 2.4. Note that the inequality in (2.9) of Corollary 2.3 reduces
to J. Clunie and T. Sheil-Small’s inequality in (0.6) provided Ω := D and
k := ‖µF ‖D = 1. If k < 1, then the inequality in (2.9) is stronger than the
one in (0.6). Therefore Corollary 2.3 essentially improves Theorem A.

Corollary 2.5. If F (Ω) is a convex domain, then F is a quasiconformal
mapping if and only if there exists a constant L such that 0 ≤ L < 1 and

(2.12) |G(z2)−G(z1)| ≤ L|H(z2)−H(z1)| , z1, z2 ∈ Ω .

Moreover, if the condition (2.12) holds for some L ∈ [0; 1), then F is a
quasiconformal mapping with ‖µF ‖Ω ≤ L.
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Proof. If F is a quasiconformal mapping, then k := ‖µF ‖Ω < 1, and The-
orem 2.1 implies the condition (2.12) with L := S(k) < 1. Conversely, fix
z ∈ Ω. From the condition (2.12) it follows that∣∣∣G(ζ)−G(z)

ζ − z

∣∣∣ ≤ L∣∣∣H(ζ)−H(z)

ζ − z

∣∣∣ , ζ ∈ Ω \ {z} .

A passage to the limit with ζ tending to z implies that |G′(z)| ≤ L|H ′(z)|.
Since z is an arbitrary point in Ω, we see that

|µF (z)| = |G′(z)/H ′(z)| = |G′(z)|/|H ′(z)| ≤ L , z ∈ Ω .

Hence ‖µF ‖Ω ≤ L < 1, and consequently F is a quasiconformal mapping,
which completes the proof. �

3. Examples of applications. In what follows we derive several applica-
tions of the results from the previous sections, dealing with the quasicon-
formality of the function F and Lipschitz type relationships between the
functions F and H.

Theorem 3.1. If F (Ω) is a convex domain, then

(3.1) |F (z2)− F (z1)| ≤ 2|H(z2)−H(z1)| , z1, z2 ∈ Ω .

If additionally k := ‖µF ‖Ω < 1, then

(3.2)
|F (z2)− F (z1)|

1 + k
≤ |H(z2)−H(z1)| ≤ |F (z2)− F (z1)|

1− k
, z1, z2 ∈ Ω .

Proof. Suppose that F (Ω) is a convex domain and fix z1, z2 ∈ Ω. If z1 = z2,
then the inequalities in (3.1) and (3.2) are obvious. Therefore we may
assume that z1 6= z2. As in the proof of Theorem 2.1 we see that the
function γ defined by (1.7) satisfies the equality in (2.3) with the compact
set E := F−1(γ([0; 1])). Moreover, ‖µF ‖E ≤ ‖µF ‖Ω = k. Then from the
first inequality in (1.3) it follows that

1

1 + k
≤ 1

1 + ‖µF ‖E
≤ Re

H(z2)−H(z1)

F (z2)− F (z1)
≤ |H(z2)−H(z1)|
|F (z2)− F (z1)|

.

This yields the inequality in (3.1) for any k ≤ 1 and the first inequality in
(3.2) as k < 1. Assume now that k < 1. Then the inequality (1.6) implies
that

|H(z2)−H(z1)|
|F (z2)− F (z1)|

≤ 1

1− ‖µF ‖E
≤ 1

1− k
,

which yields the second inequality in (3.2). �

Let us recall that for all L1, L2 > 0, a mapping f : Ω→ C is:

(i) L2-Lipschitz if

(3.3) |f(z2)− f(z1)| ≤ L2|z2 − z1| , z1, z2 ∈ Ω ;
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(ii) L1-coLipschitz if

(3.4)
1

L1
|z2 − z1| ≤ |f(z2)− f(z1)| , z1, z2 ∈ Ω ;

(iii) L2, L1-biLipschitz if f is simultaneously a L2-Lipschitz and L1-co-
Lipschitz mapping.

A mapping f : Ω → C is said to be: Lipschitz, coLipschitz and biLipschitz
provided f is respectively: L2-Lipschitz for a certain L2 > 0, L1-coLipschitz
for a certain L1 > 0 and L2, L1-biLipschitz for some L1, L2 > 0.

From Corollary 2.5 we can see that F is a biLipschitz mapping if and
only if H is a biLipschitz mapping provided F is a quasiconformal mapping
and F (Ω) is a convex domain. However, from Theorem 3.1 we can derive
the following more precise result.

Corollary 3.2. Suppose that k := ‖µF ‖Ω < 1 and F (Ω) is a convex domain.
Then for every L > 0:

(i) If F is L-Lipschitz, then H is L/(1− k)-Lipschitz;
(ii) If F is L-coLipschitz, then H is L(1 + k)-coLipschitz;
(iii) If H is L-Lipschitz, then F is L(1 + k)-Lipschitz;
(iv) If H is L-coLipschitz, then F is L/(1− k)-coLipschitz.

In particular, F is a biLipschitz mapping if and only if H is a biLipschitz
mapping.

Proof. The implications (i)–(iv) follow directly from the conditions (3.3),
(3.4) and (3.2). The last statement is a direct conclusion from these impli-
cations. �

Theorem 3.3. Suppose that F (Ω) is a convex domain. Then the following
four conditions are equivalent to each other:

(i) F is a quasiconformal mapping;
(ii) there exists a constant L1 such that 1 ≤ L1 < 2 and

(3.5) |F (z2)− F (z1)| ≤ L1|H(z2)−H(z1)| , z1, z2 ∈ Ω ;

(iii) there exists a constant L2 ≥ 1 such that

(3.6) |H(z2)−H(z1)| ≤ L2|F (z2)− F (z1)| , z1, z2 ∈ Ω ;

(iv) H ◦ F−1 is a biLipschitz mapping;
(v) F ◦H−1 is a biLipschitz mapping.

Moreover, the following implications hold: (3.5) =⇒ ‖µF ‖Ω ≤ L1 − 1 and
(3.6) =⇒ ‖µF ‖Ω ≤ 1− (1/L2).

Proof. Suppose that the condition (i) holds, i.e. k := ‖µF ‖Ω < 1. By The-
orem 3.1 the first inequality in (3.2) holds, and consequently the condition
(3.5) holds with L1 := 1 + k < 2. Applying Theorem 3.1 once more, we see
that the second inequality in (3.2) holds, and consequently the condition



On a result by Clunie and Sheil-Small 91

(3.6) holds with L2 := 1/(1 − k) ≥ 1. Both the inequalities in (3.2) imply
the conditions (iv) and (v).

Conversely, the condition (v) clearly implies the one (iv). Next the condi-
tion (iv) yields the one (iii). It remains to prove the implications (ii) =⇒ (i)
and (iii) =⇒ (i).

Fix z ∈ D, r > 0 and θ ∈ R and set w := z + reiθ. Assume first that the
condition (3.6) holds for a certain L2 ≥ 1. Then

1

L2

∣∣∣H(w)−H(z)

w − z

∣∣∣ ≤ ∣∣∣H(w)−H(z)

w − z
+
w − z
w − z

G(w)−G(z)

w − z

∣∣∣ ,
and letting r tend to 0, we obtain

1

L2
|H ′(z)| ≤ |H ′(z) + e−2iθG′(z)| .

Hence choosing suitably θ, we have
1

L2
|H ′(z)| ≤ |H ′(z)| − |G′(z)| ,

and thus
|G′(z)| ≤

(
1− 1

L2

)
|H ′(z)| .

Combining this with (0.2), we deduce that

(3.7) |µF (z)| = |G′(z)|/|H ′(z)| ≤ 1− 1

L2
< 1 , z ∈ Ω .

Assume now that the condition (3.5) holds for a certain L1 such that 1 ≤
L1 < 2. Then∣∣∣H(w)−H(z)

w − z
+
w − z
w − z

G(w)−G(z)

w − z

∣∣∣ ≤ L1

∣∣∣H(w)−H(z)

w − z

∣∣∣ ,
and letting r tend to 0, we obtain

|H ′(z) + e−2iθG′(z)| ≤ L1|H ′(z)| .
Hence choosing suitably θ, we have

|H ′(z)|+ |G′(z)| ≤ L1|H ′(z)| ,
and so

(3.8) |µF (z)| = |G′(z)|/|H ′(z)| ≤ L1 − 1 < 1 , z ∈ Ω .

Each of the conditions (3.7) and (3.8) means that F is a quasiconformal
mapping. Moreover, the condition (3.7) implies that ‖µF ‖Ω ≤ 1 − (1/L2)
and the one (3.8) yields ‖µF ‖Ω ≤ L1 − 1, which completes the proof. �

Remark 3.4. Note that the proofs of implications (ii) =⇒ (i) and (iii) =⇒
(i) have a local character and do not require the assumption that F (Ω) is a
convex domain. Therefore each of conditions (ii) and (iii) implies that F is
a quasiconformal mapping without the convexity of the image F (Ω).
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