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Inequalities concerning
polar derivative of polynomials

Abstract. In this paper we obtain certain results for the polar derivative of
a polynomial p(z) = cnz

n +
∑n
j=µ cn−jz

n−j , 1 ≤ µ ≤ n, having all its zeros
on |z| = k, k ≤ 1, which generalizes the results due to Dewan and Mir, Dewan
and Hans. We also obtain certain new inequalities concerning the maximum
modulus of a polynomial with restricted zeros.

1. Introduction and statement of results. Let p(z) be a polynomial
of degree n and p′(z) its derivative, then according to Bernstein’s inequality
(for reference see [1]), we have

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|.(1.1)

The result is sharp and equality holds in (1.1) for p(z) = λzn, where |λ| = 1.
For the class of polynomials not vanishing in |z| < k, k ≥ 1, Malik [8]

proved

max
|z|=1

|p′(z)| ≤ n

1 + k
max
|z|=1

|p(z)|.(1.2)

The result is sharp and the extremal polynomial is p(z) = (z + k)n.
While trying to obtain inequality analogous to (1.2) for polynomials not

vanishing in |z| < k, k ≤ 1, Govil [5] proved that if p(z) has all its zeros on
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|z| = k, k ≤ 1, then

max
|z|=1

|p′(z)| ≤ n

kn−1 + kn
max
|z|=1

|p(z)|.(1.3)

While seeking for a better bound in the inequality (1.3), Dewan and Mir
[4] proved the following result.

Theorem A. If p(z) =
∑n

j=0 cjz
j is a polynomial of degree n having all its

zeros on |z| = k, k ≤ 1, then

max
|z|=1

|p′(z)| ≤ n

kn

(
n|cn|k2 + |cn−1|

n|cn|(1 + k2) + 2|cn−1|

)
max
|z|=1

|p(z)|.(1.4)

Dewan and Hans [3] generalized the above result to the class of polyno-
mials of the type p(z) = cnz

n +
∑n

j=µ cn−jz
n−j , 1 ≤ µ ≤ n and proved the

following result.

Theorem B. If p(z) = cnz
n +

∑n
j=µ cn−jz

n−j, 1 ≤ µ < n, is a polynomial
of degree n having all its zeros on |z| = k, k ≤ 1, then

(1.5)

max
|z|=1

|p′(z)|

≤ n

kn−µ+1

(
n|cn|k2µ + µ|cn−µ|kµ−1

µ|cn−µ|(1 + kµ−1) + n|cn|kµ−1(1 + kµ+1)

)
max
|z|=1

|p(z)|.

Let α be a complex number. If p(z) is a polynomial of degree n, then
polar derivative of p(z) with respect to the point α, denoted by Dαp(z), is
defined by

Dαp(z) = np(z) + (α− z)p′(z).(1.6)

Clearly Dαp(z) is a polynomial of degree at most n − 1 and it generalizes
the ordinary derivative in the sense that

lim
α→∞

[
Dαp(z)

α

]
= p′(z) .(1.7)

In this paper, we first prove the following result which extends Theorem A
and Theorem B to the polar derivative of a polynomial having all its zeros
on |z| = k, k ≤ 1.

Theorem 1. If p(z) = cnz
n +

∑n
j=µ cn−jz

n−j, 1 ≤ µ < n, is a polynomial
of degree n having all its zeros on |z| = k, k ≤ 1, then for every real or
complex number α with |α| ≥ k, we have

(1.8)

max
|z|=1

|Dαp(z)|

≤ n(|α|+k
µ)

kn−µ+1

(
n|cn|k2µ+µ|cn−µ|kµ−1

µ|cn−µ|(1 +kµ−1)+n|cn|kµ−1(1 + kµ+1)

)
max
|z|=1

|p(z)|.

Instead of proving Theorem 1 we prove the following theorem which gives
a better bound than the above theorem. Briefly, we prove:
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Theorem 2. If p(z) = cnz
n +

∑n
j=µ cn−jz

n−j, 1 ≤ µ < n, is a polynomial
of degree n having all its zeros on |z| = k, k ≤ 1, then for every real or
complex number α with |α| ≥ k, we have

(1.9)

max
|z|=1

|Dαp(z)|

≤ n(|α|+Sµ)
kn−µ+1

(
n|cn|k2µ+µ|cn−µ|kµ−1

µ|cn−µ|(1 + kµ−1)+n|cn|kµ−1(1+kµ+1)

)
max
|z|=1

|p(z)|,

where

Sµ =
n|cn|k2µ + µ|cn−µ|kµ−1

n|cn|kµ−1 + µ|cn−µ|
.(1.10)

To prove that the bound obtained in the above theorem is better than
the bound obtained in Theorem 1, we show that

Sµ ≤ kµ

or
n|cn|k2µ + µ|cn−µ|kµ−1

µ|cn−µ|+ n|cn|kµ−1
≤ kµ

which is equivalent to

n|cn|k2µ + µ|cn−µ|kµ−1 ≤ µ|cn−µ|kµ + n|cn|k2µ−1,

which implies

n|cn|
(
k2µ − k2µ−1

)
≤ µ|cn−µ|

(
kµ − kµ−1

)
or

n

µ

∣∣∣∣ cncn−µ

∣∣∣∣ ≥ 1

kµ
,

which is always true (see Lemma 6).

Remark 1. Dividing both sides of inequalities (1.8) and (1.9) by |α| and
letting |α| → ∞, we get Theorem B due to Dewan and Hans [3].

If we choose µ = 1 in Theorem 2 , we have the following result.

Corollary 1. If p(z) =
∑n

j=0 cjz
j is a polynomial of degree n having all

its zeros on |z| = k, k ≤ 1, then for every real or complex number α with
|α| ≥ k, we have

(1.11)

max
|z|=1
|Dαp(z)|

≤ n(|α|+ S1)

kn

(
n|cn|k2 + |cn−1|

2|cn−1|+ n|cn|(1 + k2)

)
max
|z|=1

|p(z)|,

where

S1 =

(
n|cn|k2 + |cn−1|
n|cn|+ |cn−1|

)
.(1.12)
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Remark 2. Dividing both sides of (1.11) by |α| and letting |α| → ∞, we
obtain Theorem A due to Dewan and Mir [4].

We next prove the following interesting results for the maximum modulus
of polynomials.

Theorem 3. If p(z) =
∑n

j=0 cjz
j is a polynomial of degree n having all

its zeros on |z| = k, k ≤ 1, then for every real or complex number α with
|α| ≥ k and 0 ≤ r ≤ k ≤ R, we have

(1.13)
max
|z|=R

|Dαp(z)| ≤
nRn−1(|α|+RS′1)

kn

(
n|cn|k2 +R|cn−1|

2R|cn−1|+ n|cn|(R2 + k2)

)
×
(
Rn + kRn−1

rn + krn−1

)
max
|z|=r
|p(z)|,

where

S′1 =
1

R

n|cn|k2 +R|cn−1|
nR|cn|+ |cn−1|

.(1.14)

Dividing both sides of (1.13) by |α| and letting |α| → ∞, we obtain the
following result.

Corollary 2. If p(z) =
∑n

j=0 cjz
j is a polynomial of degree n having all its

zeros on |z| = k, k ≤ 1, then for 0 ≤ r ≤ k ≤ R, we have

(1.15)
max
|z|=R

|p′(z)| ≤ nRn−1

kn

(
n|cn|k2 +R|cn−1|

2R|cn−1|+ n|cn|(R2 + k2)

)
×
(
Rn + kRn−1

rn + krn−1

)
max
|z|=r
|p(z)|.

By involving the coefficients c0 and c1 of p(z) =
∑n

j=0 cjz
j , we prove the

following generalization of Theorem 3.

Theorem 4. If p(z) =
∑n

j=0 cjz
j is a polynomial of degree n having all

its zeros on |z| = k, k ≤ 1, then for every real or complex number α with
|α| ≥ k and 0 ≤ r ≤ k ≤ R, we have

(1.16)
max
|z|=R

|Dαp(z)| ≤
nRn−1(|α|+RS′1)

kn

(
n|cn|k2 +R|cn−1|

2R|cn−1|+ n|cn|(R2 + k2)

)
×
(
2k2Rn|c1|+Rn−1(R2 + k2)n|c0|
2k2rn|c1|+ rn−1(r2 + k2)n|c0|

)
max
|z|=r
|p(z)|,

where S′1 is the same as defined in Theorem 3.

On dividing both sides of (1.16) by |α| and letting |α| → ∞, we get the
following result.
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Corollary 3. If p(z) =
∑n

j=0 cjz
j is a polynomial of degree n having all its

zeros on |z| = k, k ≤ 1, then for 0 ≤ r ≤ k ≤ R, we have

(1.17)
max
|z|=R

|p′(z)| ≤nR
n−1

kn

(
n|cn|k2 +R|cn−1|

2R|cn−1|+ n|cn|(R2 + k2)

)
×
(
2k2Rn|c1|+Rn−1(R2 + k2)n|c0|
2k2rn|c1|+ rn−1(r2 + k2)n|c0|

)
max
|z|=r
|p(z)|.

2. Lemmas. We need the following lemmas for the proof of these theorems.

Lemma 1. If p(z) is a polynomial of degree n, then for |z| = 1

|p′(z)|+ |q′(z)| ≤ nmax
|z|=1

|p(z)|,(2.1)

where here and throughout this paper q(z) = znp
(

1
z̄

)
.

This is a special case of a result due to Govil and Rahman [6].

Lemma 2. Let p(z) = cnz
n +

∑n
ν=µ cn−νz

n−ν , 1 ≤ µ < n, be a polynomial
of degree n having no zero in the disk |z| < k, k ≤ 1. Then for |z| = 1

kn−µ+1 max
|z|=1

|p′(z)| ≤ max
|z|=1

|q′(z)|.(2.2)

The above lemma is due to Dewan and Hans [3].

Lemma 3. Let p(z) = c0 +
∑n

υ=µ cυz
υ, 1 ≤ µ ≤ n, be a polynomial of

degree n having no zero in the disk |z| < k, k ≥ 1. Then for |z| = 1

kµ|p′(z)| ≤ |q′(z)|.(2.3)

The above lemma is due to Chan and Malik [2].

Lemma 4. Let p(z) = cnz
n +

∑n
ν=µ cn−νz

n−ν , 1 ≤ µ ≤ n, be a polynomial
of degree n having all its zeros on |z| = k, k ≤ 1. Then for |z| = 1

kµ|p′(z)| ≥ |q′(z)|.(2.4)

Proof of Lemma 4. If p(z) has all its zeros on |z| = k, k ≤ 1, then q(z)
has all its zeros on |z| = 1

k , 1
k ≥ 1. Now applying Lemma 3 to the polynomial

q(z), the result follows. �

Lemma 5. Let p(z) = c0 +
∑n

υ=µ cυz
υ, 1 ≤ µ ≤ n, be a polynomial of

degree n having no zero in the disk |z| < k, k ≥ 1. Then for |z| = 1,

kµ+1

{
µ|cµ|kµ−1 + n|c0|
µ|cµ|kµ+1 + n|c0|

} ∣∣p′ (z)∣∣ ≤ ∣∣q′ (z)∣∣ ,(2.5)

and
µ

n

∣∣∣∣cµc0

∣∣∣∣ kµ ≤ 1.(2.6)

The above lemma was given by Qazi [10, Remark 1].
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Lemma 6. Let p(z) = cnz
n +

∑n
ν=µ cn−νz

n−ν , 1 ≤ µ ≤ n, be a polynomial
of degree n having all its zeros on |z| = k, k ≤ 1. Then for |z| = 1,

kµ−1

{
µ|cn−µ|+ n|cn|kµ+1

µ|cn−µ|+ n|cn|kµ−1

} ∣∣p′ (z)∣∣ ≥ ∣∣q′ (z)∣∣(2.7)

and
µ

n

∣∣∣∣cn−µcn

∣∣∣∣ ≤ kµ.(2.8)

Proof of Lemma 6. Since p(z) has all its zeros on |z| = k, k ≤ 1, then
q(z) has all its zeros on |z| = 1

k , 1
k ≥ 1. Now applying Lemma 5 to the

polynomial q(z), Lemma 6 follows. �

Lemma 7. If p(z) =
∑n

υ=0 cυz
υ be a polynomial of degree n, having all its

zeros in the disk |z| ≥ k, k > 0, then for r ≤ k and R ≥ k
M(p, r)

rn + krn−1
≥ M(p,R)

Rn + kRn−1
.(2.9)

The above lemma is due to Jain [7].

Lemma 8. If p(z) =
∑n

υ=0 cυz
υ be a polynomial of degree n, having all its

zeros in the disk |z| ≥ k, k > 0, then for r ≤ k and R ≥ k

(2.10)
M(p, r)

2k2rn|c1|+rn−1(r2+k2)n|c0|
≥ M(p,R)

2k2Rn|c1|+Rn−1(R2+k2)n|c0|
.

The above lemma is due to Mir [9].

3. Proofs of the theorems.

Proof of Theorem 1. The proof of this theorem follows on the same lines
as that of Theorem 2, but instead of using Lemma 6, we use Lemma 4. We
omit the details. �

Proof of Theorem 2. Since q(z) = znp
(

1
z̄

)
, then it can be easily verified

that

|q′(z)| = |np(z)− zp′(z)| for |z| = 1 .

Now for every real or complex number α, we have

Dαp(z) = np(z) + (α− z)p′(z).

This implies with the help of Lemma 6 that

(3.1)

|Dαp(z)| ≤ |αp′(z)|+ |np(z)− zp′(z)|
= |α||p′(z)|+ |q′(z)|
≤ (|α|+ Sµ)|p′(z)|.
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Let z0 be a point on |z| = 1, such that |q′(z0)| = max|z|=1 |q′(z)|, then by
Lemma 1, we get

|p′(z0)|+max
|z|=1

|q′(z)| ≤ nmax
|z|=1

|p(z)|,(3.2)

which on using Lemma 6, gives

1

kµ−1

(
µ|cn−µ|+ n|cn|kµ−1

n|cn|kµ+1 + µ|cn−µ|

)
|q′(z0)|+max

|z|=1
|q′(z)| ≤ nmax

|z|=1
|p(z)|

or(
µ|cn−µ|(1 + kµ−1) + n|cn|kµ−1(1 + kµ+1)

n|cn|k2µ + µ|cn−µ|kµ−1

)
max
|z|=1

|q′(z)| ≤ nmax
|z|=1

|p(z)|.

The above inequality when combined with Lemma 2, gives

(3.3)
kn−µ+1

(
µ|cn−µ|(1 + kµ−1) + n|cn|kµ−1(1 + kµ+1)

n|cn|k2µ + µ|cn−µ|kµ−1

)
max
|z|=1

|p′(z)|

≤ nmax
|z|=1

|p(z)|.

On combining the inequalities (3.1) and (3.3), we get the desired result. �

Proof of Theorem 3. Let 0 ≤ r ≤ k ≤ R. Since p(z) has all its zero on
|z| = k, k ≤ 1, then the polynomial p(Rz) has all its zeros on |z| = k

R ,
k
R ≤ 1,

therefore, applying Corollary 1 to the polynomial p(Rz) with |α| ≥ k, we
get

max
|z|=1
|D α

R
p(Rz)|

≤
n
(
|α|
R + S′1

)
kn

Rn

 nRn|cn| k
2

R2 +Rn−1|cn−1|

2Rn−1|cn−1|+ nRn|cn|
(
1 + k2

R2

)
max
|z|=1

|p(Rz)|

or

max
|z|=1

∣∣∣np(Rz) + (α
R
− z
)
Rp′(Rz)

∣∣∣
≤
n
(
|α|
R + S′1

)
kn

Rn

 nRn|cn| k
2

R2 +Rn−1|cn−1|

2Rn−1|cn−1|+ nRn|cn|
(
1 + k2

R2

)
max
|z|=R

|p(z)|

which is equivalent to

max
|z|=R

|Dαp(z)|

≤ nRn−1(|α|+RS′1)

kn

(
nRn−2|cn|k2 +Rn−1|cn−1|

2Rn−1|cn−1|+ nRn−2|cn|(R2 + k2)

)
max
|z|=R

|p(z)|.
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For 0 ≤ r ≤ k ≤ R, the above inequality in conjunction with Lemma 7,
yields

max
|z|=R

|Dαp(z)|

≤ nRn−1(|α|+RS′1)

kn

(
n|cn|k2 +R|cn−1|

2R|cn−1|+ n|cn|(R2 + k2)

)
×
(
2Rn + kRn−1

rn + krn−1

)
max
|z|=r
|p(z)|,

which completes the proof of Theorem 3. �

Proof of Theorem 4. The proof follows on the same lines as that of The-
orem 3, but instead of using Lemma 7 we use Lemma 8. �

Remark 3. For µ = n, Theorems 1 and 2 hold if the polynomial satisfies
the condition |c0| ≤ k|cn|.
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