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Inequalities concerning
polar derivative of polynomials

ABSTRACT. In this paper we obtain certain results for the polar derivative of
a polynomial p(z) = cn2™ + 377, Cn—j2"77, 1 < p < n, having all its zeros
on |z| = k, k < 1, which generalizes the results due to Dewan and Mir, Dewan
and Hans. We also obtain certain new inequalities concerning the maximum
modulus of a polynomial with restricted zeros.

1. Introduction and statement of results. Let p(z) be a polynomial
of degree n and p/(2) its derivative, then according to Bernstein’s inequality
(for reference see [1]), we have

(1.1) max |p/(2)] < nmax [p(2)].

|2|=1 |2|=1
The result is sharp and equality holds in (1.1) for p(z) = A\z", where || = 1.
For the class of polynomials not vanishing in |z| < k, k > 1, Malik [8]
proved
n

1.2 max |p'(z)] € —— ma z)|.
(1.2) max [p(2)] < 37 maxlp(2)]
The result is sharp and the extremal polynomial is p(z) = (z + k)™

While trying to obtain inequality analogous to (1.2) for polynomials not
vanishing in |z| < k, k < 1, Govil [5] proved that if p(z) has all its zeros on
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|z| = k, k <1, then

, n
(1.3) max p'(2)] < T R Ip(2)]-

While seeking for a better bound in the inequality (1.3), Dewan and Mir
[4] proved the following result.
Theorem A. Ifp(z) = Z?:o cjz) is a polynomial of degree n having all its
zeros on |z| =k, k <1, then

(L) maxly() < 1
|

nlen|k? + |en_1| )
Alea](1+ K2) + 2len1]

Dewan and Hans [3] generalized the above result to the class of polyno-
mials of the type p(z) = ¢,2" + Z;'l:u en—;2"7,1 < p < n and proved the
following result.

max [p(z).
|z|=1

Theorem B. If p(z) = ¢,2" + Z?:” en—j2" 7, 1 < p <n, is a polynomial
of degree n having all its zeros on |z| =k, k < 1, then
max [p'(2))|
|z]=1
(1.5)

max |p(2)].

n nlen |k + pcp— kPt
|z|=1

<
— knoatl (u\cn_ﬂyu + EH=L) + njeg |k (1 + kRFL)
Let a be a complex number. If p(z) is a polynomial of degree n, then

polar derivative of p(z) with respect to the point «, denoted by D,p(z), is
defined by

(1.6) Dap(z) = np(2) + (o = 2)p'(2).

Clearly D,p(z) is a polynomial of degree at most n — 1 and it generalizes
the ordinary derivative in the sense that

(1.7) lim [Dap(z)} =/(2).

a—00 «

In this paper, we first prove the following result which extends Theorem A
and Theorem B to the polar derivative of a polynomial having all its zeros
on |z| =k, k<1
Theorem 1. If p(z) = ¢, 2" + Z?:u en—j2" 7, 1 < pu < n, is a polynomial
of degree n having all its zeros on |z| = k, k < 1, then for every real or
complex number o with |a| > k, we have

max | Dop(2)]
|z|=1

(18)  n(jaf+km) [Ny P
<—— — — max [p(z)].
kT \ rlen (kA1) Fnfe ki1 (1 + keeT) ) 220

Instead of proving Theorem 1 we prove the following theorem which gives
a better bound than the above theorem. Briefly, we prove:
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Theorem 2. If p(z) = ¢, 2" + Z?:M en—j2" 7, 1 < p < n, is a polynomial
of degree n having all its zeros on |z| = k, k < 1, then for every real or
complex number o with |a| > k, we have

max |Dap(2)]

(19) 21 pn—1
< n(\o{—i—SH) n\cn|kz_ +,u]cn_u|k_ max [p(2)].
kn=rtl o\ plen—p|(1 4+ E#=1) +n|ep |1 (1+EFHL) ) 21=1

where
nen k2 + pl ey |k*

1.10 S, =
(1.10) S P

To prove that the bound obtained in the above theorem is better than
the bound obtained in Theorem 1, we show that
S, <k
or
n|cn k2 4 pilcp— kP!

< kM
plen—p| 4+ nlep[kr—1

which is equivalent to
nen [k + N‘Cnfum“_l < plen—ulk" + nen [k,
which implies
nlen| (K — K71 < plea—p| (K" — k#71)

or
1

_Wv

n

o
which is always true (see Lemma 6).

Remark 1. Dividing both sides of inequalities (1.8) and (1.9) by |a| and
letting || — oo, we get Theorem B due to Dewan and Hans [3].

Cn

Cn—p

If we choose 4 =1 in Theorem 2 , we have the following result.

Corollary 1. If p(z) = Z;L:o cjz is a polynomial of degree n having all
its zeros on |z| = k, k < 1, then for every real or complex number o with
|a| > k, we have

ﬁa)lc\Dap(Z)!

(1.11) _ nllal +51) < nlen|k? + |en1] )
- kn 2|cn—1| + nlen| (1 + £2)

max [p(z)],
|z|=1

where

2

nlen| + [en—1]




4 A. Ahuja, K. K. Dewan and S. Hans

Remark 2. Dividing both sides of (1.11) by |a| and letting |a| — oo, we
obtain Theorem A due to Dewan and Mir [4].

We next prove the following interesting results for the maximum modulus
of polynomials.

Theorem 3. If p(z) = >0, cjz) is a polynomial of degree n having all
its zeros on |z| = k, k < 1, then for every real or complex number o with
la] >k and 0 <r <k < R, we have

nR"(|a] + RSY) nlen|k? + Rlcp_1]
Dop(2)] <
w13 max [Dap(z)] < o OR|cn_1| + nlcn] (RZ + k2)
' o (B KRR max |p(2)|
4 krn—l |z|=r b ’
where
1 nlep|k? -
(1.14) g = Lnlealh” + Rlep |

" R nRley| + |ens1]

Dividing both sides of (1.13) by |«| and letting || — oo, we obtain the
following result.
Corollary 2. Ifp(z) = Z?:o cjz) is a polynomial of degree n having all its
zeros on |z| =k, k <1, then for 0 <r <k < R, we have
nR"1 nlen|k? + Rlen_1|

2R|cp—1| + nlen|(R? + k?)
R" + kR !

X | ——————— | max |p(2)].

r 4+ krn—1 |z|=r

/
<
max [p'(2)] < =3
(1.15)

By involving the coefficients ¢y and ¢; of p(z) = Z?:o cjz}, we prove the
following generalization of Theorem 3.

Theorem 4. If p(z) = Z?:o cjz) is a polynomial of degree n having all
its zeros on |z| = k, k < 1, then for every real or complex number o with
o > k and 0 < r < k < R, we have

nR"Y(la| + RSY) nlen|k? + Rlcp_1]
Dap(z)| <
g PR TET Sl + nlenl (12 + 1)
' 2k2R"|c1| + R"Y(R? + k?)n|co| max [p(2)|
262 1| + L (12 + K2)lco| ) Jeler T

where S} is the same as defined in Theorem 3.

On dividing both sides of (1.16) by |a| and letting |a| — oo, we get the
following result.
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Corollary 3. Ifp(z) = Z?:o cjz) is a polynomial of degree n having all its
zeros on |z| =k, k <1, then for 0 <r <k < R, we have

mas /()] <" ( nlenlk* + Rlen| )
(1.17) 2|=R - kn 2R|cp—1| + n|cn|(R? + Ek2)
2k2R"|c1| + R H(R? + k?)n|co|
< 2k2r7| ey | + r1(r2 + k2)n|co ) |z\i}: Ip(=)

2. Lemmas. We need the following lemmas for the proof of these theorems.
Lemma 1. If p(z) is a polynomial of degree n, then for |z| =1
(2.1) P'(2) +1d'(2)| < nmax Ip(2)];

where here and throughout this paper q(z) = z"p (%)

This is a special case of a result due to Govil and Rahman [6].
Lemma 2. Let p(z) = ¢, 2" + Z::# Cn—p2" 7Y, 1 < p < n, be a polynomial
of degree n having no zero in the disk |z| < k, k < 1. Then for |z| =1

(2.2) E" P max |p/(2)| < max|¢/(2)].
|z|=1 |z]=1

The above lemma is due to Dewan and Hans [3].
Lemma 3. Let p(z) = co + > ;_,cwz”, 1 < p < n, be a polynomial of
degree n having no zero in the disk |z| < k, k > 1. Then for |z| =1
(2.3) K (2)] < 1d'(2)].

The above lemma is due to Chan and Malik [2].
Lemma 4. Let p(z) = ¢,2" + ZZ:M Cn—p2™ Y, 1 < <n, be a polynomial
of degree n having all its zeros on |z| =k, k < 1. Then for |z| =1
(2.4) kP (2)] = 1q'(2)].

Proof of Lemma 4. If p(z) has all its zeros on |z| = k, k < 1, then ¢(z)
has all its zeros on |z| = %, % > 1. Now applying Lemma 3 to the polynomial

q(2), the result follows. O

Lemma 5. Let p(z) = co + 3 ;_,cwz”, 1 < pu < n, be a polynomial of
degree n having no zero in the disk |z| < k, k > 1. Then for |z| =1,

i1 [ 1leul K+ nlel
5w {EEE RO o) < ()]

and

wle

el
n | co

E* < 1.

(2.6)

The above lemma was given by Qazi [10, Remark 1].
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Lemma 6. Let p(z) = ¢, 2" + ZZ:M Cn—pvz2" 7Y, 1 < u<n, be a polynomial
of degree n having all its zeros on |z| = k, k < 1. Then for |z| =1,

1 [ plen—p] + nlen kP
en e {Eemetret b ) 2 1o o)

and
(2.8) Hin—p < kM.

n| cn
Proof of Lemma 6. Since p(z) has all its zeros on |z| = k, k < 1, then
q(z) has all its zeros on |z| = 1, + > 1. Now applying Lemma 5 to the
polynomial ¢(z), Lemma 6 follows. O

Lemma 7. If p(z) = Y1 c,2¥ be a polynomial of degree n, having all its
zeros in the disk |z| > k, k > 0, then forr <k and R > k

Mp,r) M, R)
rn 4+ krn=1 = Rn 4 pRn—1"

The above lemma is due to Jain [7].

(2.9)

Lemma 8. If p(z) =Y _1'_ c,2" be a polynomial of degree n, having all its
zeros in the disk |z| > k, k > 0, then forr <k and R > k

M(p,r) < M(p, R)
2k2rm|cq|+r =Y (r2+-k2)n|co| T 2k2R"|cq |+ R (R2+k2)n|co|

(2.10)

The above lemma is due to Mir [9].

3. Proofs of the theorems.

Proof of Theorem 1. The proof of this theorem follows on the same lines
as that of Theorem 2, but instead of using Lemma 6, we use Lemma 4. We
omit the details. O

Proof of Theorem 2. Since ¢(z) = 2"p (1

that

), then it can be easily verified

|d'(2)] = Inp(2) — 2p/(2)| for |2 =1.
Now for every real or complex number «, we have
Dap(z) = np(z) + (a — 2)p'(2).
This implies with the help of Lemma 6 that
|Dap(2)| < |ap(2)] + [np(2) — 2p/(2))
(3.1) = la||p'(2)] + |d'(2)]
< (la] + S)[p'()]-
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Let zo be a point on |z| = 1, such that |¢'(20)| = max,j=; |¢/(2)|, then by
Lemma 1, we get

(3:2) P (0)] + max lq'(2)| < n max Ip(2)],

which on using Lemma 6, gives

1 pen_ul + nleal
kr=1 \ n|cp |kt + plen—u

) ¢ (20)] + max|¢'(2)] < nmax |p(2)|
|2]=1 |2]=1

or

(u\cn—#l(l + kY 4 nfea kAT + k*‘“))

a5 max[¢/(2)| < nmax[p(2).
n n—[L

|z]=1 |z]=1

The above inequality when combined with Lemma 2, gives

prlen—pl (1 + K#) + njea kP (1 + Wl))

kn—u+1 ,
(3.3) ( nlen k20 + plen_ ki1 max [p'(z)]

|z|=1

< nmax |p(z)].
|z|=1

On combining the inequalities (3.1) and (3.3), we get the desired result. O

Proof of Theorem 3. Let 0 < r < k < R. Since p(z) has all its zero on
|z| = k, k < 1, then the polynomial p(Rz) has all its zeros on |z| = %, % <1,
therefore, applying Corollary 1 to the polynomial p(Rz) with |a| > k, we

get
max|Da p(Rz)|

|z|=1
n(%—i—Si) nR"|cn|%+R”_1|Cn,1|
< = e max |p(Rz)|
o 2R ey | +nRren| (144 ) 1F=1
or
max )np(Rz) + (g - z) Rp'(Rz)
|z|=1 R
n (5 +s1) nR|cp| 55 + R |1
< - = max |p(z)]
R 2R Yep_1| + nR™ ey <1 + ﬁ> l21=R

which is equivalent to

ax |D
max [Dap()|

- nR"(|al + RSY) nR"2|c,|k? + R" e, | max [p(2)|
= ki 2R |cp_1| + nR"2|co|(R2 + k2) ) folor TVT
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For 0 < r < k < R, the above inequality in conjunction with Lemma 7,

yields
D
max [Dap()]
< nR"(|al + RSY) nlen| k% + Rlep_1|
- kn 2R|cp—1| + nlen|(R? + k2)
2R" + kR ! p(2)]
————————— | max |p(z
rm 4 k-l |z|=r b ’
which completes the proof of Theorem 3. ]

Proof of Theorem 4. The proof follows on the same lines as that of The-
orem 3, but instead of using Lemma 7 we use Lemma 8. ([l

Remark 3. For u = n, Theorems 1 and 2 hold if the polynomial satisfies
the condition |co| < k|ep|.
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