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On the central limit theorem
for some birth and death processes

Abstract. Suppose that {Xn, n ≥ 0} is a stationary Markov chain and V
is a certain function on a phase space of the chain, called an observable. We
say that the observable satisfies the central limit theorem (CLT) if Yn :=

N−1/2 ∑N
n=0 V (Xn) converge in law to a normal random variable, as N →

+∞. For a stationary Markov chain with the L2 spectral gap the theorem
holds for all V such that V (X0) is centered and square integrable, see Gordin
[7]. The purpose of this article is to characterize a family of observables V for
which the CLT holds for a class of birth and death chains whose dynamics has
no spectral gap, so that Gordin’s result cannot be used and the result follows
from an application of Kipnis–Varadhan theory.

1. Introduction. Suppose that {Xn, n ≥ 0} is a stationary Markov chain
defined over a probability space (Ω,F ,P) and V is a certain function, called
an observable, given over the phase of the chain such that EV (X0) = 0 and
EV 2(X0) < +∞. Here E is the mathematical expectation corresponding to
P. We say that the chain satisfies the central limit theorem (CLT) if the
random variables

(1) Yn := N−1/2
N∑
n=0

V (Xn)
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converge in law to a normal random variable, as N → +∞. Character-
ization of Markov chains and the class of observables for which the CLT
holds, is one of the fundamental problems in probability theory. One of the
first results of this type has been the CLT proved by Doeblin [4] for chains
whose transition probabilities satisfy what is now called Doeblin condition.
For stationary Markov chains with the L2 spectral gap the theorem has
been proved by Gordin [7]. A remarkable result giving a complete charac-
terization of reversible Markov chains, i.e. such that for any N ≥ 0 the laws
of (X0, X1 . . . , XN ) and of (XN , XN−1, . . . , X0) are identical, satisfying the
CLT has been proved by Kipnis and Varadhan in their seminal article [8],
see also De Masi et al. [3]. It has been shown in [8] that the CLT holds for
such chains if V satisfies

(2) D2(V ) := lim
N→+∞

1

N
E

[
N∑
n=0

V (Xn)

]2
< +∞.

One can also prove, see [8], that the limit appearing in (2) always exists,
being finite or infinite for any reversible chain. Sometimes, however, it is
not easy to verify the condition directly.

It can be shown that any ergodic and Markov chain with a finite phase
space has a spectral gap, so the CLT is valid by an application of the
Gordin’s result. According to our knowledge, the examples of chains not
having the spectral gap property, yet satisfying the theorem, concern the
situation when the phase space is uncountable, e.g. tagged particle in a sim-
ple exclusion process, random walks in random environments, diffusions in
random media etc., see for instance [3, 9]. One of the latest review articles
about CLT for tagged particles and diffusion in random environment is [11].
The objective of this paper is to show an application of the Kipnis–Varadhan
theory in the perhaps simplest possible case (outside finite chains), namely
to a reversible chain with a countable phase space but with no spectral gap
(the Gordin’s result cannot be used then). An example like this is furnished
by a birth and death chain from Lamperti’s problem (see the definition in
Section 2), whose phase space is the set of non-negative integers. In the
situation considered in the present article we also give a necessary and suffi-
cient explicit condition for an observable V so that (2) holds. The problem
of CLT for the trajectory of the chain has been solved in Menshikov and
Wade article [10].

As far as the structure of our paper is concerned, in the next section we
will introduce some basic terms and present three theorems which are our
main results. The remaining three sections deal with the proofs of these
theorems.
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2. Preliminaries and statements of the main results.

2.1. Generalities. Assume that {Xn, n ≥ 0} is a Markov chain whose
state space is Z+ = {0, 1, 2, . . .}. It means that there exists a function
p : Z+ × Z+ → [0, 1] such that

∫
Z+
p(x, y)dy = 1 for all x ∈ Z+ and

P
[
Xn+1 = xn+1|X0 = x0, . . . , Xn = xn

]
= p(xn, xn+1).

Here
∫
Z+
f(x)a(dx) :=

∑+∞
0 f(x)a(x) for an arbitrary f : Z+ → R and

a : Z+ → [0,+∞). We will write
∫
Z+
f(x)dx when a(x) ≡ x. Then

Pf(x) =

∫
Z+

p(x, y)f(y)dy, ∀ f ∈ Bb(Z+)

is called a transition operator. Here Bb(Z+) denotes the space of all bounded
functions on Z+. Suppose that π : Z+ → (0, 1] is a strictly positive prob-
ability measure, i.e.

∫
Z+
π(x)dx = 1. It is assumed to be reversible and

ergodic with respect to the chain. Ergodicity means that for any bounded
f equality Pf = f implies that f is constant π a.s. We say that the chain
is irreducible if for any x, y ∈ Z+ exists n ≥ 1 such that pn(x, y) > 0, where
pn(x, y) denotes the probability of going from x to y in n steps.

Remark 2.1. It is well known ([5], p. 338) that a stationary, irreducible
Markov chain with a countable state space is ergodic.

Reversibility, on the other hand, means that the detailed balance condi-
tion holds, i.e.:

(3) p(x, y)π(x) = p(y, x)π(y), ∀x, y ∈ Z+.

This condition is equivalent to the fact that P can be extended to a bounded
and symmetric contraction on L2(π) – the space of all f such that ||f ||2π =∫
Z+
f2(x)π(dx) < +∞. In consequence, the spectrum of P lies in [−1, 1].

Note that λ0 = 1 is the largest eigenvalue of P corresponding to an eigen-
fuction f0(x) ≡ 1. Let

(4) λ1 := sup

[
〈Pf, f〉π;

∫
Z+

f(x)π(dx) = 0, ||f ||π = 1

]
.

We say that the chain has the spectral gap property, when λ1 < 1. Here
〈·, ·〉π is the scalar product corresponding to ‖ · ‖π.

Now we will formulate our first main result. It is a simple criterion for
continuity of the spectrum at 1. For any x ∈ Z+ let us define λ̂(x)0 by

(5) λ̂
(x)
0 = sup[〈Pf, f〉π; f(x) = 0, ||f ||π = 1].

We note that λ̂(x)0 is the largest eigenvalue for the “reduced” operator P̂ =

ΠxPΠx, where Πx is the orthogonal projection onto the subspace H(π)
x :=

[f ∈ L2(π) : f(x) = 0].
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Theorem 2.2 (A criterion for continuity of the spectrum at 1). Suppose
that the chain {Xn, n ≥ 0} is reversible, irreducible and there exists x ∈ Z+

for which λ̂
(x)
0 = 1. Then 1 is not an isolated point of the spectrum of the

transition operator P .

The proof of this theorem is presented in Section 3.

2.2. Birth and death processes. We recall the definition of a birth and
death process (see [5], p. 295, Example 3.4). In our setting it is a Markov
chain on countable state space Z+ := {0, 1, 2, . . . , } with the transition prob-
abilities satisfying that p(x, y) = 0 if and only if |x−y| 6= 1. We also require
that p0 := p(0, 1) = 1 and

p(x, x+ 1) = px, p(x, x− 1) = qx, x ≥ 1,

are all strictly positive. Of course we have px + qx = 1 for all x ≥ 1. In
this case there is the measure π̃(x) =

∏x
k=1(pk−1/qk) which is reversible

and unique up to a multiplicative constant ([5], p. 301, Example 4.4). This
measure is not necessarily finite. In fact [5], p. 306, Theorem 4.5, it is
infinite if and only if the chain is recurrent but not positive recurrent. In
case it is positive recurrent we have Z :=

∫
Z+
π̃(x)dx < +∞ ([5], p. 307,

Theorem 4.7) and then π(x) := Z−1π̃(x) is a unique invariant law of the
chain. A reader can find more information about this class and more details
about this chain in volume I of Feller’s monography [6].

Our second goal is to find the relation between transition probabilities
and spectral gap property in the birth and death process.

Theorem 2.3. Let {Xn , n ≥ 0} be a birth and death process with transition
probabilities as above. We have three possible situations then:
(i) if limx→+∞ px = p, limx→+∞ qx = q and p < q, then the chain is positive
recurrent and has the spectral gap property,
(ii) if px = 1/2− cx and qx = 1/2 + cx, where

(6) 0 < c∗ = lim inf
x→∞

cxx
α ≤ lim sup

x→∞
cxx

α = c∗ < +∞,

and α ∈ (0, 1), then we have the positive recurrence but we do not have the
spectral gap property,
(iii) if (6) holds but for α > 1, then the chain is recurrent, but not positive
recurrent.

The proof of this result is presented in Section 4.

Remark 2.4. From Section I.12, p. 71–76 of [2] we know that, when α = 1,
then both positive recurrence and null recurrence may occur. It depends on
the constants c∗, c∗.

Remark 2.5. Theorem 2.3 can be interpreted as follows. If we have a strong
drift to the left, i.e. the local drift Dx := px−qx satisfies lim supx→∞Dx < 0,
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then the chain is positive recurrent and has the spectral gap property. When
we have a weaker drift to the left but Dx ∼ −c/xα, for some c > 0 and
α ∈ (0, 1), then the chain is positive recurrent but does not have the spectral
gap. Finally, when we further increase the probability of going to the right
so that Dx ∼ −c/xα, for α > 1 and some c > 0, then the chain loses the
property of the positive recurrence.

The most interesting case of the previous theorem is part (ii). In this
situation we wish to characterize the class of observables for which the
random variables (1) satisfy the CLT. The necessary and sufficient condition
for this can be stated as follows.

Theorem 2.6. Let V : Z+ → R be a zero-mean function in L2(π) and
{Xn, n ≥ 0} is the chain from Theorem 2.3 (ii). Then, Yn given by (1)
satisfies (2) if and only if∫

Z+

dx

π(x)

[ ∫
0≤y≤x

V (y)π(dy)

]2
<∞.

3. Proof of Theorem 2.2. In order to make our calculations easier, we
change our space L2(π) into space `2 corresponding to the counting measure
on Z+, while 〈·, ·〉, ||·|| denote the respective scalar product and the `2 norm.

We will introduce some terms which are useful throughout the proof. Let
us denote by A = [a(x, y)]x,y∈Z+ a matrix with

a(x, y) := π1/2(x)p(x, y)π(y)−1/2.

Note that the definition means that A = DPD−1, where

D = diag[π1/2(0), π1/2(1), . . .],

i.e. the operators are unitary equivalent. In particular the above means that

(7) λ1 = sup[〈Af, f〉; ‖f‖ = 1, f ∈ `20].
Observe that A is a symmetric matrix. Moreover, for any f with ||f || ≤ 1
we have

|〈Af, f〉| :=
∣∣∣∣∫

Z+

∫
Z+

a(x, y)f(x)f(y)dxdy

∣∣∣∣
=

∣∣∣∣∫
Z+

∫
Z+

π1/2(x)p(x, y)π(y)−1/2f(x)f(y)dxdy

∣∣∣∣
≤
{∫

Z+

∫
Z+

π(x)p(x, y)π−1(y)f(y)2dxdy

}1/2{∫
Z+

∫
Z+

p(x, y)f(x)2dxdy

}1/2

≤ ||f ||2 ≤ 1.

The spectrum of A is also contained in [−1, 1], in fact because of the uni-
tary equivalence, it coincides with the spectrum of P . Note that f∗ :=
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(π1/2(0), π1/2(1), . . .) is an eigenvector that corresponds to an eigenvalue
λ0 = 1. Denote by `20 the space consisting of f ∈ `2 such that 〈f, f∗〉 = 0.

Denote by A′ matrix A′ = ΠxAΠx. We can easily check that

(8) λ̂
(x)
0 = sup[〈Af, f〉; ‖f‖ = 1, f ∈ Hx],

where Hx := [f ∈ `2 : f(x) = 0] and λ̂
(x)
0 in (8) is defined in (5).

If the supremum is attained at certain f (0), such that ‖f (0)‖ = 1, f (0) ∈
Hx, then we would have to have Af (0) = f (0) and that would mean Pg(0) =
g(0), where g(0) = D−1f (0). This, however, would imply g(0) = c1 for some
constant c, or equivalently f (0) = c[π1/2(0), π1/2(1), . . .]. Since f (0)(x) = 0
we would have c = 0, which leads to a contradiction. The above means that
1 is not in the point spectrum of A′ and since it does belong to the spectrum
it must be in its continuous part. We show that the above implies that

(9) λ1 = 1.

Suppose otherwise, i.e. λ1 < 1. Indeed, suppose that f (n) ∈ Hx are such
that ‖f (n)‖ = 1 and

〈Af (n), f (n)〉 → 1.

Denote by Q the orthogonal projection onto `20. We have

f (n) = αnf∗ +Qf (n)

and ‖Qf (n)‖2 = 1− α2
n. Since 〈Af∗, Qf (n)〉 = 0 we have from (9)

1← 〈Af (n), f (n)〉 ≤ α2
n + λ1(1− α2

n)→ 1.

This implies α2
n → 1 and in consequence ‖Qf (n)‖ → 0. Suppose that

αn → 1. This yields

π1/2(x) ≤ ‖f (n) − f∗‖ → 0,

which is impossible. On the other hand, if αn → −1 we have

π1/2(x) ≤ ‖f (n) + f∗‖ → 0,

which is again impossible. Hence the conclusion of the theorem follows.

4. Proof of Theorem 2.3. We split our proof into two parts. The first
one, called “strong drift to the left”, considers the case (i) from Theorem 2.3,
the second, “weaker drift to the left”, deals with the cases (ii) and (iii) from
the theorem. The main point is that in case (i), when the drift to the left
is sufficiently strong, the chain has a spectral gap.
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4.1. Strong drift to the left. In this case we have limx→+∞ px = p,
limx→+∞ qx = q and p < q. First, we check whether the chain is positive
recurrent, i.e. we verify that

Z :=

∫
Z+

π̃(x)dx <∞,

where

π̃(x) =
x∏
k=1

pk−1
qk

,

see Example 4.4, p. 301 of [5]. From assumption (i) we know that for all
ε > 0, there exists i0 > 0, such that for all k ≥ k0 we have

|pk − p| < ε ∧ |qk − q| < ε.

Now we can see that∫
Z+

π̃(x)dx =

∫
0≤x≤k0

π̃(x)dx+ π̃(k0)
∞∑

k=k0+1

k∏
j=k0+1

pj−1
qj

≤ c
∞∑

k=k0+1

(
p+ ε

q − ε

)k−k0
<∞

for some c > 0, provided that p + ε < q − ε. Hence in this case we know
from [5], p. 307, Theorem 4.7 that we have a positive recurrence.

Now we show the spectral gap property. From [1], see Theorem 1.5, p. 10,
case 3, we have that λ1 < 1 if and only if δ <∞, where

δ := sup
x≥1

∫
0≤y≤x−1

dy

{
[π̃(y)py]

−1
∫
x≤y

π̃(y)dy

}
.

Observe that∫
x≤y

π̃(y)dy = π̃(x)

∫
x+1≤k

dk

k∏
l=x+1

pl−1
ql

≤ π̃(x)

∫
x+1≤k

(
p+ ε

q − ε

)k−k0
dk ≤ Cπ̃(x)

for some constant C > 0, provided that p+ ε < q − ε. We can write then

δ ≤ C

p− ε
sup
x≥1

∫
0≤y≤x−1

π̃(x)dy

π̃(y)
=

C

p− ε
sup
x≥1

∫
0≤y≤x−1

dy

x∏
k=y+1

pk−1
qk

≤ C

p− ε
× (p+ ε)(q − ε)−1

1− (p+ ε)(q − ε)−1
< +∞.
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4.2. Weaker drift to the left. Now we will be interested in the case
when px = 1/2− cx, qx = 1/2 + cx, where

lim inf
x→∞

cxx
α = c∗ > 0,

lim sup
x→∞

cxx
α = c∗ <∞,

so we can find positive constants K,D1, D2, such that for all x ≥ K we have

D1

xα
≥ cx ≥

D1

xα
.

We show that when α ∈ (0, 1), then we do not have the spectral gap property
but we have the positive recurrence. Also we show that when α > 1, we do
not have the positive recurrence. Thus, α = 1 is a critical exponent, where
the chain loses the positive recurrence.

It is easy to see that we can find some positive constant c, for which
pk−1/qk < 1− c/kα for k > K. And for such c we have

− log
pk−1
qk

> − log
(

1− c

kα

)
>

c

kα
, k > K.

Hence, using the integral test for convergence we have

π̃(x) < exp

{
−c

x∑
k=1

1

kα

}
< c̃ exp

(
−cx1−α

)
, x > K,

where c̃ denotes a positive constant. From the comparison test we see that∫
Z+
π̃(x)dx < +∞ when α < 1 and the positive recurrence follows.

On the other hand, we also have some positive constant c′, for which
pk−1/qk > 1− c′/kα for k > K. But when α > 1, we can easily check, using
again the integral test for convergence, that

π̃(x) > ĉ exp
(
−c′′x1−α

)
, x > K,

where ĉ, c′′ are other positive constants. Then π̃(x) fails the necessary
condition for convergence of the respective series.

Now we will show that we do not have the spectral gap property when
α < 1. To do so, we use Theorem 2.2 and show that 1 cannot be an
isolated point of the spectrum. We choose x = 0 in condition (5). De-
note by A′ a symmetric matrix obtained from A by crossing out the 0th
column and 0th row. We prove that sup||f ||=1〈A′f, f〉 = 1. Let fn have
n−1/2 on the first n coordinates and the rest of them vanishes, i.e. fn :=
[n−1/2, n−1/2, . . . , n−1/2, 0 . . .]. A simple computation shows that

a(x, x+ 1) =
√
pxqx+1 =


√

1
2 + c1 , x = 0√
1
4 + 1

2cx+1 − 1
2cx − cxcx+1 , x > 0
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a(x, x− 1) =
√
px−1qx =


√

1
2 + c1 , x = 1√
1
4 + 1

2cx −
1
2cx−1 − cxcx−1 , x > 1

and

〈A′fn, fn〉 = 2

∫
x≥1

a(x, x+ 1)fn(x)fn(x+ 1)dx

=
1

n

∫
1≤x≤n

√
1 + 2cx+1 − 2cx − cxcx+1dx.

Let ε > 0. Then, there exists i0 such that for i > i0

|2ci+1 − 2ci − cici+1| < ε.

Hence,
〈A′fn, fn〉 ≥

√
1− ε,when n→∞.

Since ε > 0 was arbitrary we have λ̂(0)0 = 1 and, by Theorem 2.2, we do not
have the spectral gap property.

5. Proof of Theorem 2.6. In this section we assume that the hypothesis
of Theorem 2.3 part (ii) holds. We formulate a sufficient and necessary
condition for an observable V , so that (2) holds for random variables given
by (1).

We are going to use the result from [8], see (1.8) p. 3. According to that
result, the necessary and sufficient condition for the validity of (2) is that
||V ||2−1 <∞, where

(10) ||V ||2−1 := sup
ϕ∈L2(π)

{
2〈V, ϕ〉π − 〈(I − P )ϕ,ϕ〉π

}
.

In what follows, we will find the maximizer of this supremum by solving the
Euler–Lagrange equation (14). The maximizer belongs to a certain Hilbert
space, that we denote by H1, which is a bigger space than L2(π).

Observe that we have the following equality:

(11) 〈(I − P )ϕ,ϕ〉π =
1

2

∫
Z+

∫
Z+

p(x, y)(ϕ(y)− ϕ(x))2dyπ(dx).

Denote the discrete gradient ∂f(x) = f(x + 1) − f(x) and its dual, with
respect to the scalar product from `2, ∂∗f(x) = f(x− 1)− f(x). It is easy
to see that when the suppf is compact, then the following integration by
parts formula holds∫

Z+

∂f(x)g(x)dx =

∫
x≥1

f(x)∂∗g(x)dx− f(0)g(0).
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In our case we have

E(ϕ) := 〈(I − P )ϕ,ϕ〉π

=
1

2

∫
x≥1

[(
1

2
+ cx

)(
∂∗ϕ(x)

)2

+

(
1

2
− cx

)(
∂ϕ(x)

)2]
π(dx).

We can find some positive constants c1, c2, for which

c1E0(ϕ) ≤ E(ϕ) ≤ c2E0(ϕ),

where

E0(ϕ) :=

∫
Z+

(
∂ϕ(x)

)2
π(dx).

Then,

sup
ϕ∈L2(π)

{
2〈V, ϕ〉π − c2E0(ϕ)

}
≤ ||V ||2−1 ≤ sup

ϕ∈L2(π)

{
2〈V, ϕ〉π − c1E0(ϕ)

}
.(12)

We can see therefore that ‖V ‖−1 < +∞ if and only if the supremum of the
functional Φ(ϕ) appearing on the right hand side of (12) is finite. Since the
functional Φ(·) is weakly upper semicontinuous on a Hilbert space

H1 := [ϕ : E0(ϕ) < +∞],

and lim‖ϕ‖H1
→+∞Φ(ϕ) = −∞, it attains its maximum

(13) Φ∗ = sup[Φ(ϕ) : ϕ ∈ L2(π)] < +∞

and its maximizer ϕ∗ has to satisfy the Euler–Lagrange equation, which in
this case reads

(14) V (x)π(x) = ∂∗[π(x)∂ϕ∗(x)], ∀x ≥ 1

and V (0) = −∂ϕ(0), or equivalently

π(x)∂ϕ(x) = −π(x)V (x) + π(x− 1)∂ϕ(x− 1), ∀x ≥ 1

and ∂ϕ(0) = −V (0). Note that from this equation we get

π(x)∂ϕ(x) = −
∫
1≤y≤x

V (y)π(dy) + π(0)∂ϕ(0) = −
∫
0≤y≤x

V (y)π(dy),

hence

∂ϕ(x) = − 1

π(x)

∫
0≤y≤x

V (y)π(dy).

The supremum in (13) equals

Φ∗ =

∫
Z+

[∂ϕ(x)]2π(dx) =

∫
Z+

dx

π(x)

[∫
0≤y≤x

V (y)π(dy)

]2
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and the requirement that Φ∗ < +∞ is the same requirement as ‖V ‖−1 <
+∞, thus the conclusion of Theorem 2.6 follows. Note that the fact that
Φ∗ < +∞ in particular implies that∫

Z+

V (y)π(dy) = 0.
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