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Some framed f-structures
on transversally Finsler foliations

Abstract. Some problems concerning to Liouville distribution and framed
f -structures are studied on the normal bundle of the lifted Finsler foliation
to its normal bundle. It is shown that the Liouville distribution of transver-
sally Finsler foliations is an integrable one and some natural framed f(3, ε)-
structures of corank 2 exist on the normal bundle of the lifted Finsler foliation.

1. Introduction and preliminaries. The study of structures on mani-
folds defined by a tensor field satisfying f3±f = 0 has the origin in a paper
by K. Yano [15]. Later on, these structures have been generically called f -
structures. On the tangent manifold of a Finsler space, the notion of framed
f(3, 1)-structure was defined and studied by M. Anastasiei in [2]. Further
developments concerning framed f(3,−1)-structure on such manifold was
studied in [5, 6]. In a paper by A. Miernowski and W. Mozgawa [9] was
defined the notion of transversally Finsler foliation and there it is proved
that the normal bundle of the lifted Finsler foliation to its normal bundle
has a local model of tangent manifold and it is the Riemannian one. Thus,
some problems specific for tangent manifolds can be extended and studied
on the normal bundle of the lifted Finsler foliation. Firstly, following [4],
we define a Liouville distribution in the vertical bundle and we prove that
it is integrable. Next, by analogy with [2], some framed f(3, ε)-structures
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on the normal bundle of the lifted Finsler foliation are defined and studied
in the paper.

In this section we briefly recall some basic facts about transversally
Finsler foliations (see [9]).

Let (M,F ) be a n-dimensional Finsler manifold, where F : TM → R is
a Finsler metric (for necessary definitions, see [3, 11]).

Definition 1.1 ([9]). A diffeomorphism f : M →M is said to be a Finsler
isometry if F (f(x), f∗(y)) = F (x, y) for each x ∈M and y ∈ TxM .

Definition 1.2 ([9]). A foliated cocycle {Ui, fi, γij} on a (n + m)-dimen-
sional manifold M is said to be a Finslerian foliation F if

(i) {Ui}, i ∈ I is an open covering of M;
(ii) fi : Ui →M is a submersion, where (M,F ) is a Finsler manifold;
(iii) γij is a local Finslerian isometry of (M,F ) such that for each u ∈

Ui ∩ Uj

fi(u) = (γij ◦ fj)(u).

The Finsler manifold (M,F ) will be called the transversal manifold of
foliation F .

The local submersions {fi} define by pull-back a Finsler metric in the
normal bundle Q = Q(M) of the foliation F , denoted by FQ and given by

(1.1) FQ(u, p(Xu)) = F (fi(u), (fi)∗(Xu))

for any u ∈ M, Xu ∈ TuM, where p : TM → Q is the natural projection
(for Lagrangian case, see [12]).

We denote by u = (xi, xα), α = 1, . . . , n, i = n + 1, . . . , n + m = dimM
the adapted coordinates in a local foliated chart on M and let { ∂

∂xi
, ∂
∂xα }

be a local frame of TM. If we denote by { ∂
∂xα } the corresponding local

frame of Q, then we can induce a chart (xi, xα, yα) on Q, where yα ∂
∂xα is

a transversal vector at a point (xi, xα). Note that in this coordinate system
the metric FQ in Q does not depend on (xi).

According to [9], the distribution spanned by { ∂
∂xi
}, i = n+ 1, . . . , n+m

defines a foliation FQ on Q called the natural lift of F to Q.
Let us consider Q(Q) to be the bundle over Q transversal to the foliation

FQ. The canonical projection π : Q →M, π(xi, xα, yα) = (xi, xα) induces
another projection π∗ : TQ → TM which maps the tangent vectors to FQ
in the tangent vectors to F . Thus, π∗ induces a mapping π∗ : Q(Q) → Q
defined by π∗ = p◦π∗◦p−1, where p : TQ→ Q(Q) is the natural projection.
If we denote by V := V (Q) = kerπ∗, it is a vertical bundle spanned by the
vectors { ∂

∂yα }, α = 1, . . . , n.
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Let us put GQ = F 2
Q and Gα =

∂GQ
∂yα , Gαβ =

∂
2
GQ

∂yα∂yβ
, etc. Then, by the

same arguments as in [3, 11] we have

(1.2) Gαβy
α = Gβ ; Gαβy

αyβ = 2GQ ; Gαβγy
γ = 0.

According to [9], for any vertical vectors X = Ẋ
α ∂
∂yα and Y = Ẏ

β ∂
∂yβ

the formula

(1.3) Gv(X,Y ) = GαβẊ
α
Ẏ
β

defines a Riemannian metric in the vertical bundle V .
An important global vector field is defined by

(1.4) Γ : Q→ V ; Γ(xi, xα, yα) = yα
∂

∂yα

and it is called the Liouville vector field (or radial vertical vector field).
Moreover, by the second equality of (1.2), we have

(1.5) GQ =
1

2
Gv(Γ,Γ) > 0.

Also, by using the technique of good vertical connection often used in
Finsler geometry (see [1]), in [9] it is proved that the normal bundle Q(Q)
has a local model of tangent manifold. Thus we have the spliting Q(Q) =
H(Q) ⊕ V (Q), where the horizontal bundle H := H(Q) is spanned by the
vectors { δ

δxα = ∂
∂xα −N

β
α

∂
∂yβ
}, where the coefficients Nβ

α are related only in
terms of Finsler metric GQ.

In the sequel we will use the adapted basis {δα := δ
δxα ,

.
∂α:= ∂

∂yα } as well
as its dual {dxα, δyα := dyα +Nα

β dx
β}.

We notice that Gv induces a Riemannian metric on the horizontal bundle
denoted by Gh and we consider G = Gh + Gv the Sasaki type lift of the
fundamental tensor Gαβ, locally given by

(1.6) G = Gαβdx
α ⊗ dxβ +Gαβδy

α ⊗ δyβ.

2. A Liouville distribution. Let us consider ξ = Γ
FQ
√

2
to be the unit

Liouville vector field with respect to Gv, i.e.

(2.1) Gv(ξ, ξ) = 1.

Using Gv and ξ, we define a vertical 1-form η ∈ Γ(V ∗) by

(2.2) η(X) = Gv(X, ξ), ∀X ∈ Γ(V ).

Denote by {ξ} the line vector bundle over Q spanned by ξ and we define
the Liouville distribution as the complementary orthogonal distribution SQ
to {ξ} in V with respect to Gv, namely V = SQ⊕{ξ}. Hence, SQ is defined
by η, that is

(2.3) Γ(SQ) = {X ∈ Γ(V ) ; η(X) = 0}.
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Thus, any vertical vector field X ∈ Γ(V ) can be expressed as

(2.4) X = ΦX + η(X)ξ,

where Φ is the projection morphism of V on SQ. By direct calculations,
one gets

Proposition 2.1. For any vertical vector fields X,Y ∈ Γ(V ), we have

(2.5) Gv(X,ΦY ) = Gv(ΦX,ΦY ) = Gv(X,Y )− η(X)η(Y ).

Then the local components of η and Φ with respect to the basis {δyα}
and {δyα⊗

.
∂α}, respectively, are given by

(2.6) ηα =
Gα

FQ
√

2

and

(2.7) Φβ
α = δβα −

ηαy
β

FQ
√

2
,

where δβα denotes the Kronecker symbol.

Theorem 2.1. The Liouville distribution SQ is integrable.

Proof. Let X,Y ∈ Γ(SQ). As V is an integrable distribution on Q, it is
sufficient to prove that [X,Y ] has no component with respect to ξ. By using
(1.3) and (2.2), we obtain that X ∈ Γ(SQ) if and only if

(2.8) Gαβy
αẊ

β
= 0,

where Ẋ
β

are the components of X. Differentiating (2.8) with respect to
yγ , we get

(2.9) Gαβγy
αẊ

β
+GγβẊ

β
+Gαβy

α
.
∂γ Ẋ

β
= 0 , ∀ γ = 1, . . . , n

and taking into account the last equality of (1.2), we get

(2.10) GγβẊ
β

+Gαβy
α

.
∂γ Ẋ

β
= 0 , ∀ γ = 1, . . . , n.

Then, by direct calculations using (1.3), (1.4) and (2.10), we have

Gv([X,Y ], ξ) =
1

FQ
√

2
Gαβy

α
[ .
∂γ (Ẏ

β
)Ẋ

γ
−

.
∂γ (Ẋ

β
)Ẏ

γ
]

= − 1

FQ
√

2

(
GγβẎ

β
Ẋ
γ
−GγβẊ

β
Ẏ
γ
)

= 0

which completes the proof. �
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Let us consider ∇ : X (V )→ X (T ∗Q⊗ V ) to be the unique good vertical
Bott connection introduced in [9]. We notice that for vertical vector fields,
it is locally given by

(2.11) ∇ .
∂α

.
∂β= Cγαβ

.
∂γ ,

where the local vertical coefficients are given by

(2.12) Cγαβ =
1

2
Gδγ

.
∂α (Gβδ),

where (Gδγ) denotes the inverse of (Gγδ).
Now, contracting (2.12) by yα, we deduce

(2.13) Cγαβy
α = 0.

By straightforward calculations using (2.4), (2.5), (2.6), (2.7) and (2.13)
we obtain

Proposition 2.2. The vertical covariant derivatives, with respect to ∇ of
ξ, η and Φ, are

(2.14) ∇Xξ =
1

FQ
√

2
ΦX

(2.15) (∇Xη)Y =
1

FQ
√

2
Gv(ΦX,ΦY )

(2.16) (∇XΦ)Y = − 1

FQ
√

2
[Gv(ΦX,ΦY )ξ + η(Y )ΦX]

for any X,Y ∈ Γ(V ).

3. Some framed f(3, ε)-structures on Q(Q). A framed f(3, 1)-struc-
ture of corank s on a (2n+s)-dimensional manifold N is a natural generaliza-
tion of an almost contact structure on N and it is a triplet (f, (ξa), (ω

a)), a =
1, . . . , s, where f is a tensor field of type (1, 1), (ξa) are vector fields and
(ωa) are 1-forms on N such that

(3.1) ωa(ξb) = δab ; f(ξa) = 0 ; ωa ◦ f = 0 ; f2 = −I +
∑
a

ωa ⊗ ξa,

where I denotes the Kronecker tensor field on N . The name of f(3, 1)-
structure was suggested by the identity f3 + f = 0. For an account of this
kind of structures we refer to [10].

The linear operator φ given in the local adapted basis by

(3.2) φ(δα) =
.
∂α ; φ(

.
∂α) = −δα

defines an almost complex structure on Q(Q) and it is easy to see that

(3.3) G(φ(X), φ(Y )) = G(X,Y ), ∀X,Y ∈ Γ(Q(Q)).
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Let us put ξ1 = yα

FQ
√

2
δα and ξ2 = yα

FQ
√

2

.
∂α. From the definition of φ, it

follows:

Proposition 3.1. We have φ(ξ1) = ξ2 and φ(ξ2) = −ξ1.

Now, let us consider the 1-forms ω1 = yα
FQ
√

2
dxα and ω2 = yα

FQ
√

2
δyα,

where yα = Gαβy
β. By the second equality of (1.2) we have yαyα = 2GQ

and so ωa(ξb) = δab . By a direct calculation, we obtain

Proposition 3.2. We have ω1 ◦ φ = −ω2 and ω2 ◦ φ = ω1.

Proposition 3.3. We have ω1(X) = G(X, ξ1) and ω2(X) = G(X, ξ2), for
any X ∈ Γ(Q(Q)).

Now, we define a tensor field f of type (1, 1) on Q(Q) by

(3.4) f(X) = φ(X)− ω1(X)ξ2 + ω2(X)ξ1

for any X ∈ Γ(Q(Q)).

Theorem 3.1. The triplet (f, (ξa), (ω
a)), a = 1, 2 provides a framed f(3, 1)-

structure on Q(Q), namely
(i) ωa(ξb) = δab ; f(ξa) = 0 ; ωa ◦ f = 0;

(ii) f2(X) = −X + ω1(X)ξ1 + ω2(X)ξ2, for any X ∈ Γ(Q(Q));
(iii) f is of rank 2n− 2 and f3 + f = 0.

Proof. Using (3.4) and Propositions 3.1 and 3.2, by direct calculations we
get (i) and (ii). Applying f on the equality (ii) and taking into account the
equality (i), we obtain f3 + f = 0. Now, from the second equations in (i),
we see that span{ξ1, ξ2} ⊆ ker f . If X = Xαδα + Ẋ

α .
∂α belongs to ker f

and it is not in span{ξ1, ξ2}, by using (3.4), we have

f(X) =

(
Xβ − Xαyα

2GQ
yβ
)

.
∂β −

(
Ẋ
β
− Ẋ

α
yα

2GQ
yβ

)
δβ = 0.

Thus, X = Xαyα
FQ
√

2
ξ1 + Ẋ

α
yα

FQ
√

2
ξ2 ∈ span{ξ1, ξ2}, contradiction. Hence ker f =

span{ξ1, ξ2} and rankf = 2n− 2. �

Theorem 3.2. The Riemannian metric G verifies

(3.5) G(f(X), f(Y )) = G(X,Y )− ω1(X)ω1(Y )− ω2(X)ω2(Y )

for any X,Y ∈ Γ(Q(Q)).

Proof. Since G(ξ1, ξ2) = 0 and G(ξ1, ξ1) = G(ξ2, ξ2) = 1, by using (3.4) and
Propositions 3.2 and 3.3 we get (3.5). �

Remark 3.1. In the local basis {δα,
.
∂α}, we have

(3.6) f(δα) =

(
δβα −

yαy
β

2GQ

)
.
∂β ; f(

.
∂α) =

(
−δβα +

yαy
β

2GQ

)
δβ
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and using (3.6) one finds

(3.7)

G(f(δα), f(δβ)) = Gαβ −
yαyβ
2GQ

G(f(δα), f(
.
∂β)) = 0

G(f(
.
∂α), f(

.
∂β)) = Gαβ −

yαyβ
2GQ

.

Now, from (3.7) easily follows (3.5).

Theorem 3.2 says that (f,G) is a Riemannian framed f(3, 1)-structure on
Q(Q).

Let us put ϕ(X,Y ) = G(f(X), Y ) for any X,Y ∈ Γ(Q(Q)). We have

Theorem 3.3. ϕ is a 2-form on Q(Q) and the annihilator of ϕ is spanned
by {ξ1, ξ2}.

Proof. ϕ is bilinear since G is bilinear. Now, using Proposition 3.3 and
Theorems 3.1 and 3.2, by direct calculations we have ϕ(Y,X) = −ϕ(X,Y )
which says that ϕ is a 2-form on Q(Q).

By the second equality (i) from Theorem 3.1 it follows that ϕ(ξ1, ξ1) =
ϕ(ξ1, ξ2) = ϕ(ξ2, ξ2) = 0, hence span{ξ1, ξ2} is contained in the null space
of ϕ. Conversely, if X = Xαδα + Ẋ

α .
∂α∈ Γ(Q(Q)) such that ϕ(X,X) = 0,

by direct calculations, we get X = Xαyα
FQ
√

2
ξ1 + Ẋ

α
yα

FQ
√

2
ξ2 ∈ span{ξ1, ξ2}. �

Remark 3.2. Locally, we have

(3.8) ϕ =

(
Gαβ −

yαyβ
2GQ

)
dxα ∧ δyβ −

(
Gαβ −

yαyβ
2GQ

)
δyα ∧ dxβ

and it appears as a deformation of the symplectic structure ϕ
′
(X,Y ) =

G(φX, Y ) for any X,Y ∈ Γ(Q(Q)).

Finally, we make a similar study concerning framed f(3,−1)-structures
on Q(Q).

A framed f(3,−1)-structure of corank s on a (2n+ s)-dimensional mani-
fold N is a natural generalization of an almost paracontact structure on N

and it consists of a triplet (f̃ , (ξa), (ω
a)), a = 1, . . . , s, where f̃ is a tensor

field of type (1, 1), (ξa) are vector fields and (ωa) are 1-forms on N such
that

(3.9) ωa(ξb) = δab ; f̃(ξa) = 0 ; ωa ◦ f̃ = 0 ; f̃2 = I −
∑
a

ωa ⊗ ξa.

The name of f(3,−1)-structure was suggested by the identity f̃3 − f̃ = 0.
This is in some sense dual to the framed f(3, 1)-structure on N .

Let us consider the linear operator φ̃ given in the local adapted basis by

(3.10) φ̃(δα) = δα ; φ̃(
.
∂α) = −

.
∂α .
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It is easy to check that φ̃2 = I and

(3.11) G(φ̃(X), φ̃(Y )) = G(X,Y )

for any X,Y ∈ Γ(Q(Q)). From the definition of φ̃ it follows

Proposition 3.4. We have φ̃(ξ1) = ξ1 and φ̃(ξ2) = −ξ2.

Proposition 3.5. We have ω1 ◦ φ̃ = ω1 and ω2 ◦ φ̃ = −ω2.

Now, we define a tensor field f̃ of type (1, 1) on Q(Q) by

(3.12) f̃(X) = φ̃(X)− ω1(X)ξ1 + ω2(X)ξ2

for any X ∈ Γ(Q(Q)).

Theorem 3.4. The triplet (f̃ , (ξa), (ω
a)), a = 1, 2 provides a framed

f(3,−1)-structure on Q(Q), namely

(i) ωa(ξb) = δab ; f̃(ξa) = 0; ωa ◦ f̃ = 0;
(ii) f̃2(X) = X − ω1(X)ξ1 − ω2(X)ξ2, for any X ∈ Γ(Q(Q));
(iii) f̃ is of rank 2n− 2 and f̃3 − f̃ = 0.

Proof. Using (3.12) and Propositions 3.4 and 3.5, by direct calculations we
get (i) and (ii). Applying f̃ on the equality (ii) and taking into account the
equality (i), we obtain f̃3 − f̃ = 0. The equality (iii) follows by the same
argument as in the proof of Theorem 3.1. �

Theorem 3.5. The Riemannian metric G verifies

(3.13) G(f̃(X), f̃(Y )) = G(X,Y )− ω1(X)ω1(Y )− ω2(X)ω2(Y )

for any X,Y ∈ Γ(Q(Q)).

Proof. It follows by direct calculations by using (3.12) and Propositions
3.3 and 3.5. �

Remark 3.3. In the local basis {δα,
.
∂α}, we have

(3.14) f̃(δα) =

(
δβα −

yαy
β

2GQ

)
δβ ; f̃(

.
∂α) =

(
−δβα +

yαy
β

2GQ

)
.
∂β

and using (3.14) one finds

(3.15)

G(f̃(δα), f̃(δβ)) = Gαβ −
yαyβ
2GQ

G(f̃(δα), f̃(
.
∂β)) = 0

G(f̃(
.
∂α), f̃(

.
∂β)) = Gαβ −

yαyβ
2GQ

.

Now, (3.13) easily follows from (3.15).
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Theorem 3.5. says that (f̃ ,G) is a Riemannian framed f(3,−1)-structure
on Q(Q).

Let us put ϕ̃(X,Y ) = G(f̃(X), Y ) for any X,Y ∈ Γ(Q(Q)). We have

Theorem 3.6. ϕ̃ is a symmetric bilinear form on Q(Q) and the annihilator
of ϕ̃ is spanned by {ξ1, ξ2}.

Proof. It follows in a similar manner with the proof of Theorem 3.3, by
using Proposition 3.3 and Theorems 3.4 and 3.5. �

Locally, we have

(3.16) ϕ̃ =

(
Gαβ −

yαyβ
2GQ

)
dxα ⊗ dxβ −

(
Gαβ −

yαyβ
2GQ

)
δyα ⊗ δyβ

with det(Gαβ −
yαyβ
2GQ

) = 0, since (Gαβ −
yαyβ
2GQ

)yβ = yα − yα = 0.

Remark 3.4. The map ϕ̃ is a singular pseudo-Riemannian metric on Q(Q).
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[5] Gı̂rţu, M., An almost paracontact structure on the indicatrix bundle of a Finsler
space, Balkan J. Geom. Appl. 7(2) (2002), 43–48.
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