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On the zeros of polynomials
and analytic functions

ABSTRACT. For a polynomial of degree n, we have obtained some results,
which generalize and improve upon the earlier well known results (under cer-
tain conditions). A similar result is also obtained for analytic function.

1. Introduction and statement of results. The following theorem is
due to Pellet ([6], [5, p. 128]).

Theorem A. Let q(z) = ap+ a1z + ...+ apzl + ...+ an2", ap, # 0, be
a polynomial of degree n. If the polynomial

Qp(2) = laol + larlz + ... + |ap-1]2P 7" = Jap|2? + |apa |27 + o+ |ag 2",
has two positive zeros r and R, r < R, then q(z) has exactly p zeros in the
disc
2| <7
and no zero in the annular ring
r < |z| < R.
The next result is due to Jayal, Labelle and Rahman [4].
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Theorem B. Let p(z) = > _ a,z" be a polynomial of degree n such that
ap 2 Ap—1 2 ... 2> a1 2 ag.
Then p(z) has all its zeros in
m 7] < @m0t ool
|an|

Gardner and Govil [1] improved Theorem B as follows.

Theorem C. Let p(z) =Y ._,apz’ be a polynomial of degree n such that
ap 2 Ap—1 2 ... 2> a1 = QQ.
Then p(z) has all its zeros in the annular ring

@) lag| <ol < an—ao+|a0\.
an — ap + |an| ||

Recently Jain [3] proved the following result for the upper bound involving
coefficients of the polynomial.

Theorem D. Let q(2) = ag+ a1z + ...+ ap-12P71 + apzP + ... + a,2", be
a polynomial of degree n such that a, # a,—1 for somep € {1,2,...,n}. Set

n
M = M, = Z laj —aj—1|+ |an] (1 <p<n-—1), M, = |ay|
Jj=p+1
and
p—1
=y =Y oy —aral @< p<n), mie
j=1
Suppose that
ya |ap — ap—1|

<1
M p+1

and that

+1
p lap —ap—1 (p)p lap — ap—1] b
P P () .
ol +m 47— M p+1

Then q(z) has at least p zeros in

P lap —ap|
<= I
12 M p+1

Jain [3] again, in the same paper proved the following.

Theorem E. Let q(z) =ap+aiz+...+ ap_lzp*1 +apzP + ...+ anz", be
a polynomial of degree n such that a, # ap—1 for some p € {1,2,...,n—1},

s
arga — Bl < a < 7.
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k=0,1,2...,n, for some real § and « and
|an| > lan-1] > ... > |a1] > |ag.

Let

n
L =L, :=|ap| + (lan| — |ap|) cosa + Z (laj| + |aj—1|) sin e

J=p+1
and
p—1
I =1, = (lap_1]|—|ao|) cosa+2(!aj]+|aj_1|)sina (2<p<n-1),1; =0.
j=1

Suppose that

+1
jagf 4 121 =gl (P (lan = apa ]
L p+1 L p+1

Then q(z) has at least p zeros in

p |ap — ap—1|

<
<
In this paper, firstly we prove the following.

Theorem 1. Let q(z) = ap+aiz +agz?+... —i—ap_lzp*l +apP +. . Fapz"
be a polynomial of degree n such that a, # ap—1 for some p € {1,2,...,n},
with coefficients a;, j =0,1,2,...,n, satisfying

(3) p > QAp1 > ... 2 Ay > Ap_1 > ... 2> a1 > Ao

and

(4) < D )P(ap—ap_l>p+1 >| ’+ P <Clp_ap—l>( )
— - a — | ——|(ap-1—a
My p—|—1 0 My p—|—1 p-l 0

where My = ay, + |ap| — ap.
Then q(z) has at least p zeros in
p (ap — ap—1)
|an| — an + ap) (p+1)

|ao|
5) <zl < p1 =
(5) an a0+ pTlan] 2] <p (

Remark 1. In Theorem 1, we have
My = |ay| +an —ap

for 1 <p < (n—1)and M; = |ay| for p = n. The value M; = |ay| +an —ap
serves the purpose for 1 < p < n (see also equality (1.6) of Jain [3]).

For the case p = n, in Theorem 1, we have the following.
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Corollary 1. Let q(z) = ap+ a1z + ...+ apz™ be a polynomial of degree n
such that

(6) an > Qp-1 > Gp_2 > ... > a1 > ao,

and

n a—a_lnl n Ay — Gp_1

7 n n n mn

(7) <|a\>< n+ 1 > > laol n—+ ( lan| >(n1 )
n n

then q(z) has all its zeros in

n  (an —ap—1)
n+1 |an|

® o)

< |z| < =
an — ag + play| Sl <p

Remark 2. Corollary 1 is a refinement of Theorem B due to Joyal, Labelle
and Rahman [4] as well as Theorem C due to Gardner and Govil [1] under
the conditions (6) and (7).

As it can be shown easily from (8) and (2) that

n  (ap —an—1) _ an —ap+ |ag

n+1 |an| lan|
is always true.
And also
|ao| |ag|
an—a0+pg|an| an + |an| — ao
for

N ap —an—1
n+1 ay

P2
Remark 3. If we take ag > 0, then Corollary 1 gives a refinement of a result

due to Jain [3, Corollary 1].

Instead of proving Theorem 1, we prove the following result. Theorem 1
can be proved in a similar way as the next result (Theorem 2) except the
only change that is in Theorem 1 p € {1,2,...,n}.

Theorem 2. Let q(2) = ap + a1z + ... + ap_12P71 + ap2P + ...a,2" be
a polynomial of degree n such that ap # ap—1 for some p € {1,...,n — 1},
with the coefficients a;, j = 0,1,...,n, for some K > 1, satisfying

(9) Kap>apn12>...2a,>a,-1>...2 a1 > ag

and
P p+1
P ap — ap—1 p [ap—ap—
(10) <M2> (ppﬁ ) >|a0|—|—M2< ppﬁ)(apl—ao),

(11) My = K(ap + |ayn|) — ap.



On the zeros of polynomials and analytic functions 101

Then q(z) has at least p zeros in

‘<p3:£(ap—ap,1)
- M p+1

|ao| <
n = |Z
Kan + (K = 1)|an| — ao + p§|an|

where we assume that ps < 1.

(12)

For the case ag > 0, we have the following.

Corollary 2. Let q(z) = ag+ar1z+az?+.. .—|—ap,1zp_1 +ap2P .. Fapz”
be a polynomial of degree n, with the condition a, # a,—1 and for some
pe{l,2,...,n—1}, K > 1 salisfying

(13) Kap>an1>...2a,>ap-1>...20a9>0

and

+1
(14) (]\Z,)p (app_+a117—1>p > ag + %3 (app—+a];_1) (ap—1 — ap),
where
(15) M3 =2Ka, — a,.
Then q(z) has at least p zeros in

P (ap—ap1)
p+1(2Ka, —ap)

ao

16
(16) (2K — 1+ pl)an — ag

<z <py=

Remark 4. As % <1 (by (13)), we have %5 (%) =ps < 1.

For the polynomials with complex coefficients, we have been able to prove
the following.

Theorem 3. Let q(z) = ag+ a1z + ... + ap_12P"1 + apzP + ... + a,2" be
a polynomial of degree n such that a, # a,—1 for some p € {1,2,...,n—1},
for some real B and «

jarga; — Bl <a <, j=01,....n,

and for some K > 1,

(17) K|an‘ > ‘an—1’ Z .2 ’a1| > |a0’
and
P p+1
p |ap_ap—1|> p |ap_ap—1| /
18 v — > lagl + ————m
(18) <M4> ( p+1 a0l My (p+1)
where

My = Klan| + (Klan| — |ap|) cosa + (Klap| + |an—1]) sin

19 n—1 .
(19) + 3 (lag| + a1 ) sina,

Jj=p+1
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p—1
(20) m' = (lap—1| — |ao|) cosa + Y (Jaj| + |a;_1]) sina.
j=1

Then q(z) has at least p zeros in

p (lap —ap-1l)
21 zl < = .
(21) Il < s p+1 My

Remark 5. In the case K = 1, the above theorem reduces to Theorem E
due to Jain [3].

Remark 6. ps < 1, as can be verified by using (19), (17) and Lemma 1.

Now we turn to the study of zeros of an analytic function. In this direc-
tion, we have been able to prove the following.

Theorem 4. Let the function f(z) =322, a;z? (#0) be analytic in |z| <

Ap— 1
p6, for some p € N such that -~ L <2+ =, Assume that
ap P
(22) ap > a1 > ... > Ap_1 > Ap > Gpy1 > ...
and

(23) P\ (1= pﬂ>r |+ 2 (L) )
—_— _— a _— _— angp — AQp— .
ap p+1 e, U pt 0 Tt

Then the function f(z) has at least p zeros in

D Gp—1 — Aap
(24) 2] < po = ( ) |
p+1 ap

2. Lemma. For the proof of the theorems, we need the following lemma.

Lemma 1. If a; is any complex number with
T
larga; — B < a < 5

for certain real B and «, then
|aj — aj1| < laj| = [aj-1|[cosa + (|a;| + |aj1]) sin o
This lemma is due to Govil and Rahman (proof of Theorem 2 of [2]).
3. Proofs of Theorems.

Proof of Theorem 2. Consider
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9(2) = (1 = 2)q(2)

=(1—2)(ap+arz+...+ap 12" +ayf + ...

p—1
= ag+ Z(aj —a;_1)2 + (ap — ap—1)2’
(25) =
+ Z (aj —aj—1)2" —apz"".
Jj=p+1
= ¢(2) +¥(2),
where
p—1
o(2) =ap+ Z(aj —aj-1)?,
j=1
and

w(z):( —ap12p+z a]1 —anz"

Jj=p+1
Now for |z| = p3 (p3 < 1 (as assumed)) and p <n —1,

()| = lap — ap-1]p — { Z jaj — aj—110 + lanlpy ™!

j=p+1

+ a,z")

+1

}

1
> (ap—apfl)pg—pépr {an|p3 p+|an_an 1|,03 P

n—1

_—
+ 3 lay—ajalpy Y

Jj=p+1

> (ap — ap—1)p5 — p§+1{an| + [Kan — an—1

n—1
+ (K =Dag| + Y aj — a1

Jj=p+1
= (ap — ap-1)p5 — p]§+1{|an\ + Kan — an—1

+ (K = D] + an_1 — a

= (ap — ap—1)p — PETH{K (an + |anl) — ap}

= <p>p<ap - apl)p+1
Mo p+1

}

}
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Mo p+1
= |ao| + p3(ap-1 — ao).

> |ao| + p (ap—ap—1> (ap_1 —ag) by (10).

Thus for |z| = p3,

(26) ()] > laol + palap1 — ao).
On the other hand, for |z| = ps,

p—1
|6(2)| < laol + ) laj — aj1|p}
j=1
<lao| + p3(ap-1 — ao).

From (26) and (27) it follows that [1)(z)| > |¢(z)] for |z| = p3. By Rouche’s
theorem, g(z) = ¢(z) + ¢ (z) and ¥ (z) has same number of zeros in |z| < ps3.
But v(z) has at least p zeros in |z| < p3. Therefore g(z) and hence ¢(z) has
at least p zeros in

(27)

|z| < ps3.

This proves one part of Theorem 2.
Now it remains to prove that there are no zeros of ¢(z) in

] < o
Kap + (K — 1)|an| — ao + p%lan|
Let
9(z) = (1 = 2)q(z) = a0 + Z(aj - aj—l)Zj — apz"t!
(28) =

= ag + h(z).

Now for |z| = ps, (p3 < 1) we have

|z|=ps3

n
max |h(z)| <Y la; — a;-1]p} + |an|pf !
Jj=1

n—1
< ps{\an —an-1|+ Y _la; —aja| + !anlpg}

j=1
< ps{|Kan — an—1+an — Kan| + an—1 —ao + |an|p3 }
< ps{Kan + (K = 1)lan] — ao + planl}.

Since h(0) = 0, h(z) is analytic in |z| < p3, by Schwarz lemma we have

[h(2)| < {Kan + (K = 1)|an| — a0 + p5lan|}|2|
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if |z| < p3. Now from (28) we see that for |z| < ps,

19(2)| = lao| — |h(2)]
> lao| = {Kan + (K = 1)|an| — ao + p3lan[}|2|

> 0,
if a0
ao
z| < .
12 Ka, + (K — 1)|an| — ao + p§|an]
This proves the theorem completely. O

Proof of Theorem 3. Consider the polynomial

9(z) = (1 = 2)q(z)

p—1
=ap + Z(aj —aj-1)? + (ap — ap-1)2”
(29) o
+ Z (aj — aj—1)2" —apz"™!
j=p+1
= ¢(2) + ¥(2),
where
p—1
¢(2) = ao + Z(% aj-1)z’
j=1
and

Y(z) = (ap —ap1zp+z ajlz—anzﬂ.
j=p+1
Now for |z| = p5 (p5 < 1),

(p+1
|¢(Z)|Z|ap_ap*1|ﬂz5;_ﬂg |an|P5 s Z laj — a;-— 1|P5 @ )}

J=p+1
>‘ap_ap 1‘pp |an| + Z |a]—a] 1|}
j=p+1
n—1
1
= lap — ap1|pE — pET1S lan] + lan — an—a| + Y oy — aj—l}
J=p+1

lan| + [Kan — an—1 + an — Kay|

n—1
+ > !aj—aj—ll}

Jj=p+1

+1
= |ap — ap—l‘Pg - Pg

/—M/—/H/—/H/—H
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> |ay — ap-11% —p@’“{|an| Ky — an] + (K — D]y

n—1
+ ) !aj—aj—ll}

Jj=p+1

> lap — ap_1 167 — pgﬂ{man\ T (Klan] — |an1]) cosa

n—1
+ (Klag| + lan—)sina + 3" [(Ja] — laj—1]) cosa
J=p+1

+ (laj| + |aj—1]) sin a]} (by Lemma 1)
= lap — ap_]oh — pﬁ“{Kw T (Klan| — |apl)cosa

n—1
+ (Klan| + |an—1]) sina + Z (laj| + laj-1]) sina}
Jj=p+1

= lap — ap71|f715) - pzs)HM‘l

P pt1
D |ap — ap71| .
T\ prr fi £ M.

<M4> < p+1 ) , (by definition of My)

Thus on |z| = ps,

v > () (=)™
My p+1
(30) |lap — ap—1| '
> lag| + — M4 b+l m

= |ao| + psm’  (by (18)).

Now for |z| = ps,

p—1 p—1
6(2)] < laol + > laj — aj1lpd < laol + ps Y _ laj — a; 1]
Jj=1 Jj=1

p—1 p—1
< laol + p5{ 3-os] = lag-al)cosa+ 3-las| + lag-aysina
=1 j=1

<.

p—1

ool + 5] fap1| ) cosr + Y- (s + a1 Dsinr
j=1

= |ao| + psm’  (by (20)).
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Thus for |z| = ps,
(31) |6(2)] < laol + psm’.

From (30) and (31), we see that on |z| = p5, |¢(2)] < |¥(z)], thereby
implying by Rouche’s theorem that g(z) = ¢(z) + ¥(2) and 1(z) have the
same number of zeros in |z| < ps. Since ¥(z) has at least p zeros in |z| < ps,
this implies that ¢g(z) and hence ¢(z) has at least p zeros in |z| < ps =
p_lap—ap|
p+1 My
Thus the proof of Theorem 3 is completed. g

Proof of Theorem 4. It is clear that lim;_,,, a; = 0. Consider

F(2) = (= 1)/ (2)
(32) = —ap+ (ap —a1)z + (a1 — az)2® + ...+ (ap_1 — ap)2F + ...
= o(2) +9(2),

p—1
¢(z) = —ao+ > (a1 — a;)?
j=1
and

U(z) = (ap-1 — ap)z” + Z (aj-1— aj)zj

Jj=p+1

Now for |z| = ps (ps < 1, by hypothesis for af‘;—: <2+ ;1)),

9] > lap1 — —ﬂ]é“{ > oo —aj|pé‘“’+l)}

J=p+1

> (ap—1 — ap)pg — P}éﬂ{ > o - aj'}

J=p+1

= (ap—1 — ap)pg — PgHap

_ (P Plap—1 — ap>p+1

n ap p+1

> lao| + pglao — ap—1)  (by (23)).
Thus for |z| = ps,

(33) ()] > laol + pe(ao — ap-1)-
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Now for |z] = ps (ps < 1)

p—1
|6(2)] < laol + > laj—1 — a0}
j=1
p—1
< laol +pg Y _ laj—1 — aj]
j=1
= |ao| + pg(ao — ap-1).

Now the remaining proof of the Theorem 4 follows on the same lines of

Theorem 3.
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