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Abstract. A relatively simple proof is given for Haimo’s theorem that a
meromorphic function with suitably controlled Schwarzian derivative is a con-
cave mapping. More easily verified conditions are found to imply Haimo’s cri-
terion, which is now shown to be sharp. It is proved that Haimo’s functions
map the unit disk onto the outside of an asymptotically conformal Jordan
curve, thus ruling out the presence of corners.

1. Introduction. This paper arises from a theorem of Deborah Haimo
[10] that gives a sufficient condition for a meromorphic function to map the
unit disk D univalently onto the complement of a bounded convex set. Her
theorem involves an estimate of the Schwarzian derivative

Sf =
(
f ′′/f ′

)′ − 1

2

(
f ′′/f ′

)2
and relies upon methods of Nehari [11, 12] to prove univalence of analytic
functions whose Schwarzian derivative is suitably controlled. Here we give
a considerably shorter, more direct proof based essentially on Sturm com-
parison. In addition, we look more closely at Haimo’s criterion, resolve the
issue of sharpness, and point out some further consequences.

2000 Mathematics Subject Classification. Primary 30C45, Secondary 34K12.
Key words and phrases. Concave mapping, Schwarzian derivative, Schwarzian norm,

Haimo’s theorem, univalence, Sturm comparison, asymptotically conformal curve.
This work is supported by Fondecyt Grant # 1110321.



18 M. Chuaqui, P. Duren and B. Osgood

To set the stage for Haimo’s theorem, we need to introduce some termi-
nology. Let q(x) ≥ 0 be a continuous function defined on [0, 1) for which
the solution of

(1) y′′(x) + q(x)y(x) = 0 , y(0) = 0 , y′(0) = 1

is positive on (0, 1). The quantity y′(x)/y(x) is thus well defined on the
open interval and is easily seen to be decreasing. The function q will be
said to belong to the class P (α) if

(2) lim
x→1−

y′(x)

y(x)
≥ α ≥ 0 .

Haimo’s Theorem. Let f be a locally univalent meromorphic function in
D with the form

(3) f(z) =
1

z
+ b0 + b1z + b2z

2 + · · · , z ∈ D .

If |Sf(z)| ≤ 2q(|z|) for some q ∈ P (12) and all z ∈ D, then f is univalent in
D and maps it onto the complement of a bounded convex set.

In modern parlance, a meromorphic univalent function is said to be con-
cave if its image is the complement of a compact convex set. Prior to
Haimo’s work, Gabriel [9] had considered the special case where q(x) ≡ c
for some constant c > 0 and determined the largest value for which the
condition |Sf(z)| ≤ 2c implies that f is a concave mapping. This optimal
constant q0 turned out to be the smallest positive solution of the equation
tan
√
x = 2

√
x. Simple estimates show that π/3 <

√
q0 < π/3 + π/12,

and a numerical calculation gives q0 = 1.358 . . . . For q(x) ≡ q0 the solu-
tion to (1) is y = (1/

√
q0) sin

√
q0x, which shows that the constant function

q(x) ≡ q0 is of class P (12).
As in the original paper [10], the strategy of our proof of Haimo’s theorem

will be to show that f has the property

(4) 1 + Re
{
zf ′′(z)

f ′(z)

}
≤ 0 , z ∈ D .

Because of the simple pole at the origin, this will imply that f maps con-
centric circles univalently onto convex curves (cf. [7], p. 43).

We also give some conditions for a function q to be in the class P (α)
for given α. We show that every such function is integrable over [0, 1),
and that q ∈ P (α) for any given α ∈ [0, 1) if its integral is less than or
equal to 1 − α. In view of Haimo’s theorem, it follows that if f has the
form (3) and |Sf(z)| ≤ 2q(|z|) for some continuous function q(x) ≥ 0 with∫ 1
0 q(x) dx ≤

1
2 , then f is a concave mapping. We will show further that

under the same hypotheses f has the Schwarzian norm

‖Sf‖ = sup
z∈D

(1− |z|2)2|Sf(z)| < 2 ,
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which gives again a proof of univalence, by a theorem of Nehari [11]. This
result may be compared with another theorem of Nehari [13] (see also [3])
that every convex mapping has the Schwarzian norm ‖Sf‖ ≤ 2. For the full
class of concave mappings (3), however, nothing better than ‖Sf‖ ≤ 6 is
true, since the mapping onto the complement of a linear segment is concave
and has ‖Sf‖ = 6. But the bound ‖Sf‖ ≤ 6 is known to be valid for all
univalent functions, concave or not.

2. Proof of Haimo’s theorem. We now turn to our simplified proof of
Haimo’s theorem, appealing to comparison theorems for complex differential
equations. By hypothesis, f has the form (3) and |Sf(z)| ≤ 2q(|z|) for some
q ∈ P (12). The function u = (f ′)1/2 satisfies u′′+ 1

2(Sf)u = 0 with u(0) = 0

and |u′(0)| = 1. For fixed θ, consider the function v(r) = |u(reiθ)|. Then v
is differentiable away from the zeros of u and we claim that

(5) v′′(r) +
1

2
|Sf(reiθ)|v(r) ≥ 0 , 0 < r < 1 ,

with initial conditions v(0) = 0 and v′(0) = 1. A proof of (5) is implicit in
Lemma 2 of [6], and also in [4], but details are included here for the sake
of completeness. First observe that v(0) = 0 and v(r) > 0 in some open
interval (0, a), where a ≤ 1. Since v2 = uu, we find that

v(r)v′(r) = Re
{
eiθ u(reiθ)u′(reiθ)

}
,

and so v′(r) ≤ |u′(reiθ)| for all r ∈ (0, a). Another differentiation gives

v′(r)2 + v(r)v′′(r) = |u′(reiθ)|2 + Re
{
e2iθ u(reiθ)u′′(reiθ)

}
,

which shows that v′(0) = 1 and

v(r)v′′(r) ≥ Re
{
e2iθ u(reiθ)u′′(reiθ)

}
= −v(r)2 Re

{
e2iθ

1

2
Sf(reiθ)

}
,

in view of the differential equation for u. The inequality (5) now follows for
all r ∈ (0, a), where v(r) > 0.

In order to show that v(r) > 0 in the whole interval (0, 1), and hence to
conclude that (5) holds for 0 < r < 1, consider the expression w = v′y−vy′.
By hypothesis,

w′(r) = v′′(r)y(r)− v(r)y′′(r) ≥
(
q(r)− 1

2
|Sf(reiθ)|

)
v(r)y(r) ≥ 0

wherever v(r) > 0. Since w(0) = 0, an integration shows that w(r) > 0,
or v′(r)/v(r) ≥ y′(r)/y(r) in (0, a). Choosing δ ∈ (0, a) and integrating the
last inequality from δ to r ∈ (δ, a), we have

v(r)

y(r)
≥ v(δ)

y(δ)
→ v′(0)

y′(0)
= 1 as δ → 0 .
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Thus v(r) ≥ y(r) in (0, a). But y(r) > 0 in (0, 1), and so the same is
true for v and we see that (5) holds throughout the interval. Consequently,
v′(r)/v(r) ≥ y′(r)/y(r) for all r ∈ (0, 1).

Finally, we recall that v(r) = |u(reiθ)| = |f ′(reiθ)|−1/2 and write

v′(r)

v(r)
=

∂

∂r
log |u(reiθ)| = Re

{
∂

∂r
log u(reiθ)

}
= −1

2
Re
{
∂

∂r
log f ′(reiθ)

}
= − 1

2r
Re
{
zf ′′(z)

f ′(z)

}
, z = reiθ .

But v′(r)/v(r) ≥ y′(r)/y(r) ≥ 1
2 , so it follows that

1 + Re
{
zf ′′(z)

f ′(z)

}
≤ 1− |z| , 0 < |z| < 1 .

Since the function on the left-hand side is harmonic, the maximum principle
allows to draw the conclusion that f satisfies (4), which completes the proof
of Haimo’s theorem.

3. Related criteria for concavity. In view of Haimo’s theorem, it is of
interest to study the classes P (α). By definition, P (α) ⊂ P (β) if α > β, so
that P (α) ⊂ P (0) for all α > 0. We begin with the observation that every
function of class P (0) is integrable over (0, 1). Indeed, for q ∈ P (0) the
solution y(x) of (1) is positive and nondecreasing, and so its integrability on
(0, 1) depends only on its rate of increase as x→ 1. Fix any point a ∈ (0, 1)
and let a < x < 1. Then

0 ≤ y′(x) = y′(a)−
∫ x

a
q(t)y(t) dt ≤ y′(a)− y(a)

∫ x

a
q(t) dt ,

which shows that
∫ x
a q(t) dt ≤ y

′(a)/y(a).
The following theorem goes in the converse direction.

Theorem 1. Let q be a continuous function on [0, 1) with q(x) ≥ 0 and∫ 1

0
q(x) dx = c ≤ 1 .

Then q ∈ P (α) for α = 1−c, but q need not belong to P (α) for any α > 1−c.

Proof. If y is the solution of (1), then y(x) > 0 on some interval (0, a) for
0 < a ≤ 1. Since q(x) ≥ 0, it follows from the differential equation that
y′′(x) ≤ 0 for 0 < x < a and so y(x) ≤ x < 1. Consequently,

y′(x) = 1−
∫ x

0
q(t)y(t) dt ≥ 1−

∫ 1

0
q(t) dt = 1− c ≥ 0 .

This shows that y(x) is nondecreasing as long as it remains positive, which
implies that y(x) is positive and nondecreasing throughout the interval
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(0, 1). Therefore,
y′(x)

y(x)
≥ 1− c

y(x)
≥ 1− c ,

so that q ∈ P (1− c).
To see that the result is best possible, let 0 < a < 1 and define a con-

tinuous function q so that q(x) = 0 for 0 ≤ x ≤ a, and q is linear on [a, 1]

with q(1) = 2c/(1− a), so that
∫ 1
0 q(x) dx = c. Because q(x) ≡ 0 in [0, a], it

follows from (1) that y(x) = x in that interval. Therefore, a ≤ y(x) ≤ 1 for
x ∈ (a, 1), and

y′(x) = 1−
∫ x

0
q(t)y(t) dt = 1−

∫ x

a
q(t)y(t) dt ≤ 1− a

∫ x

a
q(t) dt ,

which implies that

lim
x→1−

y′(x)

y(x)
≤ 1− ac

y(1)
≤ 1

a
− c .

Since the bound can be made arbitrarily close to 1 − c by choosing the
number a sufficiently near to 1, this proves our assertion that q need not
belong to P (α) for any α > 1− c. �

Corollary. Let q be a continuous function on [0, 1) with q(x) ≥ 0 and∫ 1

0
q(x) dx ≤ 1

2
.

Let f be a locally univalent meromorphic function of the form (3), and
suppose that |Sf(z)| ≤ 2q(|z|) for all z ∈ D. Then f is univalent and maps
D onto the complement of a bounded convex set.

It turns out that the corollary is best possible in that the conclusion may
fail if 1

2 is replaced by any larger number. As a consequence, we see that
Haimo’s theorem fails if the function q is required only to be of class P (α)
for some α < 1

2 .

Theorem 2. For each number c > 1
2 there exist a continuous function q

with q(x) ≥ 0 and ∫ 1

0
q(x) dx = c ,

and a univalent meromorphic function f of the form (3) that satisfies |Sf(z)|
≤ 2q(|z|) for all z ∈ D but does not map D onto the complement of a convex
set.

Corollary. The constant 1
2 in Haimo’s theorem is best possible. For each

α < 1
2 there exist a function q ∈ P (α) and a univalent meromorphic function

f of form (3) that satisfies |Sf(z)| ≤ 2q(|z|) but does not map D onto the
complement of a convex set.



22 M. Chuaqui, P. Duren and B. Osgood

Deduction of corollary. According to Theorem 1, a function q as de-
scribed in Theorem 2, with the integral equal to c for 1

2 < c ≤ 1, must
belong to the class P (α) for α = 1− c < 1

2 . �

Proof of theorem. For any constant c ∈ [0, 1] and a positive integer n, let
f be a meromorphic function of form (3) with Schwarzian Sf(z) = 2c(n+

1)zn, and let q(x) = c(n+ 1)xn. Then
∫ 1
0 q(x) dx = c and |Sf(z)| = 2q(|z|)

for all z ∈ D. To construct the function f (which is uniquely determined up
to an additive constant), let u be the analytic function in D for which

u′′(z) + c(n+ 1)znu(z) = 0 , u(0) = 0 , u′(0) = 1 ,

and note that u′′(0) = 0. Then for any point z0 6= 0 in D, the function

f(z) = −
∫ z

z0

u(ζ)−2 dζ

has Schwarzian Sf(z) = 2c(n + 1)zn and is normalized to be of the form
(3). We claim that for each c > 1

2 , the function y defined by (1) has the
property

(6) lim
x→1−

y′(x)

y(x)
<

1

2

when n is sufficiently large. This is intuitively clear by analogy with the
construction in the proof of Theorem 1, since the function q(x) = c(n+1)xn

peaks near the point 1 for large n and is qualitatively similar to the function
q used in that construction.

Deferring a more detailed verification of (6), we now apply it to show
that for n sufficiently large the function f is not a concave mapping. The
relation (6) implies that x1 y′(x1)/y(x1) < 1

2 for some point x1 ∈ (0, 1). But
u(x) = y(x) for x ∈ (0, 1), so it follows that

1 +
x1f

′′(x1)

f ′(x1)
= 1 + 2x1

y′(x1)

y(x1)
> 0.

Hence for large n the function f fails to satisfy the condition (4) and is not
a concave mapping.

On the other hand, the function f is univalent in D for some c > 1
2

because it has the Schwarzian norm ‖Sf‖ < 2, allowing an application of
Nehari’s theorem [11]. Indeed, a simple calculation shows that

‖Sf‖ = 2c(n+ 1) sup
z∈D

(1− |z|2)2|z|n = 2c(n+ 1) max
0≤t≤1

(1− t2)2tn

= 2c(n+ 1)

(
4

n+ 4

)2 1

(1 + 4/n)n/2
≤ 64c

55/2
< (1.145)c < 2

for all c < 0.873. In particular, ‖Sf‖ < 2 for some c > 1
2 and all n ≥ 1.

(Curiously, the calculation also shows that ‖Sf‖ → 0 as n→∞.)
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It remains to verify that (6) holds for n sufficiently large. Let 0 < a < x <

1. Then for each ε > 0 we have
∫ 1
a q(t) dt > (1 − ε)c when n is sufficiently

large. Hence

y′(x) = 1−
∫ x

0
q(t)y(t) dt ≤ 1− a

∫ x

a
q(t) dt ≤ 1− a(1− ε)c ,

so that

lim
x→1−

y′(x)

y(x)
≤ 1

a
− (1− ε)c .

Thus if c > 1
2 the bound can be made less than 1

2 with a suitable choice
of the parameters a and ε. This verifies (6) and completes the proof of
Theorem 2. �

Theorem 3. Let q(x) ≥ 0 be a continuous function on [0, 1) with
∫ 1
0 q(x) dx

≤ c for some c ∈ (0,∞), Let f be a locally univalent meromorphic func-
tion whose Schwarzian derivative satisfies |Sf(z)| ≤ 2q(|z|) for all z ∈ D.
Then Sf is area-integrable over the disk, and f has the Schwarzian norm
‖Sf‖ < 4c.

Proof. Observe first that∫∫
D

|Sf(z)| dxdy ≤ 2

∫∫
D

q(|z|) dxdy = 2

∫ 2π

0

∫ 1

0
q(r) r drdθ < 4πc ,

where z = x+ iy. Since the mean-value property of analytic functions gives

Sf(0) = 1

π

∫∫
D

Sf(z) dxdy ,

it follows that |Sf(0)| < 4c. To obtain a bound at an arbitrary point ζ 6= 0
in D, consider the function

g(z) = f(ϕ(z)) , where ϕ(z) =
z + ζ

1 + ζz
.

Then Sg(z) = Sf(ϕ(z))ϕ′(z)2 and

(1− |ζ|2)2|Sf(ζ)| = |Sg(0)| ≤ 1

π

∫∫
D

|Sg(z)| dxdy

=
1

π

∫∫
D

|Sf(ϕ(z))||ϕ′(z)|2 dxdy =
1

π

∫∫
D

|Sf(w)| dudv < 4c ,

where w = u+ iv. Hence ‖Sf‖ < 4c. �

Observe that Theorem 3 makes a connection between Haimo’s theorem
and the Nehari class of functions with ‖Sf‖ ≤ 2, guaranteed to be univalent
by Nehari’s theorem [11]. In fact, for c ≤ 1

2 Theorem 3 gives the stronger
conclusion that ‖Sf‖ < 2, and a theorem of Ahlfors and Weill [1] then



24 M. Chuaqui, P. Duren and B. Osgood

shows that f maps the disk onto a region outside a bounded Jordan curve
which is a quasicircle. By comparison, for c ≤ 1

2 the corollary to Theorem 3
gives (via Haimo’s theorem) the further information that the boundary is
a convex curve, but this does not imply that ‖Sf‖ ≤ 2.

There are many concave mappings that fall outside the jurisdiction of
Haimo’s theorem. For instance, for 0 < t < 1 and s =

√
1 + t the function

h(z) =
1

s

1− ws

1 + ws
, where w =

1− z
1 + z

,

which is normalized by h(0) = 0 and h′(0) = 1, maps the unit disk univa-
lently onto a nonconvex region bounded by two circular arcs meeting with
interior angle sπ (cf. [6]). Its inversion f = 1/h has the form (3) and maps
the disk onto the complement of a convex set bounded by two circular arcs
meeting at interior angle (2 − s)π. Thus f is a concave mapping, but its
Schwarzian is Sf(z) = Sh(z) = −2t(1 − z2)−2, which has a double pole at
the point z = 1 and cannot be bounded by an integrable function q as in
Haimo’s theorem. For the same reason, no mapping onto the exterior of
a convex polygon (see [5]) can satisfy the hypotheses of Haimo’s theorem.

It would be interesting to find a geometric description of the class of
concave mappings described by Haimo’s theorem. In the next section we
show that the boundary of the omitted set is asymptotically conformal.

4. Asymptotic conformality. Let C be a Jordan curve and let γ(w1, w2)
denote the arc of smaller diameter between the points w1 and w2 on C. The
curve C is said to be asymptotically conformal if

max
w∈γ(w1,w2)

|w1 − w|+ |w − w2|
|w1 − w2|

→ 1 as |w1 − w2| → 0 .

It is clear from this definition that the curve C cannot have corners.
We now strengthen Haimo’s theorem to show that the function f maps

the disk onto the region outside an asymptotically conformal Jordan curve.
In particular, the boundary contains no corners, ruling out a convex polygon
and the union of two circular arcs, as described at the end of the previous
section.

Theorem 4. Let f be a locally univalent meromorphic function of the form
(3) with the property that |Sf(z)| ≤ 2q(|z|) for some q ∈ P (12) and all z ∈ D.
Then f is univalent and maps D onto the complement of a convex set that is
either a linear segment or is bounded by an asymptotically conformal Jordan
curve.

In preparation for the proof, it is helpful to record a simple lemma. Recall
that the Bergman space A1 consists of all analytic functions g in the disk
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D with the finite area integral:∫∫
D

|g(z)| dxdy <∞ .

Let M∞(r, g) denote the maximum modulus of g(z) on the circle |z| = r < 1.

Lemma 1. If g ∈ A1, then (1− r)2M∞(r, g)→ 0 as r → 1.

A proof may be found in [8], p. 79.

Proof of theorem. According to Haimo’s theorem, f maps D univalently
onto the complement of a closed bounded convex set. If such a set is not
a linear segment, it must be bounded by a Jordan curve C. We are to show
that C is asymptotically conformal. As noted at the beginning of Section 3,
every function q ∈ P (12) is integrable over (0, 1). Hence by Theorem 3, the
Schwarzian derivative Sf belongs to the Bergman space A1, and the lemma
then says that

(7) (1− |z|)2Sf(z)→ 0 as |z| → 1 .

By a theorem of Pommerenke [14], the boundary curve C is asymptotically
conformal if and only if

(8) (1− |z|)f
′′(z)

f ′(z)
→ 0 as |z| → 1 .

But Becker and Pommerenke [2] showed that (7) implies (8), so the proof
of Theorem 4 is complete. �

It may be remarked that the implication “(8) =⇒ (7)” is a simple
consequence of the fact that for any function g that is analytic in the disk,
(1−|z|)g(z)→ 0 if and only if (1−|z|)2g′(z)→ 0. However, the implication
“(7) =⇒ (8)” lies deeper because it is not immediately evident that each
of the terms in Sf = (f ′′/f ′)′ − 1

2 (f
′′/f ′)2 has the same order of growth as

Sf .

5. Examples. Theorem 1 allows us to give explicit examples of functions
q ∈ P (12) for use in Haimo’s theorem. The functions

q(x) =
1

π
√
1− x2

, q(x) =
2

π(1 + x2)
,

and q(x) =
1− µ

2(1− x)µ
, where 0 < µ < 1 ,

are all positive and continuous on [0, 1), with
∫ 1
0 q(x) dx = 1

2 . Hence q ∈
P (12) in each case, by Theorem 1. However, the constants 1/π, 2/π, and (1−
µ)/2 cannot be optimal because the distributions of mass in the functions q
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are not concentrated near the point x = 1. In order to determine the sharp
value in the first case, for instance, one would have to find the solution y of

y′′(x) +
2c

π
√
1− x2

y(x) = 0 , y(0) = 0 , y′(0) = 1 ,

then find c by imposing the condition that y′(x)/y(x)→ 1/2 as x→ 1.
Another example of interest is a mapping onto the outside of an ellipse.

For any fixed r ∈ (0, 1), the function f(z) = 1/z+ r2z has the form (3) and
maps the unit disk conformally onto the outside of an ellipse that becomes
increasingly eccentric as r → 1. Its Schwarzian derivative is

Sf(z) = − 6r2

(1− r2z2)2
and ‖Sf‖ = 6r2 , 0 < r < 1 .

The function q(x) = 3r2(1 − r2x2)−2 provides the bound |Sf(z)| ≤ 2q(|z|)
and its integral is found to be∫ 1

0
q(x) dx =

3r

4

{
2r

1− r2
+ log

1 + r

1− r

}
,

a quantity that increases from 0 to ∞ as r goes from 0 to 1. A numerical
calculation shows that

∫ 1
0 q(x) dx = 1

2 for r = 0.386 . . . . Thus for 0 < r <
0.386 the function f satisfies the conditions of Haimo’s theorem, as shown by
the corollary to Theorem 1. It seems possible that a study of the differential
equation y′′ + qy = 0 would reveal that q ∈ P (12) for all r ∈ (0, 1), so that
Haimo’s theorem always applies, but we have not pursued this question.

6. A class of Haimo mappings. In this final section we identify a class
of concave mappings, simply described by their Schwarzian derivatives, that
are governed by Haimo’s theorem.

Theorem 5. Let f be a concave mapping of D of the form (3) whose
Schwarzian derivative is real and nonnegative on the interval [0, 1) and has
the property |Sf(z)| ≤ Sf(|z|) for all z ∈ D. Then f satisfies the hypotheses
of Haimo’s theorem.

Proof. The function u(z) = −i(f ′(z))−1/2 satisfies u′′ + 1
2Sf u = 0, with

u(0) = 0 and u′(0) = 1. By hypothesis, the function q(x) = 1
2Sf(x) provides

the bound |Sf(z)| ≤ 2q(|z|) for all z ∈ D. Thus we need only to show that
q ∈ P (12). Because Sf(x) is real on [0, 1), the function u is also real-valued
there. Hence u coincides on [0, 1) with the solution y of equation (1). But u
cannot vanish in (0, 1) since the univalent function f is analytic there, and
so u must remain positive on (0, 1). By hypothesis f is a concave mapping,
so the inequality (4) holds for all z ∈ D. Since f ′′/f ′ = −2u′/u, it follows
from (4) that

1− 2x
y′(x)

y(x)
= 1− 2x

u′(x)

u(x)
≤ 0 for 0 < x < 1 ,
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which implies that

lim
x→1−

y′(x)

y(x)
≥ 1

2
.

Thus q ∈ P (12) and the proof is complete. �

To give an example of a concave mapping with the properties of Theo-
rem 5, we mention the function f(z) =

√
c cot(

√
cz), studied by Gabriel [9].

Here c is a small positive constant, and Sf(z) ≡ 2c. Gabriel showed, and
Haimo’s theorem confirms it, that for sufficiently small c the function f is
univalent in D and maps it onto the complement of a convex set.

Another example appears in the proof of Theorem 2. For any constant
c ∈ (0, 12), a meromorphic function f of form (3) with Schwarzian Sf(z) =
2c(n + 1)zn is a concave mapping of D that satisfies the requirements of
Theorem 5.
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