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Abstract. It is well known that starting with real structure, the Cayley–
Dickson process gives complex, quaternionic, and octonionic (Cayley) struc-
tures related to the Adolf Hurwitz composition formula for dimensions p = 2, 4
and 8, respectively, but the procedure fails for p = 16 in the sense that the
composition formula involves no more a triple of quadratic forms of the same
dimension; the other two dimensions are n = 27. Instead, Ławrynowicz and
Suzuki (2001) have considered graded fractal bundles of the flower type re-
lated to complex and Pauli structures and, in relation to the iteration process
p → p + 2 → p + 4 → . . . , they have constructed 24-dimensional “bipetals”
for p = 9 and 27-dimensional “bisepals” for p = 13. The objects constructed
appear to have an interesting property of periodicity related to the grada-
ting function on the fractal diagonal interpreted as the “pistil” and a family
of pairs of segments parallel to the diagonal and equidistant from it, inter-
preted as the “stamens”. The first named author, M. Nowak-Kępczyk, and S.
Marchiafava (2006, 2009a, b) gave an effective, explicit determination of the
periods and expressed them in terms of complex and quaternionic structures,
thus showing the quaternionic background of that periodicity. In contrast to
earlier results, the fractal bundle flower structure, in particular petals, sepals,
pistils, and stamens are not introduced ab initio; they are quoted a posterio-
ri, when they are fully motivated. Physical concepts of dual and conjugate
objects as well as of antiparticles led us to extend the periodicity theorem
to structure fractals in para-quaternionic formulation, applying some results
in this direction by the second named author. The paper is concluded by
outlining some applications.
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1. Introduction and statement of the periodicity theorem. Given
generators A1

1, A
1
2, . . . , A

1
2p−1 of a Clifford algebra Cl2p−1(C), p = 2, 3, . . . ,

in particular the generators

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
of the Pauli algebra, consider the sequence

(1)

Aq+1
α = σ3 ⊗ iαAqα ≡

(
iαAqα 0
0 −iαAqα

)
, α = 1, 2, . . . , 2p+ 2q − 3;

Aq+1
2p+2q−2 = σ1 ⊗ Ip,q ≡

(
0 Ip,q
Ip,q 0

)
,

Aq+1
2p+2q−1 = −σ2 ⊗ Ip,q ≡

(
0 iIp,q

−iIp,q 0

)
,

of generators of Clifford algebras Cl2p+2q−1(C), q = 1, 2, . . . , and the se-
quence of corresponding system of closed squares Qαq of diameter 1, centered
at the origin of C, where Ip,q = I2p+q−2 , the unit matrix of order 2p+q−2.
It is convenient to start with q always from 1, i.e., to shift q for α ≥ 2p
correspondingly.

The difference in formula (1) here and in [4] is due to the replacement of
matrix units 1, iσ1, iσ2, iσ3 of the usual quaternions by the units

1, i = iσ2, j = σ1, k = σ3

of para-quaternions, so that our i, j, and k mean j, (1/i)i, and (1/i)k in [4],
respectively. This is due to our definition of the real Clifford algebra H̃ of
para-quaternions as generated by 1 and imaginary units i, j, k satisfying

−i2 = j2 = k2 = 1, ij = −ji = k.

For a para-quaternionic structure the left module structure is defined up to
conjugation in H̃.

Within a closed square Qαq consider its diameter

L∞ =

[
1

2
√
2
(−1 + i);

1

2
√
2
(1− i)

]
and two segments, symmetric and equidistant with respect to L∞:

L−h =

[
1

2
√
2
(1 + i− iεrq);

1

2
√
2
(1− εrq − i)

]
,

L+
h =

[
1

2
√
2
(−1 + εrq + i);

1

2
√
2
(1− i+ iεrq)

]
,

where

εrq = 1/2h, h = p+ q − 1− r, r =

{
2 for α = 1, 2, . . . , 2p− 1;[
1
2α
]

for α = 2p, 2p+ 1, . . .
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and [ ] denotes the function “entier”. Clearly, dist (L±h , L∞) = 1/2h+2.
Consider then the sets: L0

∞ of points

z =
1

2
√
2

m

2n
(1− i), m = 0,±1, . . . ,±(2n − 1); n = 0, 1, . . . ,

of L∞, and L0
h of points

z−−(h) =
1

2
√
2

m

2n
(1− i)− 1

2
√
2
εrq and z−+(h) =

1

2
√
2

m

2n
(1− i)− i

2
√
2
εrq,

m = 0,±1, . . . ,±(2n − 1); n = 0, 1, . . ., of L−h ,

z++(h) =
1

2
√
2

m

2n
(1− i) + 1

2
√
2
εrq and z+−(h) =

1

2
√
2

m

2n
(1− i) + i

2
√
2
εrq,

m = 0,±1, . . . ,±(2n − 1); n = 0, 1, . . ., of L+
h .

Let

(2) Aqα = (aqkαj), Aα = (akαj), j, k = 1, 2, . . . , 2p+q−2.

Let further

gαq (a
qk
αj ; z) = iαaqkαj if gαq (z) = iαaqkαj ; gαq (a

qk
αj ; z) = 0 if gαq (z) 6= iαaqkαj ,

where gαq is the gradating function equal aqkαj on the closed square Qqjαk cor-
responding to the pair (j, k); we suppose that the original square is divided
into 4p+q−2 squares with sides parallel to the sides of Qαq .

Given z ∈ L0
∞, consider the sequences

gα1 (z), g
α
2 (z), . . . for α < 2p,(3)

ĝα1 (z
1
−), ĝ

α
2 (z

2
−), . . . for α < 2p,(4)

ĝα1 (z
1
+), ĝ

α
2 (z

2
+), . . . for α < 2p,(5)

where

(6)
ĝαq (z

q
−) = (gαq (z

−
−(h)), g

α
q (z

+
−(h)),

ĝαq (z
q
+) = (gαq (z

−
+(h)), g

α
q (z

+
+(h)),

as well as

ĝ2r1 (z1−), ĝ
2r
2 (z2−), . . . for 2r = α ≥ 2p,(7)

ĝ2r1 (z1+), ĝ
2r
2 (z2+), . . . for 2r = α ≥ 2p,(8)

ĝ2r+1
1 (z1−), ĝ

2r+1
2 (z2−), . . . for 2r + 1 = α > 2p,(9)

ĝ2r+1
1 (z1+), ĝ

2r+1
2 (z2+), . . . for 2r + 1 = α > 2p,(10)
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with the notation (6), and

ĝ2r1 (z−1 ), ĝ
2r
2 (z−2 ), . . . for 2r = α ≥ 2p,(11)

ĝ2r1 (z+1 ), ĝ
2r
2 (z+2 ), . . . for 2r = α ≥ 2p,(12)

ĝ2r+1
1 (z−1 ), ĝ

2r+1
2 (z−2 ), . . . for 2r + 1 = α > 2p,(13)

ĝ2r+1
1 (z+1 ), ĝ

2r+1
2 (z+1 ), . . . for 2r + 1 = α > 2p,(14)

where

(15) ĝαq (z
−
q ) = (gαq (z

−
−(h)), g

α
q (z
−
+(h)), ĝαq (z

+
q ) = (gαq (z

+
−(h)), g

α
q (z

+
+(h)).

We need two lemmas.

Lemma 1 ([4]). Formulae (1) are equivalent to

(16)
Aq=1
α = iαk⊗Aqα, α = 1, 2, . . . , 2p+ 2q − 3;

Aq+1
2p+2q−2 = j⊗ 1⊗(p+q−2), Aq+1

2p+2q−1 = ii⊗ 1⊗(p+q−2).

Lemma 2 ([4]). (i) If a quaternionic vector space has dimension 4n, its
para-quaternionic counterpart has dimension 2n; n ∈ N.

(ii) If dimV = 4n in both cases: quaternionic and para-quaternionic,
there exists a basis of V of the following type:

(17) (X1, . . . , Xn, J1X1, . . . , J1Xn, J2X1, . . . , J2Xn, J3X1, . . . , J3Xn)

for any admissible basis (J1, J2, J3).

We have

Periodicity Theorem (para-quaternionic formulation). (i) If aλαλ 6= 0 for
λ = 2p+q−2, the sequences (3) are periodic of period 2, starting from some
term. The periods are:

(18)

1

2
iαη

[
(aλαλ − a1α1)1+ (aλαλ + a1α1)k

]
,

1

2
iαη

[
(aλαλ + a1α1)1− (aλαλ − a1α1)k

]
,

where η = 1 or −1.
(ii) If

(19) aλαλ = 0 and aλ−1αλ−1 = a2α2 = a1α1 = 0, where λ = 2p+q−2,

the sequences (3) are constant-valued, starting from some term; it amounts
at

(20) −1

2
iαη

[
a1α11+ a1α1k

]
, where η = 1 or − 1,
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(iii) If (19) holds, the sequences (4) are periodic of period 2, starting from
some term. The periods are:

(21)

1

2
iαη

[(
aλ−1αλ + aλα,λ−1

)
i+
(
aλ−1αλ − a

λ
α,λ−1

)
j
]
,

−1

2
iαη

[(
aλ−1αλ + aλα,λ−1

)
i−
(
aλ−1αλ − a

λ
α,λ−1

)
j
]
,

where η = 1 or η = −1.
(iv) If (19) holds, the sequences (5) are constant-valued, starting from

some term; it amounts at

(22) −1

2
iαη

[(
a1α2 + a2α1

)
i−
(
a1α2 − a2α1

)
j
]
, where η = 1 or − 1.

(v) The sequences (7) and (9) are periodic of period 2, starting from some
term. The periods are:

(23)
(
1

2
1+

1

2
k ,

1

2
1+

1

2
k

)
,

(
−1

2
1− 1

2
k , −1

2
1− 1

2
k

)
or

(24)
(
−1

2
1− 1

2
k , −1

2
1− 1

2
k

)
,

(
−1

2
1− 1

2
k , −1

2
1− 1

2
k

)
in the case of (7), and

(25)
(
− 1

2i
1+

1

2
ik ,

1

2i
1− 1

2
ik

)
,

(
− 1

2i
1+

1

2
ik ,

1

2i
1− 1

2
ik

)
or

(26)
(
− 1

2i
1+

1

2
ik ,

1

2i
1− 1

2
ik

)
,

(
1

2i
1− 1

2
ik , − 1

2i
1+

1

2
ik

)
in the case of (9).

(vi) The sequences (8) and (10) are constant-valued, starting from some
term; it amounts at

(27)
(
−1

2
1+

1

2
k , −1

2
1+

1

2
k

)
or

(
1

2
1− 1

2
k ,

1

2
1− 1

2
k

)
in the case of (8), and

(28)
(
− 1

2i
1− 1

2
ik ,

1

2i
1+

1

2
ik

)
or

(
1

2i
1+

1

2
ik , − 1

2i
1− 1

2
ik

)
in the case of (10).

(vii) The sequences (13) and (14) are periodic of period 2, starting from
some term. The periods are:

(29)
(

1

2i
1− 1

2
ik ,

1

2
1− 1

2
k

)
,

(
− 1

2i
1+

1

2
ik ,

1

2
1− 1

2
k

)
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or

(30)
(
− 1

2i
1+

1

2
ik ,

1

2
1+

1

2
k

)
,

(
1

2i
1− 1

2
ik ,

1

2
1+

1

2
k

)
in the case of (13), and (30) or (29) in the case of (14) (given z ∈ L0

∞, the
choices (27) and (28) are mutually correlated).

(viii) The sequences (11) and (12) are periodic of period 2, starting from
some term. The periods are:

(31)
(
1

2
1+

1

2
k , −1

2
1+

1

2
k

)
,

(
−1

2
1− 1

2
k , −1

2
1+

1

2
k

)
or

(32)
(
−1

2
1− 1

2
k ,

1

2
1− 1

2
k

)
,

(
1

2
1+

1

2
k ,

1

2
1− 1

2
k

)
.

The proof is analogous to that of the corresponding theorem given in
[4–6]. However, in order to understand two important differences:

ij, i, ik instead of i, j,k and iαAqα instead of Aqα, α = 1, 2, . . . , 2p+ 2q − 3,

we give a proof in the case of α odd and α > 2p.

2. Proof of the Periodicity Theorem for α odd and α > 2p. In
order to calculate

(33)

(
gαq

(
z−−

(
p+ q − 1−

[
1

2
α

]))
, gαq

(
z+− (p+ q − 1)−

[
1

2
α

]))
=

(
gαq

(
1

2
√
2

m

2n
(1− i)− 1

2
√
2

1

2p+q−1−[1/2α]

)
,

gαq

(
1

2
√
2

m

2n
(1− i)− i

2
√
2

1

2p+q−1−[1/2α]

))
,

m = 0,±1, . . . ,±(2n − 1); n = 0, 1, . . ., we have to look for

(34)
(
gαq−s

(
z−−

(
p+ q − 1−

[
1

2
α

]))
, gαq−s

(
z+−

(
p+ q − 1−

[
1

2
α

])))
,

s = 1, 2, . . .. To this end in the case of the Clifford-type fractal
∑

5 = (Q5
q),

p = 2[1, 2, 11] we consider the table (cf. [4], Fig. 1), where rows numbered
with positive integers, corresponding to odd numbers, represent

(35)

{
z−−

(
p+ q − 1−

[
1

2
α

])}
∪
{
z+−

(
p+ q − 1−

[
1

2
α

])}
=
{
z−− (p+ q − 3)

}
∪
{
z+− (p+ q − 3)

}
on the q-th iteration step and columns represent the configuration related
to sm = m/2n; hereafter, for z ∈ L∞, we are also using the notation

s =
1√
2

(
(re z − im z) +

1

2

)
.
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In principle, the configuration (35) coincides for p = 2 with that of Sec. 6
in [4], but we have to take into account that the number of basic squares
was 4p+q−2 = 4q, and now it amounts at 4p+q−1 = 4q+1.

The complete configuration related to (35) consists of four values of the
generating function if z belongs to the interior of the basic square Qαjqk corre-
sponding to 16 values if z is a vertex (of course, it may happen that some of
these values coincide). In our case we have the following possibilities for the
four values corresponding to the direction perpendicular to L∞ determined
by the points z−−(q − 1) and z+−(q − 1) starting from some term of (9):

i −i

0 0
or

−i i

0 0
.

As far as the direction of L∞ corresponding to z ∈ L∞ is concerned, we
have only one possibility: i −i or −i i . The complete configuration
becomes:

i

0

−i
0

or
−i
0

i

0
.

For each n the first period is indicated with help of the upper parts of two
bigger squares: each upper part containing four small squares i and four
small rectangles .

Since the direct proof of the statement (v) of the Periodicity Theorem
seems to be more complicated that the preceding ones, it is instructive to
illustrate the determining procedure (34) for the complete structure (33) of
the gradating function with respect to (z−− , z

+
− , z

−
+ , z

+
+) in the case of

∑
5

and p = 2 by decomposing the lifting inverse to the projection (34) with
respect to s, into three subliftings, covering the range of Fig. 1 in [4], as
indicated on Fig. 2 in [4]:

(q = 3)
s=11−−−→ (4)

10−→ . . .
7−→ (8),

(q = 8)
s=6−−→ (9)

5−→ (10)
4−→ (11),

(q = 11)
s=3−−→ (12)

2−→ (13)
1−→ (14).

The data for the initial lifting s = 11 corresponding to q = 3 can easily be
checked out from Fig. 3 in [4], the square corresponding to

p = 2, α = 4, 5; q = 3, h = 2.

In the case of
∑

7 = (Q7
q), p = 3 thanks to starting with q always from

1, the corresponding table differs from the previous one by minor changes
only, caused by the fact that the number of basic squares has increased, for
q = 1 from 16 to 64; cf. Fig. in [4], the squares corresponding to

p = 2, α = 4, 5; q = 1, h = 0,

p = 2, h = 6, 7; q = 1, h = 0.
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Consequently, within the range of Fig. 1 in [4], the changes concern q ≤ 9
only; they are shown in Fig. 4 in [4].

Then we can proceed by induction with respect to p, considering
∑

α,
α = 2p + 1. We observe that, by the definition of i, j, and k, the matrices
expressing the periods can be given in the form (25) and (26), as desired.

3. The second and third Periodicity Theorem in para-quaternionic
formulation. The following generalizations of Periodicity Theorems (iii)
and (iv) are obtained by analogy with those established in [4].

If we remove the second condition from (19):

(36) aλαλ = 0 for λ = 2p+q−2

then the periods (21) have a more general form

(37) iα

(
ηaλ−1α,λ−1 ηaλα,λ−1

ηaλ−1αλ 0

)
, iα

(
−ηaλ−1α,λ−1 −ηaλα,λ−1
−ηaλ−1αλ 0

)
,

where η = 1 or −1, and the para-quaternionic form, instead of (21) reads:

(38)
1
2 i
αη
[
aλ−1α,λ−11+ (aλ−1αλ + aλα,λ−1)i+ (aλ−1αλ − a

λ
α,λ−1)j+ aλ−1α,λ−1k

]
,

−1
2 i
αη
[
aλ−1α,λ−11− (aλ−1αλ + aλα,λ−1)i− (aλ−1αλ − a

λ
α,λ−1)j− a

λ−1
α,λ−1k

]
.

Therefore we have arrived at the following generalization of Periodicity The-
orem (iii):

Second Periodicity Theorem (para-quaternionic formulation). (i) If
(36) holds, the sequences (4) are periodic of period 2, starting from some
term. The periods are (38), where η = 1 or −1.

(ii) The periodicity of the sequences (4) always starts from their n-th
term or earlier whenever m in the definition of z ∈ L0

∞ is odd. If m is even,
of the form m = µ · 2ν , where ν is odd, the periodicity of (4) starts from
the n − ν-th term or earlier. In particular, such a situation appears in the
cases of Pauli matrices σ1 and σ2, where the periodicity, for m odd, starts
exactly from the n-th term. For m even the periodicity starts exactly from
the n− ν-th term.

If we replace (19) by a less restrictive condition (36), then the one-element
periods (22) have a more general form

(39) iα
(
−ηa1α1 −ηa2α1
−ηa1α2 −ηa2α2

)
,

where η = 1 or −1, and the para-quaternionic form, instead of (22), reads:

(40) −1

2
iαη

[
(a1α1 + a2α2)1− (a1α2 + a2α1)i− (a1α2 − a2α1)− (a1α1 − a2α2)k

]
.

Therefore we have arrived at the following generalization of Periodicity The-
orem (iv):
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Third Periodicity Theorem. (i) If (36) holds, the sequences (5) are
constant-valued, starting from some term. It amounts at (40), where η = 1
or −1.

(ii) The constancy of the sequences (5) always starts from their n-th term
or earlier, whenever m in the definition of z ∈ L0

∞ is odd. If m is even,
of the form m = µ · 2ν , where ν is odd, the constancy of (5) starts from
the n − ν-th term or earlier. In particular, such a situation appears in the
cases of Pauli matrices σ1 and σ2, where the constancy, for m odd, starts
exactly from the n-th term. For m even the periodicity starts exactly from
the n− ν-th term.

4. Perspectives of combining structure fractals with para-quater-
nionic geometry. The periodicity theorems for structure fractals in para-
-quaternionic formulation give wide research perspectives which we plan to
explore in the future:

1. Physical interpretation of a generic subspace of a para-quaternionic
Hermitian vector space [3, 14].

2. Algebraical aspects related with the five-dimensional space-time [12,
15].

3. Noncommutativity and phase-space theorem referring to the well-
-known Gelfand–Nǎımark theorem (1943): Let A be a commutative C∗-
algebra and M denote the set of maximal ideals of A. Then, equipped
with a natural topology, M is a locally compact topological space, and
A = C0(M), where C0 denotes the C∗-algebra of continuous functions of M
vanishing at infinity [5, 16].

4. Finsler geometry of holomorphical and projectivized bundles, in par-
ticular, extension of the quaternionic Randers models to a para-quaternionic
geometry [8].

5. Supercomplex structures in complex Finslerian quantum mechanics
[10].

6. Para-quaternionic geometry vs. openness and dissipativity of the sys-
tem [9].

7. Torsion-depending deformations within the electromagnetic spaces [6].
8. Complex Randersian physics vs. isospectral deformations [7].
9. Complex gauge connections of interacting fields [7].
10. Spin connections of the triple of correlations diffeomorphism ξ of two

physical systems, ξ-morphism e of related vector bundles, and the metric
F0 [7].

11. Generalized Dirac–Maxwell systems [13, 16].
12. Complex-analytical approach to Dirac–Maxwell systems vs. physical

demands.
13. The solenoidal and nanosolenoidal parts of the generalized Yang–

Mills equations as observed on the canonical principal fibre bundle.
14. Simplifying the external field in terms of the metric and connection.
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15. General mathematical and physical conclusions of combining struc-
ture fractals with para-quaternionic geometry.
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