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Abstract. We give new characterizations of the analytic Besov spaces Bp

on the unit ball B of Cn in terms of oscillations and integral means over some
Euclidian balls contained in B.

1. Introduction. Let B = {z ∈ Cn : |z| < 1} denote the open unit ball
in Cn and H(B) be the set of all holomorphic functions on B. By Aut(B)
we mean the group of all automorphisms of B. It is known that Aut(B) is
generated by the unitary operators and involutions of the form

ϕw(z) =
w − Pw(z)− swQw(z)

1− 〈z, w〉
,

where w ∈ B, sw = (1 − |w|2)1/2, Pw is the orthogonal projection of Cn to
the subspace spanned by w, i.e.

Pw(z) =
〈z, w〉
|w|2

w for w 6= 0, and P0(z) = 0,
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and Qw = I − Pw (see, e.g. [13, 16] for definition and properties of the
automorphism group of B). The mapping ϕa is called the Möbius transfor-
mation. It is known that ρ(z, w) = |ϕz(w)| is a metric on B, the so-called
pseudo-hyperbolic metric (see, e.g. [9, 15, 16]).

Let dυ be the Lebesgue measure on B normalized so that υ(B) = 1 and
let dτ(z) = dv(z)

(1−|z|2)n+1 be the invariant measure on B.
For f ∈ H(B), set

Qf (z) = sup
06=x∈Cn

|〈∇f(z), x〉|
Hz(x, x)1/2

, z ∈ B,

where ∇f(z) = (∂f/∂z1, ∂f/∂z2, . . . , ∂f/∂zn) is the complex gradient of f
and Hz(x, x) is the Bergman metric on B, that is

Hz(x, x) =
n+ 1

2

(1− |z|2)|x|2 + |〈x, z〉|2

(1− |z|2)2
.

The Möbius invariant Besov space Bp, 1 < p ≤ ∞, consists of all holomor-
phic functions on B for which Qf ∈ Lp(B, dτ). In the case p =∞ the space
B∞ is the Bloch space B; so

B = B∞ = {f ∈ H(B) : ‖f‖B <∞},

where

‖f‖B = sup
z∈B

Qf (z).

If 1 < p ≤ ∞ the space Bp is the Banach space with the norm

‖f‖Bp = |f(0)|+ (p− 1)‖Qf‖Lp(dτ).

Hahn and Youssfi [3] proved that for n > 1 the Besov space Bp is nontrivial
and contains all polynomials if and only if p > 2n. Moreover, it is known
that for f ∈ H(B), the following conditions are equivalent

(i) f ∈ Bp,
(ii) |∇f(z)|(1− |z|2) ∈ Lp(B, dτ),
(iii) |∇̃f(z)| ∈ Lp(B, dτ) where |∇̃f(z)| = |∇(f ◦ ϕz)(0)|.

The proofs can be found in [3, 8, 16].
The following results for the space Bp are reminiscences of Holland and

Walsh characterization of the Bloch space [6].
In the case n = 1 Stroethoff [14] proved that for 2 < p <∞,

f ∈ Bp ⇔
∫
B

∫
B

∣∣∣∣f(z)− f(w)z − w

∣∣∣∣p (1− |z|2) p
2 (1− |w|2)

p
2 dτ(w)dτ(z) <∞.
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This equivalence has been generalized to the unit ball case in [8], where the
following result has been obtained. If 2n < p <∞, then

(1)

f ∈ Bp ⇔∫
B

∫
B

(
|f(z)−f(w)|

|w−Pw(z)−swQw(z)|

)p
(1−|z|2)

p
2 (1−|w|2)

p
2 dτ(w)dτ(z)<∞.

Let B(a, r) denote a Euclidian ball of radius r and centered at a ∈ Cn. For
a ∈ B and 0 < r < 1 let

E(a, r) = {z ∈ B : |ϕa(z)| < r} = ϕa(B(0, r))

be the pseudo-hyperbolic (or Bergman) metric ball centered at z. Then
E(a, r) is an elipsoid in Cn. We will often use the following property of
E(a, r).
There exists a positive constant C (dependent on r, but not on z and a)
such that

(2) C−1(1− |z|2) ≤ |1− 〈z, a〉| ≤ C(1− |a|2)
for all z ∈ E(a, r).

Using equivalence (1), we easily obtain the following

Theorem 1. Assume that f ∈ H(B) and 2n < p <∞. Then f ∈ Bp if and
only if

(3)
∫
B

∫
B

(
|f(z)− f(w)|
|1− 〈z, w〉|

)p
(1− |z|2)

p
2 (1− |w|2)

p
2 dτ(w)dτ(z) <∞.

Proof. Assume that for f ∈ H(B) condition (3) is satisfied. Since

|∇̃f(z)|p ≤ C
∫
E(z,r)

|f(w)− f(z)|p

|1− 〈w, z〉|n+1
dv(w), (see, e.g. [8])

and for w ∈ E(z, r),

(4) 1− r2 < 1− |ϕz(w)|2 =
(1− |z|2)(1− |w|2)
|1− 〈w, z〉|2

,

we get, using (2),∫
B
|∇̃f(z)|pdτ(z)

≤ C
∫
B

∫
E(z,r)

|f(w)− f(z)|p

|1− 〈w, z〉|n+1

(1− |z|2)p/2(1− |w|2)p/2

|1− 〈w, z〉|p
dv(w)dτ(z)

≤ C
∫
B

∫
E(z,r)

|f(w)− f(z)|p

(1− |w|2)n+1

(1− |z|2)p/2(1− |w|2)p/2

|1− 〈w, z〉|p
dv(w)dτ(z)

≤ C
∫
B

∫
B

|f(w)− f(z)|p(1− |z|2)p/2(1− |w|2)p/2

|1− 〈w, z〉|p
dτ(w)dτ(z).
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Hence (3) implies f ∈ Bp. The other implication follows from (1) and from
the inequality

|w − Pw(z)− swQw(z)| ≤ |1− 〈z, w〉|, z, w ∈ B. �

For α > −1 we define the weighted volume measure dvα(z) = cα(1 −
|z|2)αdv(z), where cα is a positive constant such that vα(B) = 1.

We remark that condition (3) can be written in the form∫
B

∫
B

(
|f(z)− f(w)|
|1− 〈z, w〉|

)p
dvα(z)dvα(w) <∞,

where α = −n− 1 + p/2.
Moreover, the inequality

|w − Pw(z)− swQw(z)| ≤ |z − w|, z, w ∈ B,

and equivalence (3) imply that if f ∈ Bp, then

(5)
∫
B

∫
B

(
|f(z)− f(w)|
|z − w|

)p
dvα(z)dvα(w) <∞, α = −n− 1 + p/2.

We do not know if condition (5) is sufficient for f to belong to Bp. The
sufficiency of (5) has been claimed in [4]. Unfortunately, the proof given
there is not correct.

For p =∞, condition (5) is understood as

‖f‖B̃ = sup
z,w∈B,z 6=w

|f(z)− f(w)|
|z − w|

(1− |z|2)
1
2 (1− |w|2)

1
2 <∞

and is necessary and sufficient for containment in the Bloch space B as shown
in [12]. For the proof of the last result the authors [12] used the so-called
conformal Möbius transformation. We also will discuss this transformation
in the next section.

Recently, M. Pavlović [10, 11] considered a more general space of C1

functions in the unit ball for which two Bloch norms can be defined as
follows

‖f‖B1 = sup
x∈B

(1− |x|2)‖df(x)‖,(6)

‖f‖B2 = sup
x∈B
‖d̃f(x)‖,(7)

where ‖df(x)‖ is the norm of the differential of f at x and ‖d̃f(x)‖ = ‖d(f ◦
ϕx)(0)‖. It is proved in [10, 11] that

‖f‖B1 = ‖f‖B̃
and

‖f‖B2 = sup
z,w∈B,z 6=w

|f(z)− f(w)|
|w − Pw(z)− swQw(z)|

(1− |z|2)
1
2 (1− |w|2)

1
2 .
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Here we get one more criterion for containment in the Bloch space.
Namely, if f ∈ H(B), then

f ∈ B ⇔ sup
z,w∈B,z 6=w

|f(z)− f(w)|
|1− 〈z, w〉|

(1− |z|2)
1
2 (1− |w|2)

1
2 <∞.

Finally, it is worth noting that characterizations of weighted Bergman
spaces on the unit ball in terms of double integrals of the functions |f(z)−
f(w)|/|1− 〈z, w〉| and |f(z)− f(w)|/|z −w| have been recently obtained in
[5] and [7].

2. Characterizations in terms of oscillation and integral means.
For f ∈ H(B), z ∈ B and 0 < r < 1 we put

ωr(f)(z) = sup{|f(z)− f(w)| : w ∈ E(z, r)}
and

MOr(f)(z) =
1

v(E(z, r))

∫
E(z,r)

|f(w)− fz,r|dv(w),

where

fz,r =
1

v(E(z, r))

∫
E(z,r)

f(u)dv(u).

ωr(f) and MOr(f) are, respectively, the oscillation and the mean oscillation
of f in the Bergman metric at the point z.

The following characterizations of the space Bp in terms of ωr(f) and
MOr(f) can be found in [16].

Theorem A. Let f ∈ H(B) and 2n < p, and 0 < r < 1. Then the following
conditions are equivalent

(i) f ∈ Bp,
(ii) ωr(f) ∈ Lp(B, dτ),
(iii) MOr(f) ∈ Lp(B, dτ).

We will prove similar characterizations of Bp in terms of oscillations, but
in a different metric. The metric will be connected with the conformal
Möbius transformation on B given by

ϕca(z) =
|z − a|2a− (1− |a|2)(z − a)

||a|z − a′|2
,

where a ∈ B, a′ = a
|a| for a 6= 0 and a′ = (1, 0, . . . , 0), when a = 0. The

mapping ϕca is an involution automorphism of B such that ϕca(0) = a and
ϕca(a) = 0. Moreover,

|ϕa(z)| ≤ |ϕca(z)|, a, z ∈ B.
Also, it is easy to check that

(8)
1− |ϕca(z)|2

|ϕca(z)|2
=

(1− |z|2)(1− |a|2)
|z − a|2

.
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We refer the reader to [1] and [12] for further properties of ϕca.
Analogously to the Möbius transformations case, the formula ρc(a, z) =

|ϕca(z)| defines a metric on B. We give the proof of this fact, probably
known, because we do not know a reference. By the definition of ϕca, we get

|ϕca(z)| =
|z − a|
||a|z − a′|

=
|a− z|
||z|a− z′|

= |ϕcz(a)|.

It is also obvious that

|ϕca(z)| = 0 ⇔ z = a.

The invariance of ρc(a, z) under the conformal Möbius transformations fol-
lows immediately from formula (38) in [1]. So, we have

ρc(a, z) = |ϕca(z)| = |ϕcϕc
w(a)(ϕ

c
w(z))| = ρc(ϕcw(a), ϕ

c
w(z)).

In view of this, it is enough to show that

(9) ρc(a, z) ≤ |a|+ |z|.

Using the inequality

1− (x+ y)2 ≤
(
1− x2

) (
1− y2

)
(1 + xy)2

,

for x, y ∈ [0, 1], (see, e.g. [15]), we obtain

1− (|a|+ |z|)2 ≤
(
1− |a|2

) (
1− |z|2

)
(1 + |a||z|)2

≤
(
1− |a|2

) (
1− |z|2

)
||a|z − a′|2

= 1− |ϕca(z)|2,

which proves (9).
For a ∈ B and 0 < r < 1 let

Ec(a, r) = {z ∈ B : |ϕca(z)| < r} = ϕca(B(0, r)).

The set Ec(a, r) is a Euclidian ball in R2n centered at (1−r2)a
1−r2|a|2 and of the

radius (1−|a|2)r
1−r2|a|2 . Note that if z ∈ B(a, r2(1− |a|

2)), then

|ϕca(z)| =
|z − a|
||a|z − a′|

≤ |z − a|
|a′| − |a||z|

≤ |z − a|
1− |a|

≤ 2|z − a|
1− |a|2

< r.

It follows immediately that

(10) B
(
a,
r

2
(1− |a|2)

)
⊂ Ec(a, r) ⊂ E(a, r).

Now, for f ∈ H(B) and z ∈ B, we define

ωcr(f)(z) = sup{|f(z)− f(w)| : w ∈ Ec(z, r)}
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and

MOcr(f)(z) =
1

v(Ec(z, r))

∫
Ec(z,r)

|f(w)− f cz,r|dv(w),

where

f cz,r =
1

v(Ec(z, r))

∫
Ec(z,r)

f(u)dv(u).

We get the following analogue of Theorem A.

Theorem 2. Let 2n < p < ∞ and 0 < r < 1. Then the following state-
ments are equivalent

(i) f ∈ Bp,
(ii) ωcr(f) ∈ Lp(B, dτ),
(iii) MOcr(f) ∈ Lp(B, dτ).

Proof. (i)⇒(ii) If f ∈ Bp, then inclusion (10) and Theorem A imply that
ωcr(f) ∈ Lp(B, dτ).
(ii)⇒(iii) Since

f(w)− f cz,r = f(w)− f(z)− (f cz,r − f(z))

and

f cz,r − f(z) =
1

v(Ec(z, r))

∫
Ec(z,r)

(f(w)− f(z))dv(w),

we get

MOcr(f)(z) ≤
2

v(Ec(z, r))

∫
Ec(z,r)

|f(w)− f(z)|dv(w) ≤ 2ωcr(f)(z).

(iii)⇒(i) It follows from the subharmonicity of |F |p, F ∈ H(B), that for any
0 < s < 1, 0 < p <∞ and B(z, s) ⊂ B,

(11) |∇F (z)|psp ≤ Cs−2n
∫
B(z,s)

|F (w)|pdv(w), z ∈ B.

Applying inequality (11) with s = r
2(1− |z|

2) to the function F (w) = f(z+
w)− f cz,r and using inclusion (10), we see that

|∇f(z)|(1− |z|2) ≤ C
∫
Ec(z,r)

|f(w)− f cz,r|
dv(w)

(1− |w|2)2n
≤ CMOcr(f)(z)

and the proof is complete. �

Moreover, we have

Theorem 3. Assume that f ∈ H(B), 2n < p <∞, r ∈ (0, 1). Then

f ∈ Bp ⇔
∫
Ec(a,r)

|∇f(z)| dv(z)

(1− |z|2)2n−1
= (Mf)(a) ∈ Lp(B, dτ).
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Proof. By subharmonicity of
∣∣∣ ∂f∂zi ∣∣∣ we have

∣∣∣∣ ∂f∂zi (z)
∣∣∣∣ ≤ ∫

B

∣∣∣∣ ∂f∂zi (z + δw)

∣∣∣∣ dv(w) = 1

δ2n

∫
B(z,δ)

∣∣∣∣ ∂f∂zi (w)
∣∣∣∣ dv(w)

for z ∈ B and 0 ≤ δ < 1− |z|. Thus for r ∈ (0, 1),∣∣∣∣ ∂f∂zi (z)
∣∣∣∣ ≤ 22n

r2n(1− |z|2)2n

∫
B(z, r

2
(1−|z|2))

∣∣∣∣ ∂f∂zi (w)
∣∣∣∣ dv(w)

≤ C
∫
B(z, r

2
(1−|z|2))

∣∣∣∣ ∂f∂zi (w)
∣∣∣∣ dv(w)

(1− |w|2)2n
.

Consequently,

|∇f(z)|(1− |z|2) ≤ C
∫
B(z, r

2
(1−|z|2))

|∇f(w)| dv(w)

(1− |w|2)2n−1
,

which proves the implication “⇒”.
Now, let f ∈ Bp. Then ωr(f) ∈ Lp(B, dτ) by Theorem A. It follows from

the proof of Theorem 2 that

|∇f(z)|(1− |z|2) ≤ Cωcr(f)(z) ≤ Cωr(f)(z).

Hence∫
B
(Mf)p(a)dτ(a)

=

∫
B

(∫
Ec(a,r)

|∇f(z)|(1− |z|2) dv(z)

(1− |z|2)2n

)p
dτ(a)

≤ C
∫
B

(∫
Ec(a,r)

ωr(f)(z)
dv(z)

(1− |z|2)2n

)p
dτ(a)

= C

∫
B

(∫
Ec(a,r)

(
sup

w∈E(z,r)
|f(z)− f(w)|

)
dv(z)

(1− |z|2)2n

)p
dτ(a).

To complete the proof, we apply the following triangle inequalities for the
pseudo-hyperbolic metric ρ(z, a) = |ϕa(z)| (see, e.g. [2])

(12)
|ρ(z, a)− ρ(a,w)|
1− ρ(z, a)ρ(a,w)

≤ ρ(z, w) ≤ ρ(z, a) + ρ(a,w)

1 + ρ(z, a)ρ(a,w)
, z, w, a ∈ B.
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This inequality implies that if w ∈ E(a, r) and a ∈ E(z, r), then w ∈
E(z, 2r/(1 + r2)). Consequently, using inclusion (10),

∫
Ec(a,r)

(
sup

w∈E(z,r)
|f(z)− f(w)|

)
dv(z)

(1− |z|2)2n

≤ C sup
z∈Ec(a,r)

(
sup

w∈E(z,r)
(|f(z)− f(a)|+ |f(w)− f(a)|)

)
≤ C sup

z∈E(a, 2r
1+r2

)

|f(z)− f(a)|+ sup
w∈E(a, 2r

1+r2
)

|f(a)− f(w)|

≤ 2C sup
w∈E(a, 2r

1+r2
)

|f(a)− f(w)|

= 2Cω 2r
1+r2

(f)(a) ∈ Lp(B, dτ). �

We remark that the last theorem is equivalent to the statement that a
function f holomorphic on B is in Bp if and only if the integral mean of f
at a given by

(Mf)(a) =
1

v(Ec(a, r))

∫
Ec(a,r)

|∇f(z)|(1− |z|2)dv(z)

is in Lp(B, dτ).
Let us define

(Hf)(a) =
∫
Ec(a,r)

|f(z)− f(a)|
|z − a|

(1− |z|2)
1
2 (1− |a|2)

1
2

dv(z)

(1− |z|2)2n
.

Our last theorem refers to Holland–Walsh characterization of the Bloch
space.

Theorem 4. Let f be a holomorphic function in B and r ∈ (0, 1). Then
the following statements are equivalent

(i) f ∈ Bp,
(ii) Hf ∈ Lp(B, dτ),

(iii)
∫
B

∫
Ec(a,r)

|f(z)− f(a)|p

|z − a|p
(1−|z|2)

p
2 (1−|a|2)

p
2

dv(z)

(1− |z|2)2n
dτ(a) <∞.

Proof. (i)⇒(ii) Suppose f ∈ Bp. Using the invariance of the measure
dv(z)

(1−|z|2)2n under the map ϕca(z), we obtain
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∫
Ec(a,r)

|f(z)− f(a)|
|z − a|

(1− |z|2)
1
2 (1− |a|2)

1
2

dv(z)

(1− |z|2)2n

≤
∫
Ec(a,r)

(
sup

z∈Ec(a,r)
|f(z)− f(a)|

)
(1− |z|2)

1
2 (1− |a|2)

1
2

|z − a|
dv(z)

(1− |z|2)2n

= ωcr(f)(a)

∫
Ec(a,r)

√
1− |ϕca(z)|2
|ϕca(z)|

dv(z)

(1− |z|2)2n

= ωcr(f)(a)

∫
Ec(0,r)

√
1− |z|2
|z|

dv(z)

(1− |z|2)2n
= Cωcr(f)(a) ∈ Lp(B, dτ).

(ii)⇒(iii) It is enough to apply the Jensen inequality.
(iii)⇒(i) From (8) we see that if |ϕca(z)| < r, then

(1− |z|2)
1
2 (1− |a|2)

1
2

|z − a|
=

√
1− |ϕca(z)|2
|ϕca(z)|

≥
√
1− r2
r

.

This and (11) imply

|∇f(a)|p(1− |a|2)p

≤ C
∫
Ec(a,r)

|f(z)− f(a)|p

|z − a|p
(1− |z|2)

p
2 (1− |a|2)

p
2

dv(z)

(1− |z|2)2n
,

which proves the implication. �
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