UNIVERSITATIS MARIAE CURIE-SKもODOWSKA LUBLIN - POLONIA

VOL. LXV, NO. 2, 2011

MAŁGORZATA MICHALSKA, MARIA NOWAK and PAWEŁ SOBOLEWSKI

Möbius invariant Besov spaces on the unit ball of \mathbb{C}^{n}

Dedicated to the memory of Professor Jan G. Krzyz

Abstract

We give new characterizations of the analytic Besov spaces B_{p} on the unit ball \mathbb{B} of \mathbb{C}^{n} in terms of oscillations and integral means over some Euclidian balls contained in \mathbb{B}.

1. Introduction. Let $\mathbb{B}=\left\{z \in \mathbb{C}^{n}:|z|<1\right\}$ denote the open unit ball in \mathbb{C}^{n} and $H(\mathbb{B})$ be the set of all holomorphic functions on \mathbb{B}. By $A u t(\mathbb{B})$ we mean the group of all automorphisms of \mathbb{B}. It is known that $\operatorname{Aut}(\mathbb{B})$ is generated by the unitary operators and involutions of the form

$$
\varphi_{w}(z)=\frac{w-P_{w}(z)-s_{w} Q_{w}(z)}{1-\langle z, w\rangle}
$$

where $w \in \mathbb{B}, s_{w}=\left(1-|w|^{2}\right)^{1 / 2}, P_{w}$ is the orthogonal projection of \mathbb{C}^{n} to the subspace spanned by w, i.e.

$$
P_{w}(z)=\frac{\langle z, w\rangle}{|w|^{2}} w \quad \text { for } w \neq 0, \quad \text { and } P_{0}(z)=0
$$

[^0]and $Q_{w}=I-P_{w}$ (see, e.g. $[13,16]$ for definition and properties of the automorphism group of $\mathbb{B})$. The mapping φ_{a} is called the Möbius transformation. It is known that $\rho(z, w)=\left|\varphi_{z}(w)\right|$ is a metric on \mathbb{B}, the so-called pseudo-hyperbolic metric (see, e.g. $[9,15,16]$).

Let $d v$ be the Lebesgue measure on \mathbb{B} normalized so that $v(\mathbb{B})=1$ and let $d \tau(z)=\frac{d v(z)}{\left(1-|z|^{2}\right)^{n+1}}$ be the invariant measure on \mathbb{B}.

For $f \in H(\mathbb{B})$, set

$$
Q_{f}(z)=\sup _{0 \neq x \in \mathbb{C}^{n}} \frac{|\langle\nabla f(z), \bar{x}\rangle|}{H_{z}(x, x)^{1 / 2}}, \quad z \in \mathbb{B}
$$

where $\nabla f(z)=\left(\partial f / \partial z_{1}, \partial f / \partial z_{2}, \ldots, \partial f / \partial z_{n}\right)$ is the complex gradient of f and $H_{z}(x, x)$ is the Bergman metric on \mathbb{B}, that is

$$
H_{z}(x, x)=\frac{n+1}{2} \frac{\left(1-|z|^{2}\right)|x|^{2}+|\langle x, z\rangle|^{2}}{\left(1-|z|^{2}\right)^{2}}
$$

The Möbius invariant Besov space $B_{p}, 1<p \leq \infty$, consists of all holomorphic functions on \mathbb{B} for which $Q_{f} \in L^{p}(\mathbb{B}, d \tau)$. In the case $p=\infty$ the space B_{∞} is the Bloch space \mathcal{B}; so

$$
\mathcal{B}=B_{\infty}=\left\{f \in H(\mathbb{B}):\|f\|_{\mathcal{B}}<\infty\right\}
$$

where

$$
\|f\|_{\mathcal{B}}=\sup _{z \in \mathbb{B}} Q_{f}(z) .
$$

If $1<p \leq \infty$ the space B_{p} is the Banach space with the norm

$$
\|f\|_{B_{p}}=|f(0)|+(p-1)\left\|Q_{f}\right\|_{L^{p}(d \tau)}
$$

Hahn and Youssfi [3] proved that for $n>1$ the Besov space B_{p} is nontrivial and contains all polynomials if and only if $p>2 n$. Moreover, it is known that for $f \in H(\mathbb{B})$, the following conditions are equivalent
(i) $f \in B_{p}$,
(ii) $|\nabla f(z)|\left(1-|z|^{2}\right) \in L^{p}(\mathbb{B}, d \tau)$,
(iii) $|\widetilde{\nabla} f(z)| \in L^{p}(\mathbb{B}, d \tau)$ where $|\widetilde{\nabla} f(z)|=\left|\nabla\left(f \circ \varphi_{z}\right)(0)\right|$.

The proofs can be found in $[3,8,16]$.
The following results for the space B_{p} are reminiscences of Holland and Walsh characterization of the Bloch space [6].

In the case $n=1$ Stroethoff [14] proved that for $2<p<\infty$,

$$
f \in B_{p} \Leftrightarrow \int_{\mathbb{B}} \int_{\mathbb{B}}\left|\frac{f(z)-f(w)}{z-w}\right|^{p}\left(1-|z|^{2}\right)^{\frac{p}{2}}\left(1-|w|^{2}\right)^{\frac{p}{2}} d \tau(w) d \tau(z)<\infty .
$$

This equivalence has been generalized to the unit ball case in [8], where the following result has been obtained. If $2 n<p<\infty$, then

$$
f \in B_{p} \Leftrightarrow
$$

(1)

$$
\int_{\mathbb{B}} \int_{\mathbb{B}}\left(\frac{|f(z)-f(w)|}{\left|w-P_{w}(z)-s_{w} Q_{w}(z)\right|}\right)^{p}\left(1-|z|^{2}\right)^{\frac{p}{2}}\left(1-|w|^{2}\right)^{\frac{p}{2}} d \tau(w) d \tau(z)<\infty
$$

Let $B(a, r)$ denote a Euclidian ball of radius r and centered at $a \in \mathbb{C}^{n}$. For $a \in \mathbb{B}$ and $0<r<1$ let

$$
E(a, r)=\left\{z \in \mathbb{B}:\left|\varphi_{a}(z)\right|<r\right\}=\varphi_{a}(B(0, r))
$$

be the pseudo-hyperbolic (or Bergman) metric ball centered at z. Then $E(a, r)$ is an elipsoid in \mathbb{C}^{n}. We will often use the following property of $E(a, r)$.

There exists a positive constant C (dependent on r, but not on z and a) such that

$$
\begin{equation*}
C^{-1}\left(1-|z|^{2}\right) \leq|1-\langle z, a\rangle| \leq C\left(1-|a|^{2}\right) \tag{2}
\end{equation*}
$$

for all $z \in E(a, r)$.
Using equivalence (1), we easily obtain the following
Theorem 1. Assume that $f \in H(\mathbb{B})$ and $2 n<p<\infty$. Then $f \in B_{p}$ if and only if

$$
\begin{equation*}
\int_{\mathbb{B}} \int_{\mathbb{B}}\left(\frac{|f(z)-f(w)|}{|1-\langle z, w\rangle|}\right)^{p}\left(1-|z|^{2}\right)^{\frac{p}{2}}\left(1-|w|^{2}\right)^{\frac{p}{2}} d \tau(w) d \tau(z)<\infty . \tag{3}
\end{equation*}
$$

Proof. Assume that for $f \in H(\mathbb{B})$ condition (3) is satisfied. Since

$$
|\widetilde{\nabla} f(z)|^{p} \leq C \int_{E(z, r)} \frac{|f(w)-f(z)|^{p}}{|1-\langle w, z\rangle|^{n+1}} d v(w), \quad \text { (see, e.g. [8]) }
$$

and for $w \in E(z, r)$,

$$
\begin{equation*}
1-r^{2}<1-\left|\varphi_{z}(w)\right|^{2}=\frac{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}{|1-\langle w, z\rangle|^{2}} \tag{4}
\end{equation*}
$$

we get, using (2),

$$
\begin{aligned}
& \int_{\mathbb{B}}|\widetilde{\nabla} f(z)|^{p} d \tau(z) \\
& \leq C \int_{\mathbb{B}} \int_{E(z, r)} \frac{|f(w)-f(z)|^{p}}{|1-\langle w, z\rangle|^{n+1}} \frac{\left(1-|z|^{2}\right)^{p / 2}\left(1-|w|^{2}\right)^{p / 2}}{|1-\langle w, z\rangle|^{p}} d v(w) d \tau(z) \\
& \leq C \int_{\mathbb{B}} \int_{E(z, r)} \frac{|f(w)-f(z)|^{p}}{\left(1-|w|^{2}\right)^{n+1}} \frac{\left(1-|z|^{2}\right)^{p / 2}\left(1-|w|^{2}\right)^{p / 2}}{|1-\langle w, z\rangle|^{p}} d v(w) d \tau(z) \\
& \leq C \int_{\mathbb{B}} \int_{\mathbb{B}} \frac{|f(w)-f(z)|^{p}\left(1-|z|^{2}\right)^{p / 2}\left(1-|w|^{2}\right)^{p / 2}}{|1-\langle w, z\rangle|^{p}} d \tau(w) d \tau(z) .
\end{aligned}
$$

Hence (3) implies $f \in B_{p}$. The other implication follows from (1) and from the inequality

$$
\left|w-P_{w}(z)-s_{w} Q_{w}(z)\right| \leq|1-\langle z, w\rangle|, \quad z, w \in \mathbb{B}
$$

For $\alpha>-1$ we define the weighted volume measure $d v_{\alpha}(z)=c_{\alpha}(1-$ $\left.|z|^{2}\right)^{\alpha} d v(z)$, where c_{α} is a positive constant such that $v_{\alpha}(\mathbb{B})=1$.

We remark that condition (3) can be written in the form

$$
\int_{\mathbb{B}} \int_{\mathbb{B}}\left(\frac{|f(z)-f(w)|}{|1-\langle z, w\rangle|}\right)^{p} d v_{\alpha}(z) d v_{\alpha}(w)<\infty
$$

where $\alpha=-n-1+p / 2$.
Moreover, the inequality

$$
\left|w-P_{w}(z)-s_{w} Q_{w}(z)\right| \leq|z-w|, \quad z, w \in \mathbb{B}
$$

and equivalence (3) imply that if $f \in B_{p}$, then

$$
\begin{equation*}
\int_{\mathbb{B}} \int_{\mathbb{B}}\left(\frac{|f(z)-f(w)|}{|z-w|}\right)^{p} d v_{\alpha}(z) d v_{\alpha}(w)<\infty, \quad \alpha=-n-1+p / 2 \tag{5}
\end{equation*}
$$

We do not know if condition (5) is sufficient for f to belong to B_{p}. The sufficiency of (5) has been claimed in [4]. Unfortunately, the proof given there is not correct.

For $p=\infty$, condition (5) is understood as

$$
\|f\|_{\tilde{\mathcal{B}}}=\sup _{z, w \in \mathbb{B}, z \neq w} \frac{|f(z)-f(w)|}{|z-w|}\left(1-|z|^{2}\right)^{\frac{1}{2}}\left(1-|w|^{2}\right)^{\frac{1}{2}}<\infty
$$

and is necessary and sufficient for containment in the Bloch space \mathcal{B} as shown in [12]. For the proof of the last result the authors [12] used the so-called conformal Möbius transformation. We also will discuss this transformation in the next section.

Recently, M. Pavlović $[10,11]$ considered a more general space of C^{1} functions in the unit ball for which two Bloch norms can be defined as follows

$$
\begin{align*}
\|f\|_{\mathcal{B}_{1}} & =\sup _{x \in \mathbb{B}}\left(1-|x|^{2}\right)\|d f(x)\| \tag{6}\\
\|f\|_{\mathcal{B}_{2}} & =\sup _{x \in \mathbb{B}}\|\tilde{d f}(x)\| \tag{7}
\end{align*}
$$

where $\|d f(x)\|$ is the norm of the differential of f at x and $\|\tilde{d} f(x)\|=\| d(f \circ$ $\left.\varphi_{x}\right)(0) \|$. It is proved in $[10,11]$ that

$$
\|f\|_{\mathcal{B}_{1}}=\|f\|_{\tilde{\mathcal{B}}}
$$

and

$$
\|f\|_{\mathcal{B}_{2}}=\sup _{z, w \in \mathbb{B}, z \neq w} \frac{|f(z)-f(w)|}{\left|w-P_{w}(z)-s_{w} Q_{w}(z)\right|}\left(1-|z|^{2}\right)^{\frac{1}{2}}\left(1-|w|^{2}\right)^{\frac{1}{2}} .
$$

Here we get one more criterion for containment in the Bloch space. Namely, if $f \in H(\mathbb{B})$, then

$$
f \in \mathcal{B} \Leftrightarrow \sup _{z, w \in \mathbb{B}, z \neq w} \frac{|f(z)-f(w)|}{|1-\langle z, w\rangle|}\left(1-|z|^{2}\right)^{\frac{1}{2}}\left(1-|w|^{2}\right)^{\frac{1}{2}}<\infty .
$$

Finally, it is worth noting that characterizations of weighted Bergman spaces on the unit ball in terms of double integrals of the functions $\mid f(z)-$ $f(w)|/|1-\langle z, w\rangle|$ and $| f(z)-f(w)|/|z-w|$ have been recently obtained in [5] and [7].

2. Characterizations in terms of oscillation and integral means.

For $f \in H(\mathbb{B}), z \in \mathbb{B}$ and $0<r<1$ we put

$$
\omega_{r}(f)(z)=\sup \{|f(z)-f(w)|: w \in E(z, r)\}
$$

and

$$
M O_{r}(f)(z)=\frac{1}{v(E(z, r))} \int_{E(z, r)}\left|f(w)-f_{z, r}\right| d v(w),
$$

where

$$
f_{z, r}=\frac{1}{v(E(z, r))} \int_{E(z, r)} f(u) d v(u) .
$$

$\omega_{r}(f)$ and $M O_{r}(f)$ are, respectively, the oscillation and the mean oscillation of f in the Bergman metric at the point z.

The following characterizations of the space B_{p} in terms of $\omega_{r}(f)$ and $M O_{r}(f)$ can be found in [16].

Theorem A. Let $f \in H(\mathbb{B})$ and $2 n<p$, and $0<r<1$. Then the following conditions are equivalent
(i) $f \in B_{p}$,
(ii) $\omega_{r}(f) \in L^{p}(\mathbb{B}, d \tau)$,
(iii) $M O_{r}(f) \in L^{p}(\mathbb{B}, d \tau)$.

We will prove similar characterizations of B_{p} in terms of oscillations, but in a different metric. The metric will be connected with the conformal Möbius transformation on \mathbb{B} given by

$$
\varphi_{a}^{c}(z)=\frac{|z-a|^{2} a-\left(1-|a|^{2}\right)(z-a)}{\| a\left|z-a^{\prime}\right|^{2}}
$$

where $a \in \mathbb{B}, a^{\prime}=\frac{a}{|a|}$ for $a \neq 0$ and $a^{\prime}=(1,0, \ldots, 0)$, when $a=0$. The mapping φ_{a}^{c} is an involution automorphism of \mathbb{B} such that $\varphi_{a}^{c}(0)=a$ and $\varphi_{a}^{c}(a)=0$. Moreover,

$$
\left|\varphi_{a}(z)\right| \leq\left|\varphi_{a}^{c}(z)\right|, \quad a, z \in \mathbb{B} .
$$

Also, it is easy to check that

$$
\begin{equation*}
\frac{1-\left|\varphi_{a}^{c}(z)\right|^{2}}{\left|\varphi_{a}^{c}(z)\right|^{2}}=\frac{\left(1-|z|^{2}\right)\left(1-|a|^{2}\right)}{|z-a|^{2}} . \tag{8}
\end{equation*}
$$

We refer the reader to [1] and [12] for further properties of φ_{a}^{c}.
Analogously to the Möbius transformations case, the formula $\rho^{c}(a, z)=$ $\left|\varphi_{a}^{c}(z)\right|$ defines a metric on \mathbb{B}. We give the proof of this fact, probably known, because we do not know a reference. By the definition of φ_{a}^{c}, we get

$$
\left|\varphi_{a}^{c}(z)\right|=\frac{|z-a|}{\left||a| z-a^{\prime}\right|}=\frac{|a-z|}{\left||z| a-z^{\prime}\right|}=\left|\varphi_{z}^{c}(a)\right|
$$

It is also obvious that

$$
\left|\varphi_{a}^{c}(z)\right|=0 \Leftrightarrow z=a
$$

The invariance of $\rho^{c}(a, z)$ under the conformal Möbius transformations follows immediately from formula (38) in [1]. So, we have

$$
\rho^{c}(a, z)=\left|\varphi_{a}^{c}(z)\right|=\left|\varphi_{\varphi_{w}^{c}(a)}^{c}\left(\varphi_{w}^{c}(z)\right)\right|=\rho^{c}\left(\varphi_{w}^{c}(a), \varphi_{w}^{c}(z)\right)
$$

In view of this, it is enough to show that

$$
\begin{equation*}
\rho^{c}(a, z) \leq|a|+|z| \tag{9}
\end{equation*}
$$

Using the inequality

$$
1-(x+y)^{2} \leq \frac{\left(1-x^{2}\right)\left(1-y^{2}\right)}{(1+x y)^{2}}
$$

for $x, y \in[0,1]$, (see, e.g. [15]), we obtain
which proves (9).
For $a \in \mathbb{B}$ and $0<r<1$ let

$$
E^{c}(a, r)=\left\{z \in \mathbb{B}:\left|\varphi_{a}^{c}(z)\right|<r\right\}=\varphi_{a}^{c}(B(0, r))
$$

The set $E^{c}(a, r)$ is a Euclidian ball in $\mathbb{R}^{2 n}$ centered at $\frac{\left(1-r^{2}\right) a}{1-r^{2}|a|^{2}}$ and of the radius $\frac{\left(1-|a|^{2}\right) r}{1-r^{2}|a|^{2}}$. Note that if $z \in B\left(a, \frac{r}{2}\left(1-|a|^{2}\right)\right)$, then

$$
\left|\varphi_{a}^{c}(z)\right|=\frac{|z-a|}{\| a\left|z-a^{\prime}\right|} \leq \frac{|z-a|}{\left|a^{\prime}\right|-|a||z|} \leq \frac{|z-a|}{1-|a|} \leq \frac{2|z-a|}{1-|a|^{2}}<r
$$

It follows immediately that

$$
\begin{equation*}
B\left(a, \frac{r}{2}\left(1-|a|^{2}\right)\right) \subset E^{c}(a, r) \subset E(a, r) \tag{10}
\end{equation*}
$$

Now, for $f \in H(\mathbb{B})$ and $z \in \mathbb{B}$, we define

$$
\omega_{r}^{c}(f)(z)=\sup \left\{|f(z)-f(w)|: w \in E^{c}(z, r)\right\}
$$

and

$$
M O_{r}^{c}(f)(z)=\frac{1}{v\left(E^{c}(z, r)\right)} \int_{E^{c}(z, r)}\left|f(w)-f_{z, r}^{c}\right| d v(w)
$$

where

$$
f_{z, r}^{c}=\frac{1}{v\left(E^{c}(z, r)\right)} \int_{E^{c}(z, r)} f(u) d v(u)
$$

We get the following analogue of Theorem A.
Theorem 2. Let $2 n<p<\infty$ and $0<r<1$. Then the following statements are equivalent
(i) $f \in B_{p}$,
(ii) $\omega_{r}^{c}(f) \in L^{p}(\mathbb{B}, d \tau)$,
(iii) $M O_{r}^{c}(f) \in L^{p}(\mathbb{B}, d \tau)$.

Proof. (i) \Rightarrow (ii) If $f \in B_{p}$, then inclusion (10) and Theorem A imply that $\omega_{r}^{c}(f) \in L^{p}(\mathbb{B}, d \tau)$.
(ii) \Rightarrow (iii) Since

$$
f(w)-f_{z, r}^{c}=f(w)-f(z)-\left(f_{z, r}^{c}-f(z)\right)
$$

and

$$
f_{z, r}^{c}-f(z)=\frac{1}{v\left(E^{c}(z, r)\right)} \int_{E^{c}(z, r)}(f(w)-f(z)) d v(w)
$$

we get

$$
M O_{r}^{c}(f)(z) \leq \frac{2}{v\left(E^{c}(z, r)\right)} \int_{E^{c}(z, r)}|f(w)-f(z)| d v(w) \leq 2 \omega_{r}^{c}(f)(z)
$$

(iii) \Rightarrow (i) It follows from the subharmonicity of $|F|^{p}, F \in H(\mathbb{B})$, that for any $0<s<1,0<p<\infty$ and $B(z, s) \subset \mathbb{B}$,

$$
\begin{equation*}
|\nabla F(z)|^{p} s^{p} \leq C s^{-2 n} \int_{B(z, s)}|F(w)|^{p} d v(w), \quad z \in \mathbb{B} \tag{11}
\end{equation*}
$$

Applying inequality (11) with $s=\frac{r}{2}\left(1-|z|^{2}\right)$ to the function $F(w)=f(z+$ $w)-f_{z, r}^{c}$ and using inclusion (10), we see that

$$
|\nabla f(z)|\left(1-|z|^{2}\right) \leq C \int_{E^{c}(z, r)}\left|f(w)-f_{z, r}^{c}\right| \frac{d v(w)}{\left(1-|w|^{2}\right)^{2 n}} \leq C M O_{r}^{c}(f)(z)
$$

and the proof is complete.
Moreover, we have
Theorem 3. Assume that $f \in H(\mathbb{B}), 2 n<p<\infty, r \in(0,1)$. Then

$$
f \in B_{p} \Leftrightarrow \int_{E^{c}(a, r)}|\nabla f(z)| \frac{d v(z)}{\left(1-|z|^{2}\right)^{2 n-1}}=(\mathcal{M} f)(a) \in L^{p}(\mathbb{B}, d \tau)
$$

Proof. By subharmonicity of $\left|\frac{\partial f}{\partial z_{i}}\right|$ we have

$$
\left|\frac{\partial f}{\partial z_{i}}(z)\right| \leq \int_{\mathbb{B}}\left|\frac{\partial f}{\partial z_{i}}(z+\delta w)\right| d v(w)=\frac{1}{\delta^{2 n}} \int_{B(z, \delta)}\left|\frac{\partial f}{\partial z_{i}}(w)\right| d v(w)
$$

for $z \in \mathbb{B}$ and $0 \leq \delta<1-|z|$. Thus for $r \in(0,1)$,

$$
\begin{aligned}
\left|\frac{\partial f}{\partial z_{i}}(z)\right| & \leq \frac{2^{2 n}}{r^{2 n}\left(1-|z|^{2}\right)^{2 n}} \int_{B\left(z, \frac{r}{2}\left(1-|z|^{2}\right)\right)}\left|\frac{\partial f}{\partial z_{i}}(w)\right| d v(w) \\
& \leq C \int_{B\left(z, \frac{r}{2}\left(1-|z|^{2}\right)\right)}\left|\frac{\partial f}{\partial z_{i}}(w)\right| \frac{d v(w)}{\left(1-|w|^{2}\right)^{2 n}}
\end{aligned}
$$

Consequently,

$$
|\nabla f(z)|\left(1-|z|^{2}\right) \leq C \int_{B\left(z, \frac{r}{2}\left(1-|z|^{2}\right)\right)}|\nabla f(w)| \frac{d v(w)}{\left(1-|w|^{2}\right)^{2 n-1}}
$$

which proves the implication " \Rightarrow ".
Now, let $f \in B_{p}$. Then $\omega_{r}(f) \in L^{p}(\mathbb{B}, d \tau)$ by Theorem A. It follows from the proof of Theorem 2 that

$$
|\nabla f(z)|\left(1-|z|^{2}\right) \leq C \omega_{r}^{c}(f)(z) \leq C \omega_{r}(f)(z)
$$

Hence

$$
\begin{aligned}
\int_{\mathbb{B}} & (\mathcal{M} f)^{p}(a) d \tau(a) \\
& =\int_{\mathbb{B}}\left(\int_{E^{c}(a, r)}|\nabla f(z)|\left(1-|z|^{2}\right) \frac{d v(z)}{\left(1-|z|^{2}\right)^{2 n}}\right)^{p} d \tau(a) \\
& \leq C \int_{\mathbb{B}}\left(\int_{E^{c}(a, r)} \omega_{r}(f)(z) \frac{d v(z)}{\left(1-|z|^{2}\right)^{2 n}}\right)^{p} d \tau(a) \\
& =C \int_{\mathbb{B}}\left(\int_{E^{c}(a, r)}\left(\sup _{w \in E(z, r)}|f(z)-f(w)|\right) \frac{d v(z)}{\left(1-|z|^{2}\right)^{2 n}}\right)^{p} d \tau(a)
\end{aligned}
$$

To complete the proof, we apply the following triangle inequalities for the pseudo-hyperbolic metric $\rho(z, a)=\left|\varphi_{a}(z)\right|$ (see, e.g. [2])
(12) $\quad \frac{|\rho(z, a)-\rho(a, w)|}{1-\rho(z, a) \rho(a, w)} \leq \rho(z, w) \leq \frac{\rho(z, a)+\rho(a, w)}{1+\rho(z, a) \rho(a, w)}, \quad z, w, a \in \mathbb{B}$.

This inequality implies that if $w \in E(a, r)$ and $a \in E(z, r)$, then $w \in$ $E\left(z, 2 r /\left(1+r^{2}\right)\right)$. Consequently, using inclusion (10),

$$
\begin{aligned}
\int_{E^{c}(a, r)} & \left(\sup _{w \in E(z, r)}|f(z)-f(w)|\right) \frac{d v(z)}{\left(1-|z|^{2}\right)^{2 n}} \\
& \leq C \sup _{z \in E c(a, r)}\left(\sup _{w \in E(z, r)}(|f(z)-f(a)|+|f(w)-f(a)|)\right) \\
& \leq C \sup _{z \in E\left(a, \frac{2 r}{1+r^{2}}\right)}|f(z)-f(a)|+\sup _{w \in E\left(a, \frac{2 r}{1+r^{2}}\right)}|f(a)-f(w)| \\
& \leq 2 C \sup _{w \in E\left(a, \frac{2 r}{1+r^{2}}\right.}|f(a)-f(w)| \\
& =2 C \omega_{\frac{2 r}{1+r^{2}}}(f)(a) \in L^{p}(\mathbb{B}, d \tau) .
\end{aligned}
$$

We remark that the last theorem is equivalent to the statement that a function f holomorphic on \mathbb{B} is in B_{p} if and only if the integral mean of f at a given by

$$
(M f)(a)=\frac{1}{v\left(E^{c}(a, r)\right)} \int_{E^{c}(a, r)}|\nabla f(z)|\left(1-|z|^{2}\right) d v(z)
$$

is in $L^{p}(\mathbb{B}, d \tau)$.
Let us define

$$
(\mathcal{H} f)(a)=\int_{E^{c}(a, r)} \frac{|f(z)-f(a)|}{|z-a|}\left(1-|z|^{2}\right)^{\frac{1}{2}}\left(1-|a|^{2}\right)^{\frac{1}{2}} \frac{d v(z)}{\left(1-|z|^{2}\right)^{2 n}} .
$$

Our last theorem refers to Holland-Walsh characterization of the Bloch space.

Theorem 4. Let f be a holomorphic function in \mathbb{B} and $r \in(0,1)$. Then the following statements are equivalent
(i) $f \in B_{p}$,
(ii) $\mathcal{H} f \in L^{p}(\mathbb{B}, d \tau)$,
(iii) $\int_{\mathbb{B}} \int_{E^{c}(a, r)} \frac{|f(z)-f(a)|^{p}}{|z-a|^{p}}\left(1-|z|^{2}\right)^{\frac{p}{2}}\left(1-|a|^{2}\right)^{\frac{p}{2}} \frac{d v(z)}{\left(1-|z|^{2}\right)^{2 n}} d \tau(a)<\infty$.

Proof. (i) \Rightarrow (ii) Suppose $f \in B_{p}$. Using the invariance of the measure $\frac{d v(z)}{\left(1-|z|^{2}\right)^{2 n}}$ under the map $\varphi_{a}^{c}(z)$, we obtain

$$
\begin{aligned}
& \int_{E^{c}(a, r)} \frac{|f(z)-f(a)|}{|z-a|}\left(1-|z|^{2}\right)^{\frac{1}{2}}\left(1-|a|^{2}\right)^{\frac{1}{2}} \frac{d v(z)}{\left(1-|z|^{2}\right)^{2 n}} \\
& \quad \leq \int_{E^{c}(a, r)}\left(\sup _{z \in E^{c}(a, r)}|f(z)-f(a)|\right) \frac{\left(1-|z|^{2}\right)^{\frac{1}{2}}\left(1-|a|^{2}\right)^{\frac{1}{2}}}{|z-a|} \frac{d v(z)}{\left(1-|z|^{2}\right)^{2 n}} \\
& \quad=\omega_{r}^{c}(f)(a) \int_{E^{c}(a, r)} \frac{\sqrt{1-\left|\varphi_{a}^{c}(z)\right|^{2}}}{\left|\varphi_{a}^{c}(z)\right|} \frac{d v(z)}{\left(1-|z|^{2}\right)^{2 n}} \\
& \quad=\omega_{r}^{c}(f)(a) \int_{E^{c}(0, r)} \frac{\sqrt{1-|z|^{2}}}{|z|} \frac{d v(z)}{\left(1-|z|^{2}\right)^{2 n}}=C \omega_{r}^{c}(f)(a) \in L^{p}(\mathbb{B}, d \tau) .
\end{aligned}
$$

(ii) \Rightarrow (iii) It is enough to apply the Jensen inequality.
(iii) \Rightarrow (i) From (8) we see that if $\left|\varphi_{a}^{c}(z)\right|<r$, then

$$
\frac{\left(1-|z|^{2}\right)^{\frac{1}{2}}\left(1-|a|^{2}\right)^{\frac{1}{2}}}{|z-a|}=\frac{\sqrt{1-\left|\varphi_{a}^{c}(z)\right|^{2}}}{\left|\varphi_{a}^{c}(z)\right|} \geq \frac{\sqrt{1-r^{2}}}{r}
$$

This and (11) imply

$$
\begin{aligned}
|\nabla f(a)|^{p} & \left(1-|a|^{2}\right)^{p} \\
& \leq C \int_{E^{c}(a, r)} \frac{|f(z)-f(a)|^{p}}{|z-a|^{p}}\left(1-|z|^{2}\right)^{\frac{p}{2}}\left(1-|a|^{2}\right)^{\frac{p}{2}} \frac{d v(z)}{\left(1-|z|^{2}\right)^{2 n}}
\end{aligned}
$$

which proves the implication.

References

[1] Alfors, L., Möbius Transformations in Several Dimensions, Ordway Professorship Lectures in Mathematics. University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981.
[2] Duren, P., Weir, R., The pseudohyperbolic metric and Bergman spaces in the ball, Trans. Amer. Math. Soc. 359 (2007), 63-76.
[3] Hahn, K. T., Youssfi, E. H., Möbius invariant Besov p-spaces and Hankel operators in the Bergman space on the unit ball of \mathbb{C}^{n}, Complex Variables Theory Appl. 17 (1991), 89-104.
[4] Li, S., Wulan, H., Besov space on the unit ball of \mathbb{C}^{n}, Indian J. Math. 48 (2006), no. 2, 177-186.
[5] Li, S., Wulan, H., Zhao, R. and Zhu, K., A characterization of Bergman spaces on the unit ball of \mathbb{C}^{n}, Glasgow Math. J. 51 (2009), 315-330.
[6] Holland, F., Walsh, D., Criteria for membership of Bloch space and its subspace BMOA, Math. Ann. 273 (1986), no. 2, 317-335.
[7] Li, S., Wulan, H. and Zhu, K., A characterization of Bergman spaces on the unit ball of \mathbb{C}^{n}, II, Canadian Math. Bull., to appear.
[8] Nowak, M., Bloch space and Möbius invariant Besov spaces on the unit ball of \mathbb{C}^{n}, Complex Variables Theory Appl. 44 (2001), 1-12.
[9] Ouyang, C., Yang, W. and Zhao, R., Möbius invariant Q_{p} spaces associated with the Green's function on the unit ball of C^{n}, Pacific J. Math. 182 (1998), no. 1, 69-99.
[10] Pavlović, M., A formula for the Bloch norm of a C^{1}-function on the unit ball of \mathbb{C}^{n}, Czechoslovak Math. J. 58(133) (2008), no. 4, 1039-1043.
[11] Pavlović, M., On the Holland-Walsh characterization of Bloch functions, Proc. Edinb. Math. Soc. 51 (2008), 439-441.
[12] Ren, G., Tu, C., Bloch space in the unit ball of \mathbb{C}^{n}, Proc. Amer. Math. Soc. 133 (2004), no. 3, 719-726.
[13] Rudin, W., Function Theory in the Unit Ball of \mathbb{C}^{n}, Springer-Verlag, New York, 1980.
[14] Stroethoff, K., The Bloch space and Besov space of analytic functions, Bull. Austral. Math. Soc. 54 (1996), 211-219.
[15] Ullrich, D., Radial limits of M-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), no. 2, 501-518.
[16] Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.

Małgorzata Michalska
Department of Mathematics
Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: malgorzata.michalska@poczta.umcs.lublin.pl
Maria Nowak
Department of Mathematics
Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: mt.nowak@poczta.umcs.lublin.pl
Paweł Sobolewski
Department of Mathematics
Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: pawel.sobolewski@umcs.eu
Received August 11, 2011

[^0]: 2000 Mathematics Subject Classification. 30H25.
 Key words and phrases. Besov spaces, conformal Möbius transformation.

