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Abstract. We estimate the Gauss curvature of nonparametric minimal sur-
faces over the two-slit plane C\((−∞,−1]∪[1,∞)) at points above the interval
(−1, 1).

1. Introduction. Statement of results. The relation between nonpara-
metric minimal surfaces over simply connected domains and harmonic map-
pings is given by the Weierstrass Representation (see, e.g. [1]).

Theorem. A nonparametric surface X over a simply connected domain
Ω 6= C is minimal if and only if there is a harmonic univalent and sense
preserving mapping f = h+ ḡ of the unit disk D onto Ω such that its dilata-
tion is the square of an analytic function. Moreover, X can be represented
as {(

Re f(z), Im f(z), 2 Im

∫
bh′dz

)
: z ∈ D

}
,

where the dilatation ω(z) = g′(z)/h′(z) = b2(z).

If the surface is a minimal graph and has a representation given in the
Theorem, then the Gauss curvature at the point that lies over w = f(z) is
given by the formula (see [1] pp. 173–184)

K(w) = − 4|b′(z)|2

|h′(z)|2(1 + |b(z)|2)4
.
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If we apply the Schwarz–Pick lemma,

|b′(z)| ≤ 1− |b(z)|2

1− |z|2
,

we get the estimates

(1.1)
|K(w)| ≤ 4(1− |ω(z)|)2

(1− |z|2)2(1 + |ω(z)|)4|h′(z)|2

≤ 4

(|g′(z)|+ |h′(z)|)2(1− |z|2)2
.

In particular,

|K(f(0))| ≤ 4

(|h′(0)|+ |g′(0)|)2
≤ 4

|h′(0)|2 + |g′(0)|2
.

If X is a minimal graph above the unit disk D and f is a harmonic map of
D onto itself such that f(0) = 0, then the Heinz lemma gives the estimate

(1.2) |K(0)| ≤ 16π2

27
= 5.848 . . . .

Estimate (1.2) is not sharp. However, if one assumes that the minimal
surface over D has a horizontal tangent plane at the point above the origin,
then we have the sharp estimate

|K(0)| < π2

2
= 4.934 . . . .

Proofs and further details may be found in [1].
Sharp bounds for Gauss curvature for minimal graphs over regions such

as a half-plane, an infinite strip and the whole plane with a linear slit along
negative real axis were found by Hengartner and Schober in [3]. S. H. Jun
[4] obtained some estimates for the slit plane C \ [a, b].

We will use Hengartner–Schober [3] approach for the case of the plane
with two linear slits along the real axis. We mention that harmonic map-
pings onto the two-slit plane were studied by Livingston [5] and Grigoryan
and Szapiel [2].

Let a < 0 < b, and Ω(a, b) = C\ ((−∞, a]∪ [b,∞)). A. Livingston consid-
ered the class SH(D,Ω(a, b)) consisting of functions f which are univalent,
sense-preserving, harmonic mappings of D onto Ω(a, b), with normalization
f(0) = 0, fz(0) > 0, fz̄(0) = 0. He proved that functions f ∈ SH(D,Ω(a, b))
have the form

(1.3) f(z) = A

[
Re

∫ z

0

(1− ζ2)P (ζ)

(1 + cζ + ζ2)2
dζ + i Im

z

1 + cz + z2

]
,

where

A = b

(∫ 1

0

(1− t2) ReP (t)dt

(1 + ct+ t2)2

)−1

,
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P is analytic in D, with P (0) = 1, ReP (z) > 0 and −2 ≤ c ≤ 2. Moreover,
Livingston showed that for given a, b with a+ b ≥ 0 one can find numbers
c1 and c2, −2 < c1 < 0 < c2 < 2 such that c in formula (1.3) is from the
interval [c1, c2]. We will be interested in the symmetric case when a = −b.
Then c1 = −c2 (see [5]). Moreover, c2 is the solution of the equation

(1.4)
√

4− x2 = 2 arctan
x√

4− x2
.

Indeed, by Lemma 1 in [5], c2 is a unique zero of the function

T (x) =

∫ 1

0

(
−(1 + t2)

(1 + xt+ t2)2
+

(1− t2)

(1− xt+ t2)2

)
dt, −2 < x < 2,

and a calculation shows that the zero of T must satisfy (1.4). This means, in
particular, that in the symmetric case c in formula (1.3) lies in the interval
(−
√

2,
√

2).
Our main results are the following theorems.

Theorem 1. If X is a nonparametric surface over the two-slit plane Ω =
C \ ((−∞,−1] ∪ [1,∞)), then

|K(0)| ≤ π2

2

(
1 + 8

π2 +
√

1 + 32
π2

)3

(
1 +

√
1 + 32

π2

)4 = 3.2642 . . . .

Moreover, if X has a horizontal tangent plane above the origin, then

(1.5) |K(0)| ≤ π2

4
.

Theorem 2. Under the assumptions of Theorem 1, the Gauss curvature at
the point above p ∈ (−1, 1) satisfies

|K(p)| ≤ π2

2

(
1 + 8

π2 +
√

1 + 32
π2

)3

(
1 +

√
1 + 32

π2

)4

1

(1− |p|)2
.

We also show that estimate (1.5) is sharp.

2. Proofs. In the proof of Theorem 1 we will use the following lemma due
to Hengartner and Schober [3].

Lemma HS. If b is an analytic function in D such that |b(z)| < 1 for
z ∈ D, then

Re

{
1 + b2(z)

1− b2(z)

}
≤ 1

2

(
M

(
1 + |z|
1− |z|

)
+

1

M

(
1− |z|
1 + |z|

))
for all z ∈ D, where M = max

{
1−|b(0)|2
|1−b(0)|2 ,

|1−b(0)|2
1−|b(0)|2

}
. This inequality is sharp

for all real z ∈ D if and only if b(z) = ± z+σ
1+σz , −1 < σ < 1.
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Proof of Theorem 1. If f = h + ḡ maps D onto Ω and f(0) = h(0) = 0,
then

ϕ(z) = h(z)− g(z) =
λz

1 + cz + z2

with some c, −
√

2 < c <
√

2. Moreover, we can assume that λ > 0. Then
u(r) = Re f(r) = f(r) is an increasing function that maps the interval
(−1, 1) onto itself. Consequently, 1=limr→1− u(r) and −1=limr→−1+ u(r).
Since

Re f(z) = Re

∫ z

0

λ(1− ζ2)P (ζ)

(1 + cζ + ζ2)2
dζ,

where P (z) = 1+b2(z)
1−b2(z)

, b2(z) = g′(z)/h′(z), we get

(2.1) 1 = λ

∫ 1

0

1− x2

(1 + cx+ x2)2
ReP (x)dx

and

(2.2) −1 = −λ
∫ 1

0

1− x2

(1− cx+ x2)2
ReP (−x)dx.

Using the equality
ϕ′ = h′ − g′ = (1− b2)h′,

we get from (1.1) that the Gauss curvature of the minimal graph over Ω
above zero satisfies

(2.3) |K(0)| ≤ 4|1− b2(0)|2(1− |b(0)|2)2

(1 + |b(0)|2)4|ϕ′(0)|2
.

It follows from (2.1) and (2.2) that

1

λ
≤
∫ 1

0

1− x2

(1 + x2)2
ReP (x)dx, if c ≥ 0

and
1

λ
≤
∫ 1

0

1− x2

(1 + x2)2
ReP (−x)dx, if c < 0.

Now, using Lemma HS, we get

1

λ
≤ 1

2

∫ 1

0

1− x2

(1 + x2)2

(
M

1 + x

1− x
+

1

M

1− x
1 + x

)
dx,

where M is as in the Lemma HS.
Since ϕ′(0) = λ, it follows from estimate (2.3) that

|K(0)| ≤ |1− b
2(0)|2(1− |b(0)|2)2

(1 + |b(0)|2)4

×
(∫ 1

0

1− x2

(1 + x2)2

(
M

1 + x

1− x
+

1

M

1− x
1 + x

)
dx

)2

.
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Hence

|K(0)| ≤
(
|1− b2(0)|(1− |b(0)|2)

(1 + |b(0)|2)2

(
M
π + 2

4
+

1

M

π − 2

4

))2

,(2.4)

where either M = 1−|b(0)|2
|1−b(0)|2 or M = |1−b(0)|2

1−|b(0)|2 . To complete the proof, we use
the function H defined in Lemma 5.2 by

H(z;α, β) =
|1− z2|

(1 + |z|2)2

[
α

(1− |z|2)2

|1− z|2
+ β|1− z|2

]
.

It was shown in [3] that if α 6= β then H assumes a maximum over D at

z0 = B[1 −
√

1−B−2], where B = A[1 +
√

1 + 2A−2] and A = 1
2

[
α+β
α−β

]
.

Moreover, the maximum value is

H(z0;α, β) =
(α+ β)

[
1−B−2

]3/2
1− 2B−2

if α 6= β. Hence we get

|K(0)| ≤ 1

16
H2(b(0), π + 2, π − 2)

or

|K(0)| ≤ 1

16
H2(b(0);π − 2, π + 2).

Since the maximum of both H(·;π + 2, π − 2) and H(·;π − 2, π + 2) is

2π

(
1− 16

π2

(
1 +

√
1 + 32

π2

)−2
)3/2

1− 32
π2

(
1 +

√
1 + 32

π2

)−2 ,

we get the desired estimate.
If b(0) = 0, which means that the surface X has a horizontal tangent

plane at the point above the origin, we have

|K(0)| ≤
(

2

∫ 1

0

1

1 + x2
dx

)2

=
π2

4
. �

Remark. Under the assumption that the tangent plane is horizontal, in-
equality (1.5) is sharp. Actually, as in Livingston’s paper one can consider
the family F of harmonic mappings obtained by the shear construction of
the functions

ϕ(z) = λ
z

1 + cz + z2

for which equations (2.1) and (2.2) are satisfied. Then the family F contains
all harmonic mappings f of the disk D onto Ω such that f(0) = 0, f ′z(0) > 0,
f ′z̄(0) = 0, and F is the closure of these mappings in the topology of the
uniform convergence on compact subsets of D. Taking ϕ(z) = h(z)−g(z) =
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λz
1+z2

and the dilatation ω(z) = z2, we get from equation (2.1) (or (2.2))
that λ = 4/π and we find f ∈ F of the form

f(z) =
4

π

(
Re(arctan(z)) + i Im

z

1 + z2

)
.

This function maps the unit disk onto the vertical strip {w : |Rew| < 1}. It
lifts to a nonparametric minimal surface whose Gaussian curvature at the
point above the origin is π2/4.

Since f can be approximated uniformly on compact sets by harmonic
mappings of the disk D onto Ω with dilatations ωn = rnz

2, where 0 < rn < 1,
limn→∞ rn = 1, we obtain a sequence of minimal surfaces over Ω whose
Gaussian curvature above the origin converges to π2/4.

If we apply the shear construction to the same ϕ, but with the dilatation
ω(z) = −z2, we get

f1(z) =
8

π

(
Re

(
z(1− z2)

2(1 + z2)2
+

1

2
arctan z

)
+ i Im

z

1 + z2

)
which maps D onto Ω. The function f1 lifts to the nonparametric minimal
surface whose Gaussian curvature at the point above the origin is π2/16.

Figures 1 and 2 depict the minimal surfaces above the harmonic shears
f and f1, respectively.

Figure 1. Minimal surface over a strip
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Figure 2. Minimal surface over the two-slit plane

Proof of Theorem 2. Assume that f = h + ḡ is a harmonic map of the
disk D onto Ω such that f(0) = h(0) = p ∈ (0, 1). If ϕ = h− g, then under
the assumption that ϕ′(0) > 0,

ϕ(z) = p+
λz

1 + cz + z2
, λ > 0,

where λ and c satisfy the equations:

λ

∫ 1

0

1− x2

(1 + cx+ x2)2
ReP (x)dx+ p = 1

and

λ

∫ −1

0

1− x2

(1 + cx+ x2)2
ReP (x)dx+ p = −1,

where, as above, P = 1+b2

1−b2 , b
2 = g′/h′. Hence

1

λ
=

1

1− p

∫ 1

0

1− x2

(1 + cx+ x2)2
ReP (x)dx ≤ 1

1− p

∫ 1

0

1− x2

(1 + x2)2
ReP (x)dx

in the case when c ≥ 0, and

1

λ
=

1

1 + p

∫ 1

0

1− x2

(1− cx+ x2)2
ReP (−x)dx <

1

1− p

∫ 1

0

1− x2

(1 + x2)2
ReP (−x)dx

in the case when c < 0. The rest of the proof runs as before. �
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