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Abstract. Given a quasisymmetric automorphism γ of the unit circle T we
define and study a modification Pγ of the classical Poisson integral operator
in the case of the unit disk D. The modification is done by means of the
generalized Fourier coefficients of γ. For a Lebesgue’s integrable complex-
valued function f on T, Pγ [f ] is a complex-valued harmonic function in D
and it coincides with the classical Poisson integral of f provided γ is the
identity mapping on T. Our considerations are motivated by the problem
of spectral values and eigenvalues of a Jordan curve. As an application we
establish a relationship between the operator Pγ , the maximal dilatation of
a regular quasiconformal Teichmüller extension of γ to D and the smallest
positive eigenvalue of γ.

Introduction. A number of important problems in the potential theory
of the complex plane C can be reduced to a linear integral equation of
Fredholm type with the Neumann–Poincaré kernel k or its transposition.
This kernel is assigned to a rectifiable and sufficiently smooth Jordan curve
Γ ⊂ C by the formula

(0.1) k(ζ, z) := − 1

π

∂

∂~nζ
log |ζ − z| , ζ, z ∈ Γ, ζ 6= z,

2000 Mathematics Subject Classification. Primary 30C62, 30C75.
Key words and phrases. Dirichlet integral, eigenvalue of a Jordan curve, eigenvalue of

a quasisymmetric automorphism, extremal quasiconformal mapping, Fourier coefficient,
harmonic conjugation operator, harmonic function, Neumann–Poincaré kernel, Poisson
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where
∂

∂~nζ
denotes the derivative along the interior normal of Γ at a point

ζ. For details the reader is referred to e.g. [3], [5], [32]. A very short but
essential survey of basic problems can be found in [30]. Let us recall that
a real number λ is called a Fredholm eigenvalue of Γ if it is an eigenvalue
of the kernel k, i.e. if there exists a real-valued function µ integrable on Γ
and non-constant almost everywhere (a.e. for brevity), which satisfies the
homogeneous integral equation

(0.2) µ(z) = λ

∫
Γ
k(ζ, z)µ(ζ)|dζ| , for almost every z ∈ Γ.

The theory of Fredholm eigenvalues of a Jordan curve has been intensively
studied by a number of eminent mathematicians like Ahlfors, Bergman and
Schiffer, next by Schober and Springer, and lately by Krushkal, Krzyż and
Kühnau.

Two Krzyż’s ideas seem to be especially important in the contemporary
theory of eigenvalues of a Jordan curve. First of all he observed in [11]
and [10] that every Fredholm eigenvalue λ of a sufficiently regular Jordan
curve Γ can be expressed equivalently by a pair of continuous functions
F : cl(Ω) → C and F∗ : cl(Ω∗) → C which are analytic in the domains
Ω and Ω∗ 3 ∞ complementary to Γ, and satisfy the following boundary
assumptions on Γ:

(0.3) ImF = ImF∗ and (1− λ) ReF = (1 + λ) ReF∗ .

The notation cl(A) means the closure of a set A ⊂ Ĉ := C ∪ {∞} in the
spherical metric. It is worth noting here that all Fredholm eigenvalues of
Γ can be represented without using the Neumann–Poincaré kernel. This
idea appears implicitly also in the works of Kühnau; cf. e.g. [17]. Having
disposed of the equalities (0.3), Krzyż proposed to modify them by using the
continuous mappings H : cl(D)→ cl(Ω) and H∗ : cl(D∗)→ cl(Ω∗) which are
conformal in the unit disk D := {z ∈ C : |z| < 1} and in D∗ := {z ∈ C : |z| >
1} ∪ {∞}, respectively. Then the mappings G := F ◦H and G∗ := F∗ ◦H∗
are continuous and analytic in D and D∗, respectively. Moreover, in view
of (0.3) they satisfy on the unit circle T := {z ∈ C : |z| = 1} the following
equalities

(0.4) ImG = ImG∗ ◦ γ and (1− λ) ReG = (1 + λ) ReG∗ ◦ γ ,

where γ := H−1
∗ ◦ H : T → T is so-called welding homeomorphism of Γ.

This way the eigenvalue problem for a Jordan curve Γ can be reduced to a
new problem of studying G, G∗ and λ satisfying the equalities (0.4) for a
given homeomorphic self-mapping γ of the unit circle. The author, encour-
aged by Krzyż, pursued this line of research in several works by introducing
and studying so-called eigenvalues of an automorphism of the unit circle;
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cf. e.g. [14], [24], [21], [22], [23] and [25]. Therefore the author is much in-
debted to professor Jan Krzyż for introducing him to the theory of Fredholm
eigenvalues of a Jordan curve.

The definition of an eigenvalue of a quasisymmetric automorphism γ of
the unit circle is recalled in Section 3. This is done by applying the har-
monic conjugation operator and certain operator Bγ assigned to γ. Then
the smallest positive eigenvalue of γ is described by the Poisson integral
modified by γ; cf. Theorem 3.1. This modification Pγ is defined by means
of the generalized Fourier coefficients of γ in Section 1. Then the basic
properties of the operator Pγ are studied. In Section 2 we recall the defini-
tion of the operator Bγ and prove an important relationship between the
operators Pγ and Bγ ; cf. Theorem 2.1. Then we characterize the norm of
Bγ(f) by means of the Dirichlet integral D[Pγ [f ]] (Corollary 2.2), where
f is the abstract class of a real-valued function f ∈ H1/2 with respect to
the equivalence relation +. The class H1/2 consists of all Lebesgue’s inte-
grable complex-valued functions on T whose harmonic extensions to D have
finite Dirichlet’s integral. The relation + identifies any complex-valued and
Lebesque’s measureable functions on T whose difference is a constant func-
tion a.e. in T.

The author would like to express his sincere thanks to the referee for his
kind and helpful comments.

1. The Poisson integral modified by a quasisymmetric automor-
phism of the unit circle. Let us denote by Hom+(T) the class of all
sense-preserving homeomorphic self-mappings of T. For K ≥ 1 let Q(T,K)
be the class of all γ ∈ Hom+(T) which admit a K-quasiconformal extension
to D. Homeomorphisms belonging to the class Q(T) :=

⋃
K≥1 Q(T,K) were

called by Krzyż as quasisymmetric automorphisms of the unit circle; cf. [12]
and [13]. He noticed that each f ∈ Q(T) can be described by a similar
condition to the well-known Beurling–Ahlfors quasisymmetricity condition;
cf. [1]. For other characterizations of the class Q(T) see [33] and [27].

Let L0(T) stand for the class of all Lebesgue’s measurable functions f :
T→ C. We denote by L1(T) the class of all f ∈ L0(T) which are integrable
on T with respect to the Lebesgue arc-length measure, i.e.

∫
T |f(z)||dz| <

+∞. Let P[f ] be the Poisson integral of a function f ∈ L1(T), i.e.

(1.1)

P[f ](z) :=
1

2π

∫
T
f(u) Re

u+ z

u− z
|du|

= f̂(0) +
∞∑
n=1

f̂(n)zn +

∞∑
n=1

f̂(−n)zn , z ∈ D,

where

(1.2) f̂(n) :=
1

2π

∫ π

−π
f(eit)e−intdt =

1

2π

∫
T
f(u)u−n|du| , n ∈ Z.
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It is well known that P[f ] is a complex-valued harmonic function on D.
Moreover, if the function f is continuous, then the function P[f ] is the
unique solution to the Dirichlet problem for the boundary function f , which
means that for every z ∈ T, P[f ](ζ)→ f(z) as D 3 ζ → z.

Given a function f ∈ L0 and m,n ∈ Z we define

(1.3) f̂(m,n) :=
1

2π

∫ π

−π
f(eit)me−intdt =

1

2π

∫
T
f(u)mu−n|du| ,

provided the respective functions are integrable on T. If m = 1, then (1.3)
takes the form of

(1.4) f̂(1, n) =
1

2π

∫ π

−π
f(eit)e−intdt = f̂(n) ,

and so f̂(1, n) is just the nth Fourier coefficient of the function f . This justi-
fies to call f̂(m,n) the (m,n)-generalized Fourier coefficient of the function
f . If f satisfies the following condition

0 < ess inf
z∈T

|f(z)| ≤ ess sup
z∈T

|f(z)| < +∞ ,

then f̂(m,n) is well defined for any m,n ∈ Z. In particular, if f ∈ Hom+(T),
then all generalized Fourier coefficients f̂(m,n), m,n ∈ Z, are well defined.
In [26] the following result was proved.

Theorem A. Given K ≥ 1 let γ ∈ Q(T,K). If Z 3 n 7→ λn ∈ C is a
sequence such that

(1.5)
∞∑

n=−∞
|n||λn|2 < +∞ ,

then for each n ∈ Z the sequence N 3 p 7→
∑p

m=−p
√
|n|γ̂(m,n)λm is

convergent as p→∞ and

(1.6)
1

K

∞∑
n=−∞

|n||λn|2 ≤
∞∑

n=−∞

∣∣∣∣∣
∞∑

m=−∞

√
|n|γ̂(m,n)λm

∣∣∣∣∣
2

≤ K
∞∑

n=−∞
|n||λn|2.

Here and subsequently, we write
∑∞

n=−∞ cn := limm→∞
∑m

n=−m cn for
any sequence Z 3 n 7→ cn ∈ C, provided the limit exists.

Note that the inequalities (1.6) look similarly to the Grunsky inequalities
for holomorphic functions in the classes Σ(k), 0 ≤ k ≤ 1; cf. [28, Sect. 3.1
and 9.4]. Due to the works of R. Kühnau [18], [19], [20] and Y. Shen [31]
we know that the inequalities (1.6) can be improved.

Let D[F ] denote the Dirichlet integral of a function F : D→ C, which is
a.e. differentiable in D, i.e.

(1.7) D[F ] :=

∫
D

(∣∣∣∂F
∂x

∣∣∣2 +
∣∣∣∂F
∂y

∣∣∣2) dxdy = 2

∫
D

(|∂F |2 + |∂̄F |2)dxdy ,
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where

∂F :=
1

2

(
∂F

∂x
− i

∂F

∂y

)
, ∂̄F :=

1

2

(
∂F

∂x
+ i

∂F

∂y

)
are so-called the formal derivatives of F . If F : D → C is a harmonic
mapping in D given by the series expansion

F (z) =

∞∑
n=0

anz
n +

∞∑
n=1

a−nz
n , z ∈ D,

with coefficients an ∈ C, n ∈ Z, then integrating by substitution we obtain∫
D

(|∂F |2 + |∂̄F |2)dxdy = lim
R→1−

lim
p→∞

∫ R

0

∫ 2π

0

(∣∣∣∣ p∑
n=1

nanr
n−1ei(n−1)t

∣∣∣∣2
+

∣∣∣∣ p∑
n=1

na−nr
n−1e−i(n−1)t

∣∣∣∣2)rdtdr
= lim

R→1−

∫ R

0
2π

( ∞∑
n=1

n2|an|2r2n−1 +
∞∑
n=1

n2|a−n|2r2n−1

)
dr

= π lim
R→1−

∞∑
n=−∞

|n||an|2R2n = π

∞∑
n=−∞

|n||an|2 ,

and consequently,

(1.8) D[F ] = 2π

∞∑
n=−∞

|n||an|2 ;

cf. [26, (1.2)]. Using Theorem A we can modify the Poisson integral P[f ] as
follows. From (1.1) and (1.8) it follows that

(1.9) D[P[f ]] = 2π

∞∑
n=−∞

|n||f̂(n)|2 , f ∈ L1(T).

Then for a given f ∈ H1/2 := {h ∈ L1(T) : D[P[h]] < +∞} we have

(1.10)
∞∑

n=−∞
|n||f̂(n)|2 =

1

2π
D[P[f ]] < +∞ .

Applying now Theorem A for an arbitrarily fixed K ≥ 1 and γ ∈ Q(T,K)

and the sequence Z 3 n 7→ λn := f̂(n) we know that for each n ∈ Z \ {0}
the sequence N 3 p 7→

∑p
m=−p γ̂(m,n)λm is convergent as p → ∞ and we

may define

(1.11) f̂(0; γ) := f̂(0) and f̂(n; γ) := lim
p→∞

p∑
m=−p

γ̂(m,n)f̂(m) , n ∈ Z\{0}.
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Moreover, by the second inequality in (1.6),

(1.12)
∞∑

n=−∞
|n||f̂(n; γ)|2 ≤ K

∞∑
n=−∞

|n||f̂(n)|2 .

This means that the operator H1/2 3 f 7→ Pγ [f ] is well defined by the
formula

(1.13) Pγ [f ](z) :=

∞∑
n=0

f̂(n; γ)zn +

∞∑
n=1

f̂(−n; γ)zn, z ∈ D,

and by (1.8),

(1.14) D[Pγ [f ]] = 2π

∞∑
n=−∞

|n||f̂(n; γ)|2 , f ∈ H1/2, γ ∈ Q(T).

We call Pγ the Poisson integral operator modified by γ. Applying the op-
erator Pγ and the equalities (1.9), (1.11) and (1.14), we can rewrite the
inequalities (1.6) in the following shorter form.

Corollary 1.1. For all K ≥ 1, γ ∈ Q(T,K) and f ∈ H1/2,

(1.15)
1

K
D[P[f ]] ≤ D[Pγ [f ]] ≤ K D[P[f ]] .

Proof. Given K ≥ 1 and γ ∈ Q(T,K) fix f ∈ H1/2. Then by (1.10) the
sequence Z 3 n 7→ λn := f̂(n) satisfies the condition (1.5). Theorem A now
shows that

1

K

∞∑
n=−∞

|n||λn|2 ≤
∞∑

n=−∞
|n||f̂(n; γ)|2 ≤ K

∞∑
n=−∞

|n||λn|2 .

Combining this with (1.9) and (1.14), we obtain the inequalities (1.15),
which is the desired conclusion. �

Remark 1.2. By the definition of the operator Pγ we can infer directly its
following properties valid for any γ ∈ Q(T):

(i) If γ is the identity mapping on T, then Pγ = P, i.e. the mapping
(f, γ) 7→ Pγ [f ] generalizes the Poisson operator P;

(ii) Pγ [µf + νg] = µPγ [f ] + ν Pγ [g] as µ, ν ∈ C and f, g ∈ H1/2, i.e. the
operator Pγ is linear;

(iii) Pγ [f ] = Pγ [f ] as f ∈ H1/2;
(iv) Pγ [Re f ] = Re Pγ [f ] and Pγ [Im f ] = Im Pγ [f ] as f ∈ H1/2.

For the proof we apply (1.3), (1.11) and (1.13) to arbitrarily fixed µ, ν ∈ C
and f, g ∈ H1/2. If γ is the identity mapping on T, then from (1.3) we
conclude that

γ̂(m,n) =
1

2π

∫
T
γ(z)mz−n|dz| = 1

2π

∫
T
zm−n|dz| = 0 , m, n ∈ Z, m 6= n,
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and γ̂(m,m) = 1 as m ∈ Z, hence and by (1.11) that

f̂(n; γ) = lim
p→∞

p∑
m=−p

γ̂(m,n)f̂(m) = f̂(n) , m ∈ Z,

and finally by (1.1) and (1.13) that the property (i) holds.
From (1.11) and (1.2) we see that for every n ∈ Z,

̂(µf + νg)(n; γ) = lim
p→∞

p∑
m=−p

γ̂(m,n) ̂(µf + νg)(m)

= lim
p→∞

p∑
m=−p

(
µγ̂(m,n)f̂(m) + νγ̂(m,n)ĝ(m)

)
= µ lim

p→∞

p∑
m=−p

γ̂(m,n)f̂(m) + ν lim
p→∞

p∑
m=−p

γ̂(m,n)ĝ(m)

= µf̂(n; γ) + νĝ(n; γ) .

Hence and by (1.13) we deduce the property (ii).
From (1.3) and (1.2) we see that for every m,n ∈ Z,

γ̂(m,n) =
1

2π

∫
T
γ(z)mz−n|dz| = 1

2π

∫
T
γ(z)−mzn|dz| = γ̂(−m,−n)

as well as

f̂(n) =
1

2π

∫
T
f(z)z−n|dz| = 1

2π

∫
T
f(z)zn|dz| = f̂(−n) .

Hence and by (1.11) we have

f̂(n; γ) = lim
p→∞

p∑
m=−p

γ̂(m,n)f̂(m) = lim
p→∞

p∑
m=−p

γ̂(m,n)f̂(−m)

= lim
p→∞

p∑
m=−p

γ̂(−m,−n)f̂(−m) = lim
p→∞

p∑
m=−p

γ̂(m,−n)f̂(m) = f̂(−n; γ)

as n ∈ Z. Combining this with (1.13) we conclude that for every z ∈ D,

Pγ [f ](z) = f̂(0; γ) +
∞∑
n=1

f̂(n; γ)zn +
∞∑
n=1

f̂(−n; γ)zn

= f̂(0; γ) +

∞∑
n=1

f̂(−n; γ)zn +

∞∑
n=1

f̂(n; γ)zn

= f̂(0; γ) +

∞∑
n=1

f̂(−n; γ)zn +

∞∑
n=1

f̂(n; γ)zn = Pγ [f ](z) ,
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which yields the property (iii).
Since Re f = (f + f)/2 and Im f = (f − f)/(2i) we infer the property

(iv) from the properties (ii) and (iii).

2. Relationships between operators Pγ and Bγ. In [24] and [23] the
operator Bγ was assigned to every γ ∈ Q(T). We recall now its construction.
For all f, g ∈ L0(T) the notation f + g means that f − g equals a constant
function a.e. in T. It is clear that + is an equivalence relation in the class
L0(T). Let [f/ +] stand for the abstract class of f ∈ L0(T) with respect to
+. Consider the class

(2.1) H := {[f/ +] : f ∈ Re L1(T) and D[P[f ]] < +∞} .
Here and subsequently, we set ReX := {Re f : f ∈ X} for any family X
of complex-valued functions. It can be verified in the standard way that
(H, ‖ · ‖H) is a real Hilbert space, where

(2.2)
∥∥[f/ +]

∥∥
H

:=

√
1

2
D[P[f ]] , f ∈ Re H1/2;

cf. [24, Sect. 2.4]. We adopt the usual notation C(T) for the class of all
complex-valued continuous functions on T. From (2.1), (2.2) and (1.9) it
follows that the set {[f/ + ] : f ∈ Re C(T)} ∩H is dense in (H, ‖ · ‖H).
Moreover, it may be concluded from [24, (2.5.1) and Theorems 2.5.3 and
2.4.3] that the inequalities

1

K
D[P[f ]] ≤ D[P[f ◦ γ]] ≤ K D[P[f ]]

hold for all K ≥ 1, f ∈ C(T) and γ ∈ Q(T,K). Then there exists the unique
linear continuous operator Bγ : H →H in (H, ‖ · ‖H) satisfying

(2.3) Bγ([f/ +]) = [f ◦ γ/ +] , f ∈ Re C(T) ∩H1/2 .

As a matter of fact, Bγ is a linear homeomorphism of the space (H, ‖ · ‖H)
onto itself; cf. [24, Corollary 2.5.4]. Various properties of spectral values
and eigenvalues of a quasisymmetric automorphism γ of the unit circle were
obtained by means of the operator Bγ and its norm; cf. [24] and [23]. Note
that the operator Bγ is defined implicitly by the condition (2.3). From the
famous Beurling–Ahlfors result [1] we know that a quasisymmetric auto-
morphism γ of T does not have to be an absolutely continuous function.
Moreover, γ can be even purely singular. Therefore, in such a case the
composite mapping f ◦ γ is not Lebesgue’s measurable function in general.
In consequence, f ◦ γ /∈ L0(T) for certain f ∈ H1/2, and so the family
Re C(T) ∩ H1/2 cannot be replaced by Re H1/2 in (2.3). This means that
defining the operator Bγ directly by composition of functions fails for a
singular γ ∈ Q(T). This problem was overcome in [24, Sect. 2.5], where the
following result was stated:

(2.4) Bγ([f/ +]) = [Tr[P[f ]] ◦ γ/ +] , f ∈ Re H1/2;
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cf. [24, (2.5.8)]. Here and later on the symbol Tr[F ] denotes the radial
limiting valued function of a function F : D→ C, i.e. for every z ∈ T,

Tr[F ](z) := lim
t→1−

F (tz)

as the limit exists, while Tr[F ](z) := 0 otherwise. It is well known that
Tr[P[f ]] = f a.e. in T for every f ∈ L1(T); cf. [2, Sect. 1.2]. As a matter of
fact, the transformation H1/2 3 f 7→ Tr[P [f ]] ◦ γ was used in (2.4). In what
follows we shall describe the operator Bγ more directly by means of the
transformation H1/2 3 f 7→ Tr[Pγ [f ]]. From (1.13), (1.14) and Corollary 1.1
we deduce that

(2.5) Tr[Pγ [f ]] ∈ H1/2, f ∈ H1/2, γ ∈ Q(T).

Theorem 2.1. For every γ ∈ Q(T),

(2.6) Bγ([f/ +]) = [Tr[Pγ [f ]]/ +] , f ∈ Re H1/2 .

Proof. Fix γ ∈ Q(T) and f ∈ Re H1/2. Then γ ∈ Q(T,K) for certain
K ≥ 1 and the condition (1.10) holds. Since the function f is real-valued,
we conclude from (1.2) that

(2.7) f̂(0) ∈ R and f̂(−n) = f̂(n) , n ∈ N.

From (1.10) it follows that the sequence Z 3 n 7→ λn := f̂(n) satisfies the
condition (1.5). For every p ∈ N we define

(2.8) fp(z) := f̂(0) +

p∑
n=1

f̂(n)zn +

p∑
n=1

f̂(−n)zn , z ∈ T.

By (2.7) each function fp, p ∈ N, is real-valued on T. Moreover, by (1.9)
we have

(2.9) D[P[fp]] = 2π

p∑
n=−p

|n||f̂(n)|2 ≤ 2π
∞∑

n=−∞
|n||f̂(n)|2 = D[P[f ]] < +∞,

and so fp ∈ H1/2. Certainly fp ∈ Re C(T) as p ∈ N. Thus

(2.10) fp ∈ Re C(T) ∩H1/2, p ∈ N.

Then setting fp := [fp/ +] as p ∈ N, we deduce from (2.3) that

(2.11) Bγ(fp) = [fp ◦ γ/ +] , p ∈ N.

Since

(2.12) P[f − fp] = P[f ]−P[fp] =

∞∑
n=p+1

f̂(n)zn +

∞∑
n=p+1

f̂(−n)zn , z ∈ D,
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we conclude from (1.9) that

D[P[f − fp]] = 2π

∞∑
n=p+1

n|f̂(n)|2 + 2π

∞∑
n=p+1

n|f̂(−n)|2

= 2π
∞∑

n=−∞
|n||f̂(n)|2 − 2π

p∑
n=−p

|n||f̂(n)|2

= D[P[f ]]−D[P[fp]] ≤ D[P[f ]] < +∞ , p ∈ N.

Hence f − fp ∈ H1/2 as p ∈ N, and by (1.10) we also have

(2.13) D[P[f − fp]]→ 0 as p→∞ .

Thus setting f := [f/ +], we see that f − fp ∈ H as p ∈ N, and by (2.13)
and (2.2) we obtain

(2.14) 2‖f − fp‖2H = D[P[f − fp]]→ 0 as p→∞ .

Since Bγ is a linear and continuous operator in (H, ‖ · ‖H), we conclude
from (2.14) that

(2.15) ‖Bγ(f − fp)‖H = ‖Bγ(f)−Bγ(fp)‖H → 0 as p→∞ .

On the other hand,

(2.16) Pγ [fp](z) = f̂p(0; γ) +
∞∑
n=1

f̂p(n; γ)zn +
∞∑
n=1

f̂p(−n; γ)zn , p ∈ N,

where by (1.11),

(2.17) f̂p(n; γ) =

∞∑
m=−∞

γ̂(m,n)f̂p(m) =

p∑
m=−p

γ̂(m,n)f̂(m) , n ∈ Z, p ∈ N.

By (2.13), Corollary 1.1 and Remark 1.2 we have

(2.18) D[Pγ [f ]−Pγ [fp]] = D[Pγ [f−fp]] ≤ K D[P[f−fp]]→ 0 as p→∞ .
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Fix p ∈ N. By (1.2), (1.3), (1.11) and (2.17) we see that for every n ∈ Z,

(2.19)

(̂fp◦γ)(n) =
1

2π

∫ π

−π
fp ◦ γ(eit)e−intdt

=
1

2π

∫ π

−π

( p∑
m=0

f̂(m)γ(eit)m+

p∑
m=1

f̂(−m)γ(eit)
m
)

e−intdt

=
1

2π

∫ π

−π

( p∑
m=−p

f̂(m)γ(eit)m
)

e−intdt

=

p∑
m=−p

f̂(m)
1

2π

∫ π

−π
γ(eit)me−intdt

=

p∑
m=−p

f̂(m)γ̂(m,n) =

∞∑
m=−∞

γ̂(m,n)f̂p(m) = f̂p(n; γ) .

Write f := [f/ +] and choose g ∈ Bγ(f). By (2.11), (2.15) and (2.2) we
have

D[P[g]−P[fp◦γ]] = D[P[g−fp◦γ]] = 2‖Bγ(f)−Bγ(fp)‖2H → 0 as p→∞ .

Combining this with (1.8), (2.19) and (2.18), we obtain

∞∑
n=−∞

|n||f̂(n; γ)− ĝ(n)|2 =
∞∑

n=−∞
|n||f̂(n; γ)− f̂p(n; γ) + f̂p(n; γ)− ĝ(n)|2

≤
∞∑

n=−∞
2|n|

(
|f̂(n; γ)− f̂p(n; γ)|2 + |f̂p(n; γ)− ĝ(n)|2

)
= 2

∞∑
n=−∞

|n||f̂(n; γ)− f̂p(n; γ)|2 + 2

∞∑
n=−∞

|n|| ̂(fp ◦ γ)(n)− ĝ(n)|2

=
1

π
D[Pγ [f ]− Pγ [fp]] +

1

π
D[P[fp ◦ γ]− P[g]]→ 0 as p→∞ .

Hence
∞∑

n=−∞
|n||f̂(n; γ)− ĝ(n)|2 = 0 ,

and so f̂(n; γ) = ĝ(n) for n ∈ Z \ {0}. This means that P[g] − Pγ [f ] is a
constant function in D. To be more precise,

P[g](z)−Pγ [f ](z) = P[g](0)−Pγ [f ](0) = ĝ(0)−f̂(0; γ) = ĝ(0)−f̂(0) , z ∈ D.

Finally, Tr[P[g]]−Tr[Pγ [f ]] = ĝ(0)− f̂(0) a.e. in T, i.e. g + Tr[Pγ [f ]]. This
implies the property (2.6), which is the desired conclusion. �
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Corollary 2.2. For every γ ∈ Q(T),

(2.20) D[Pγ [f ]] = 2‖Bγ([f/ +])‖2H , f ∈ Re H1/2 .

Proof. By Theorem 2.1 and (2.2) we conclude that for every f ∈ Re H1/2,

2‖Bγ([f/ +])‖2H = 2‖[Tr[Pγ [f ]]/ +]‖2H = D[P[Tr[Pγ [f ]]]] = D[Pγ [f ]] ,

which yields (2.20). �

3. The smallest positive eigenvalue of a quasisymmetric automor-
phism of the unit circle. The operator Pγ seems to be a more convenient
tool for studying spectral values and eigenvalues problems as compared to
the operator Bγ . Applying Theorem 2.1 and Corollary 2.2, we can rewrite a
number of known so far results in this subject by means of the operator Pγ .
As an example we will show Theorem 3.1 which is related to the following
Krzyż result on quasiconformal reflection; cf. [10].

Theorem B. Let Γ ⊂ C be a quasicircle and let F : cl(Ω) → C and
F∗ : cl(Ω∗) → C be continuous and locally univalent functions on cl(Ω)
and cl(Ω∗), and analytic in the complementary domains Ω and Ω∗ 3 ∞
of Γ, respectively. Assume that both the functions F and F∗ have finite
Dirichlet integrals on Ω and Ω∗, respectively. If the equalities (0.3) hold
on Γ with a real constant λ, then |λ| > 1, Γ admits a unique extremal K-
quasiconformal (i.e. with the smallest maximal dilatation K) reflection Ψ
with K = (|λ|+ 1)/(|λ| − 1), and the following equality holds

(3.1) F (z) =
F∗ ◦ Ψ(z) + λF∗ ◦ Ψ(z)

1− λ
, z ∈ cl(Ω) .

Let S[f ] be the Schwarz integral of a function f ∈ L1(T), i.e.

(3.2) S[f ](z) :=
1

2π

∫
T
f(u)

u+ z

u− z
|du| = f̂(0) + 2

∞∑
n=1

f̂(n)zn , z ∈ D.

Since the kernel function is holomorphic with respect to z, S[f ] is a holo-
morphic function. Moreover, by (3.2) and (1.1) we see that P[f ] = Re S[f ]
as f ∈ Re L1(T), and hence Im S[f ] is a harmonic conjugate function to P[f ]
and Im S[f ](0) = 0. Therefore, Re L1(T) 3 f 7→ Tr[Im S[f ]] is called the har-
monic conjugation operator ; cf. e.g. [4, Sect. III.1]. Since D[ReF ] = D[ImF ]
for any holomorphic function F in D, we conclude from the definition of the
space (H, ‖ · ‖H) that the operator A, defined by

(3.3) A([f/ +]) := [Tr[Im S[f ]]/ +] , f ∈ Re H1/2,

satisfies the following properties

(3.4) A(H) = H, A2(f) = −f and ‖A(f)‖H = ‖f‖H , f ∈H,
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and so the operator A is an isometry of the space (H, ‖ · ‖H) onto itself.
Therefore, for each γ ∈ Q(T) the operator

(3.5) Aγ := BγAB−1
γ ,

called the generalized harmonic conjugation operator, is a linear homeomor-
phism of the space (H, ‖·‖H) onto itself; cf. [24, Sect. 3.1]. We recall that a
real number λ is said to be an eigenvalue of γ ∈ Q(T) if there exists f ∈H
with ‖f‖H 6= 0 such that

(3.6) (λ+ 1)A(f) = (λ− 1)Aγ(f) ;

cf. [21, Definition 1.1] and also [24, Sect. 3.2]. Let Λ∗γ be the set of all
eigenvalues of γ ∈ Q(T). We recall that a quasiconformal self-mapping ψ
of D is said to be a regular Teichmüller mapping if there exists a non-zero
holomorphic function F in D and a constant k, 0 ≤ k < 1, such that the
complex dilatation of ψ is of the form

∂̄ψ

∂ψ
= k

F

|F |
a.e. in D.

Under the assumptions of Theorem B, let H : cl(D) → cl(Ω) and H∗ :
cl(D∗)→ cl(Ω∗) be continuous mappings and conformal in D and D∗, respec-
tively. Then γ := H−1

∗ ◦H is a sense-preserving homeomorphic self-mapping
of T. Let ~ be the mapping defined by

~(z) := 1/z as z ∈ C \ {0} and ~(0) :=∞ , ~(∞) := 0 .

If Γ admits a Q-quasiconformal reflection Ψ , then ψ := ~◦H−1
∗ ◦Ψ ◦H is a Q-

quasiconformal extension of γ to D. Conversely, if ψ is a Q-quasiconformal
extension of γ to D, then the mapping Ψ defined by

Ψ(z) := H∗ ◦ ~ ◦ ψ ◦H−1(z) as z ∈ cl(Ω) and Ψ(z) := Ψ−1(z) as z ∈ Ω∗ ,

is a Q-quasiconformal reflection in Γ. Thus for every Q ≥ 1, Γ admits a
Q-quasiconformal reflection iff γ ∈ Q(T, Q). In particular, since Ψ is an
extremal K-quasiconformal reflection, ψ is an extremal K-quasiconformal
extension of γ to D. Moreover, by (3.1), the complex dilatation of ψ satisfies

∂̄ψ

∂ψ
=

[
(∂Ψ ◦H)H ′

(∂̄Ψ ◦H)H ′

]
= − 1

λ

(F ′ ◦H)H ′

(F ′ ◦H)H ′
= − 1

λ

(F ◦H)′

(F ◦H)′
a.e. in D,

i.e. ψ is a regular Teichmüller mapping. From [24, Theorems 4.5.2 and
4.4.2] it follows that λ is an eigenvalue of γ. Therefore, Theorem B is
deeply related to the following theorem.

Theorem 3.1. Let γ ∈ Q(T) \ Q(T, 1). Then the following properties are
equivalent to each other:
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(i) There exists f ∈ H1/2 such that

(3.7) D[Pγ [f ]] = K(γ) D[P[f ]] 6= 0 ,

where K(γ) := inf
(
{K ≥ 1 : γ ∈ Q(T,K)}

)
;

(ii) There exists the smallest positive eigenvalue of γ and

(3.8) min({λ ∈ Λ∗γ : λ > 0}) = (K(γ) + 1)/(K(γ)− 1) ;

(iii) There exists a holomorphic function F : D → C such that 0 6=
D[F ] < +∞ and γ admits a regular quasiconformal Teichmüller
extension ψ to D with the complex dilatation

(3.9)
∂̄ψ

∂ψ
=

K(γ)− 1

K(γ) + 1

F ′

F ′
a.e. in D.

Proof. Let γ ∈ Q(T) \Q(T, 1) be arbitrarily fixed.
Assume first that the property (i) holds. Since f = Re f + i Im f , we

deduce from (1.7) that

(3.10) D[P[Re f ]] + D[P[Im f ]] = D[P[f ]] ,

as well as, by Remark 1.2,

(3.11) D[Pγ [Re f ]] + D[Pγ [Im f ]] = D[Pγ [f ]] = K(γ) D[P[f ]] 6= 0 .

Suppose that D[Pγ [Re f ]]<K(γ)D[P[Re f ]] or D[Pγ [Im f ]]<K(γ)D[P[Im f ]].
Then by (3.10) we see that

D[Pγ [Re f ]] + D[Pγ [Im f ]] < K(γ) D[P[Re f ]] + K(γ) D[P[Im f ]]

= K(γ) D[P[f ]] ,

which contradicts (3.11). Therefore,

D[Pγ [Re f ]] = K(γ) D[P[Re f ]] and D[Pγ [Im f ]] = K(γ) D[P[Im f ]] .

From (3.11) it follows that D[Pγ [Re f ]] 6= 0 or D[Pγ [Im f ]] 6= 0. Without loss
of generality we may assume that the first possibility holds. Then setting
g := [Re f/ +], we conclude from Corollary 2.2 and (2.2) that

‖Bγ(g)‖2H =
1

2
D[Pγ [Re f ]] =

1

2
K(γ) D[P[Re f ]] = K(γ)‖g‖2H 6= 0 ,

and hence f := g/‖g‖H satisfies the equality

(3.12) ‖Bγ(f)‖2H = K(γ) .

Applying now [23, Theorem 2.1 (⇐)], we see that the property (ii) holds,
which proves the implication (i) ⇒ (ii). Applying next [23, Theorem 1.3
(⇐)], we deduce from (3.12) the property (iii), and so the implication (i)⇒
(iii) is true.

Conversely, suppose that the property (ii) holds. Then by [23, Theorem
2.1 (⇒)] we see that the equality (3.12) holds for a certain f ∈ H such
that ‖f‖H = 1. The same conclusion can be deduced from [23, Theorem



On a modification of the Poisson integral operator 135

1.3 (⇒)] provided the property (iii) holds. Applying now Corollary 2.2 and
(2.2), we obtain

D[Pγ [f ]] = 2‖Bγ(f)‖2H = 2 K(γ)‖f‖2H = K(γ) D[P[f ]] 6= 0 , f ∈ f ,

which leads to (3.7). Therefore, the implications (ii) ⇒ (i) and (iii) ⇒ (i)
are true, which completes the proof. �

Remark 3.2. It turns out that the equivalence (i) ⇔ (iii) in Theorem 3.1
can be improved as follows.
Suppose that γ ∈ Q(T) and f ∈ H1/2 satisfy K(γ) > 1 and D[P[f ]] > 0.
Then

D[Pγ [f ]] = K(γ) D[P[f ]]

if and only if there exist α, c ∈ R such that eiαf(z) − ci ∈ R for a.e. z ∈ T
and γ admits a regular quasiconformal Teichmüller extension ψ to D with
the complex dilatation

∂̄ψ

∂ψ
= e−2iαK(γ)− 1

K(γ) + 1

∂ Pγ [f ]

∂ Pγ [f ]
a.e. in D.

However, the proof of this statement exceeds the scope of this paper and
will be published elsewhere.

Remark 3.3. The smallest positive eigenvalue λ of γ in Theorem 3.1 is
strictly related to a number of important constants like, e.g.: the Schober
constant, the Grunsky–Kühnau constant, as well as the supremum norms of
the Neumann–Poincaré operator, the Hilbert transformation and the opera-
tor Aγ . For the detailed exposition of this topic the reader is referred to [24,
Sect. 4.4]. By [24, Theorem 4.4.2], the set Λ∗(Γ) of all eigenvalues of a quasi-
circle Γ ⊂ C coincides with the set Λ∗γ , where γ is a welding homeomorphism
of Γ. Therefore, Theorem 3.1 is closely related to various results involving
these constants obtained by Kühnau ([15], [16], [17]), Schiffer ([29]) and
Krushkal ([6], [7], [8, Sect. 2]); see also the survey article by Krushkal [9, p.
528] and the references given there. This relationship provides a motivation
for the further study of the inequalities (1.6) in Theorem A.
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[15] Kühnau, R., Zu den Grunskyschen Coeffizientenbedingungen, Ann. Acad. Sci. Fenn.
Ser. A I Math. 6 (1981), 125–130.
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