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Abstract. We study extensions of classical theorems on gap power series of
a complex variable to the multidimensional case.

1. Power series with Ostrowski gaps. Let

(1.1) f(z) =
∞∑
0

Qj(z), where Qj(z) =
∑
|α|=j

aαz
α, α ∈ ZN+ ,

be a power series in CN , i.e. a series of homogeneous polynomials Qj of N
complex variables of degree j.

The set D given by the formula D := {a ∈ CN ; the sequence (1.1) is
convergent in a neighborhood of a} is called a domain of convergence of
(1.1).

It is known that

(1.2) D = {z ∈ CN ; ψ∗(z) < 1},
where

(1.3) ψ(z) := lim sup
j→∞

j

√
|Qj(z)|,

and ψ∗ denotes the upper semicontinuous regularization of ψ.
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If ψ∗ is finite, then it is plurisubharmonic and absolutely homogeneous
(i.e. ψ∗(λz) = |λ|ψ∗(z), λ ∈ C, z ∈ CN ). Therefore, the domain of con-
vergence D is either empty, or it is a balanced (i.e. λz ∈ D for all λ ∈ C
with |λ| ≤ 1 and z ∈ D) domain of holomorphy. Every balanced domain of
holomorphy is a domain of convergence of a series (1.1).

For every balanced domain D in CN there is a unique nonnegative func-
tion h (so-called Minkowski functional of D) such that h(λz) = |λ|h(z) for
all λ ∈ C and z ∈ CN , and D = {z ∈ CN ; h(z) < 1}. In particular, if D is
a domain of convergence of (1.1), then h(z) ≡ ψ∗(z).

It is known that a balanced domain in CN is a domain of holomorphy
if and only if its Minkowski functional h is an absolutely homogeneous
plurisubharmonic function.

The number

(1.4) ρ := 1/ lim sup
j→∞

j

√
‖Qj‖B,

where B := {z ∈ CN ; ‖z‖ ≤ 1}, is called a radius of convergence of series
(1.1) (with respect to a given norm ‖ · ‖).

If N = 1, then ψ(z) = |z|
ρ and D = ρB. If N ≥ 2, then ρB ⊂ D but, in

general, D 6= ρB.
Series (1.1) is normally geometrically convergent in D, i.e.

(1.5) lim sup
j→∞

j

√
‖Qj‖K < 1, lim sup

n→∞
n
√
‖f − sn‖K < 1,

for all compact sets K ⊂ D, where sn := Qo + · · · + Qn is the nth partial
sum of (1.1).

Definition 1.1. We say that a function f holomorphic in a neighborhood
of a point zo ∈ CN possesses at the point zo Ostrowski’s gaps (mk, nk], if

1o. mk, nk are natural numbers such that mk < nk < mk+1 (k ≥ 1),
nk
mk
→∞ as k →∞;

2o. limj→∞, j∈I
j
√
‖Qj‖B = 0, where B is the unit ball in CN ,

Qj(z) ≡ Q(f,zo)
j (z) :=

∑
|α|=j

f (α)(zo)

α!
zα =

1

j!

(
d

dλ

)j
f(zo + λz)|λ=0,

and I :=
⋃∞
k=1(mk, nk], (mk, nk] denoting the set of integers j with mk <

j ≤ nk.

Observe that fo(z) :=
∑

j∈I Qj(z − zo) is an entire function such that
the function g := f − fo possesses Ostrowski’s gaps (mk, nk] at zo with
Q

(g,zo)
j = 0 for mk < j ≤ nk, k ≥ 1. Hence, a holomorphic function f

possesses Ostrowski’s gaps (mk, nk] at a point zo if and only if there exists
an entire function fo such that Q(f−fo,zo)

j = 0 for mk < j ≤ nk, k ≥ 1.
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Moreover, the maximal domain of existence G = Gf of f is identical with
the maximal domain of existence of f − fo.

Definition 1.2. We say that a function f holomorphic in a neighborhood
of a point zo possesses Ostrowski’s gaps relative to a sequence of positive
integers {nk}, if {nk} is increasing and there exists a sequence of positive
real numbers {qk} such that qk → 0 as k →∞ and limj→∞,j∈I

j
√
‖Qj‖B = 0,

where I :=
⋃∞
k=1(bqknkc, nk].

A function f possesses Ostrowski’s gaps according to Definition 1.1 if and
only if f possesses Ostrowski’s gaps according to Definition 1.2.

Indeed, if the conditions of Definition 1.1 are satisfied, then it is sufficient
to put qk := mk/nk.

If the conditions of Definition 1.2 are satisfied, consider two cases. If
m := lim infk→∞ qknk is finite, then the function f is entire, so that f has
Ostrowski’s gaps (mk, nk] according to Definition 1 for any sequence mk, nk
satisfying 1o.

If lim infk→∞ qknk =∞, then f possesses Ostrowski’s gaps (bqklnklc, nkl ]
for a suitable chosen increasing subsequence kl of positive integers.

We say that a compact subset K of CN is polynomially convex if K is
identical with its polynomially convex hull K̂ := {a ∈ CN ; |P (a)| ≤ ‖P‖K
for every polynomial P of N complex variables}. We say that an open set
Ω in CN is polynomially convex, if for every compact subset K of Ω the
polynomially convex hull K̂ of K is contained in Ω.

The following theorem is known (see [7]). It is a multidimensional version
of the classical Ostrowski’s Theorem (see Theorem 3.1.1 in [1]).

Theorem 1. If a holomorphic function f possesses Ostrowski’s gaps
(mk, nk] at a point zo ∈ CN , then the maximal domain of existence G = Gf
of f is one-sheeted and polynomially convex. Moreover, for every compact
subset K of G we have

(1.6) lim sup
k→∞

‖f − snk‖K
1/nk < 1,

where

sn(z) ≡ s(f,zo)n (z) =
n∑
j=0

Q
(f,zo)
j (z − zo)

is the nth partial sum of the Taylor series development of f around zo.

Corollary 1.1. If

f(zo + z) =
∞∑
k=1

Q(f,zo)
mk

(z),

where mk/mk+1 → 0 as k → ∞, then Q
(f,zo)
j = 0 for j /∈ {mk} so that f

has Ostrowski’s gaps (mk, nk] with nk := mk+1− 1. Therefore, the maximal
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domain of existence Gf of f is identical with the domain of convergence Df
of the Taylor series development of f around zo, i.e.

Gf = Df :=
{
z ∈ CN : ψ∗(z − zo) < 1

}
,

where ψ(z) := lim supk→∞
mk

√
|Q(f,zo)

mk (z)|.

The following result gives an N -dimensional version of W. Luh’s Theo-
rem 1 in [4]. In particular, it says that if a function f holomorphic in a
domain G in CN possesses Ostrowski’s gaps at some point zo ∈ G, then f
possesses the same property at every other point a of the maximal domain
of existence of f .

Theorem 2. Let f possess Ostrowski’s gaps (mk, nk] at a point zo ∈ CN .
Then

1o. f possesses Ostrowski’s gaps
(
mkl ,

⌈
nkl
l

⌉]
at every point a ∈ Gf ,

where the sequence of natural numbers {kl} (independent of a) is chosen in

such a way that nkl ≥ mkl l
2 and

⌈
nkl
l

⌉
< mkl+1

for l ≥ 1;

2o. If Q(f,zo)
j = 0 for mk < j ≤ nk, k ≥ 11, then the sequence

{
s
(f,zo)
mk −

s
(f,a)
mk

}
converges to zero normally with order nk on CN , i.e.

lim sup
k→∞

∥∥∥s(f,zo)mk
− s(f,a)mk

∥∥∥1/nk
K

< 1

for every compact set K ⊂ CN .

By 2o and Theorem 1 we get the following:

Corollary 1.2. If f possesses ordinary Ostrowski’s gaps (mk, nk] at a fixed
point zo ∈ G, then

lim sup
k→∞

nk

√∥∥∥f − s(f,a)mk

∥∥∥
K
< 1

for every point a ∈ Gf and every compact subset K of Gf .

Proof of Theorem 2. 1o. Without loss of generality we may assume that
zo = 0 and

Q
(f,zo)
j = 0, mk < j ≤ nk, k ≥ 1.

Given a fixed point a ∈ Gf , we have

Q
(f,a)
j (z) =

1

2πi

∫
|λ|=r

f(a+ λz)− snk(a+ λz)

λj+1
dλ,

1In such a case we say that f possesses ordinary Ostrowski’s gaps at zo
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‖z‖ ≤ 1, j > mk, k ≥ 1, where snk = s
(f,zo)
nk (Observe that snk is a polyno-

mial of degree at most mk), and 0 < r < min(dist(a, ∂Gf ), dist(zo, ∂Gf )).
By Theorem 1 there exist M > 1 and 0 < θ < 1 such that

(1.7) ‖f − snk‖B(a,r) ≤Mθnk , k ≥ 1.

Therefore, by Cauchy inequalities,

(1.8)
∥∥∥Q(f,a)

j

∥∥∥
B
≤ M

rj
θnk , j > mk, k ≥ 1.

Let {kl} be an increasing sequence of natural numbers such that

mkl+1
>
⌈nkl
l

⌉
,

nkl
mkl

≥ l2, l ≥ 1.

By (1.8) we get∥∥∥Q(f,a)
j

∥∥∥1/j
B
≤ M

r
θnkl/j ≤ M

l
θl, mkl < j ≤

⌈nkl
l

⌉
, l ≥ 1.

The choice of the sequence {kl} does not depend on a ∈ Gf . Therefore, f

possesses Ostrowski’s gaps
(
mkl ,

⌈
nkl
l

⌉]
at every point a of Gf (according

to Definition 1.1). The proof of the case 1o is ended.
2o. Observe that for ‖z − a‖ ≤ 1

2r we have∣∣∣f(z)− s(f,a)mk
(z)
∣∣∣ =

∞∑
mk+1

∣∣∣Q(f,a)
j (z − a)

∣∣∣ ≤ ∞∑
mk+1

∥∥∥Q(f,a)
j

∥∥∥
B

(r
2

)j
,

which by (1.8) gives

(1.9)
∣∣∣f(z)− s(f,a)mk

(z)
∣∣∣ ≤ ∞∑

pk+1

2−jMθnk ≤Mθnk , k ≥ 1, ‖z − a‖ ≤ r

2
.

By (1.7) and (1.9) we get

(1.10)
∥∥∥s(f,zo)mk

− s(f,a)mk

∥∥∥
B(a, 1

2
r)
≤ 2Mθnk , k ≥ 1.

Observe that for z ∈ CN∣∣∣s(f,zo)n (z)
∣∣∣ ≤ n∑

j=0

∥∥∥Q(f,zo)
j

∥∥∥
B
‖z − zo‖j ≤

n∑
0

‖f‖B(zo,r)
rj

‖z − zo‖j

≤ (n+ 1)‖f‖B(zo,r)
(

1 +
‖z‖+ ‖zo‖

r

)n
.

Put M := ‖f‖B(zo,r)∪B(a,r) and c := max{‖zo‖, ‖a‖}. Then for z ∈ CN

uk(z) :=
1

nk
log
∣∣∣s(f,zo)mk

(z)− s(f,a)mk
(z)
∣∣∣

≤ 1

nk
log[2M(mk + 1)] +

mk

nk
log

(
1 +
‖z‖+ ‖c‖

r

)
.
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It follows that the sequence of plurisubharmonic functions {uk} is locally
uniformly upper bounded in CN , and

u(z) := lim sup
k→∞

uk(z) ≤ 0, z ∈ Cn.

Therefore, the plurisubhamonic function u∗ = const.
By (1.10) uk(z) ≤ 1

nk
log 2M + log θ for z ∈ B(a, r), k ≥ 1. Hence

u∗ ≤ log θ in CN which ends the proof of 2o. �

2. E. Fabry’s Theorem. Now we shall present a multidimensional version
of E. Fabry’s Theorem (Theorem 2.2.1 in [1]). Let f be a function of N
complex variables holomorphic in a neighborhood of 0 with a gap Taylor
series development

(2.1) f(z) =

∞∑
k=1

Qmk(z), mk < mk+1.

Put ψ(z) := lim supk→∞
mk
√
|Qmk(z)|, h(z) := ψ∗(z). It is known that

D := {z ∈ CN ; h(z) < 1} = {a ∈ CN ; series (2.1) is convergent in a
neighborhood of a} is a domain of convergence of (2.1).

Theorem 3. If limk→∞
k
mk

= 0, then the domain of convergence D of the
series (2.1) is identical with the maximal domain of existence Gf of f .

Proof. Without loss of generality we may assume that D 6= CN .
Due to Fabry we know that Theorem 3 is true for N = 1. It is also

well known (by Bedford–Taylor Theorem on negligible sets) that the set
E := {z ∈ CN ; ψ(z) < ψ∗(z)} is pluripolar. Therefore, in particular, the
set E is of 2N -dimensional Lebesgue measure zero.

Suppose Theorem 3 is not true for some N > 1. Then there is a function
g holomorphic in a ball B(zo, R) with zo ∈ D, R > r := dist(zo, ∂D) such
that g(z) = f(z) for z ∈ B(zo, r).

Let bo be a fixed point of ∂D such that ‖bo − zo‖ = r.
Since the ball B(zo, r) is non-thin at the point bo,we have

lim sup
z→bo,z∈B(zo,r)

ψ∗(z) = ψ∗(bo).

Therefore, there is a sequence {z′k} ⊂ B(zo, r) such that z′k → bo, and
ψ∗(z′k) → ψ∗(bo) as k → ∞. It follows that ψ∗(bo) ≤ 1. Since bo ∈ ∂D, we
have ψ∗(bo) ≥ 1. Therefore, ψ∗(bo) = 1.

We know that the 2N -dimensional Lebesgue measure v2N (E) = 0. There-
fore, by the sub-mean-value property, for every k ≥ 1 there is a point
zk ∈ B(z′k,

1
k )∩B(zo, r) \E such that ψ(zk) = ψ∗(zk), |ψ∗(z′k)−ψ(zk)| < 1

k .
It is clear that the sequence {zk} satisfies the following properties:

zk ∈ B(zo, r), zk → bo, ψ(zk) = ψ∗(zk), ψ(zk)→ ψ∗(bo).
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Put bk = zk/ψ(zk) (k ≥ 1). Then ψ(bk) = ψ∗(bk) = 1, in particular,
bk ∈ ∂D for k ≥ 1, and bk → bo as k →∞.

Fix k so large that b := bk ∈ B(zo, R). Put

Gr := {λ ∈ C; λb ∈ B(zo, r)},
GR := {λ ∈ C; λb ∈ B(zo, R)}.

One can easily check that the sets Gr, GR are open, convex, nonempty
(because λob ∈ Gr for λo := ψ(zk), and Gr ⊂ GR). Moreover, Gr ⊂ ∆ :=
{|λ| < 1}, and 1 ∈ GR.

The function f(λb) (resp., g(λb)) is holomorphic in ∆ (resp., in GR), and
f(λb) = g(λb) for λ ∈ Gr. Therefore, f(λb) = g(λb) on ∆ ∩GR. It follows
that g(λb) is an analytic continuation of f(λb) across λ = 1, contrary to
the Fabry Theorem for N = 1. We have got a contradiction showing that
Theorem 3 is true. �

Remark. The present proof of Theorem 3 – with no assumption on the
continuity of the function ψ∗ – is a joint result of the author and Professor
Azimbay Sadullaev.

3. Fatou–Hurwitz–Polya Theorem. First we shall state Fatou–Hurwitz
–Polya Theorem for a series of homogeneous polynomials of N complex vari-
ables.

Theorem 4. Let f be a function holomorphic in a neighborhood of 0 ∈ CN .
Let

(3.0) f(z) =
∞∑
0

Qj(z), Qj(z) =
∑
|α|=j

f (α)(0)

α!
zα,

be its Taylor series development around 0. Then there exists a sequence
ε = {εj} with εj ∈ {−1, 1} (resp., εj ∈ {0, 1}) such that the function

fε(z) :=
∞∑
j=0

εjQj(z), z ∈ D,

has no analytic continuation across any boundary point of the domain of
convergence D := {ψ∗(z) < 1} of series (3.0), where

ψ(z) := lim sup
j→∞

j

√
|Qj(z)|.

For N = 1 this theorem (with εj ∈ {−1, 1}) is due to Fatou–Hurwitz–
Polya (Theorem 4.2.8 in [1]).

Now, we shall present an N -dimensional version of the Fatou–Hurwitz–
Polya theorem for N -tuple power series

(3.1) f(z) =
∑
|α|≥0

cαz
α,
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where cαzα is a monomial of N complex variables z = (z1, . . . , zN ) of degree
|α| := α1 + · · · + αN . The set D := {a ∈ CN ; the series (3.1) is absolutely
convergent in a neighborhood of a} is called a domain of convergence of the
multiple power series (3.1).

It is known that D = {z ∈ CN ; h(z) < 1} is a complete N -circular (hence,
in particular, D is balanced) domain whose Minkowski’s functional h ≡ hD
is given by the formula h(z) = M∗(z), where

(3.2)

M(z) := lim sup
|α|→∞

|α|
√
|cαzα|

= lim sup
k→∞

max
{

|α|
√
|cαzα|; |α| = k

}
, z ∈ CN .

Moreover, h(z1, . . . , zN ) = h(|z1|, . . . , |zN |) for all z ∈ CN , and h is contin-
uous (see [2], Lemma 1.7.1 (b)).

Theorem 5. If the domain of convergence D of (3.1) is not empty, then
there exists a multiple sequence ε = {εα} with εα ∈ {−1, 1} (resp., with
εα ∈ {0, 1}) such that the function

fε(z) :=
∑
|α|≥0

εαcαz
α, z ∈ D,

has no analytic continuation across any boundary point of D.

We shall see that Theorems 4 and 5 are direct consequences of the fol-
lowing Lemma 3.2.

Let X := {0, 1}N (resp. {−1, 1}N) be the space of all sequences x =
(x1, x2, . . . ) where xj = 0, or xj = 1 (resp. xj = −1, or xj = 1) for
j = 1, 2, . . . . Endow X in the topology determined by the metric

ρ(x, y) :=

∞∑
j=1

1

2j
|x− y|j

1 + |x− y|j
,

where
|x− y|j := max{|xk − yk|; k = 1, . . . , j}.

One can easily check that X is a complete metric space, and therefore, it
has Baire property.

Moreover, in the topology a sequence {x(n)} of elements of X converges
to an element x ∈ X if and only if for every ko ∈ N there exists no ∈ N such
that xk(n) = xk for k = 1, . . . , ko, n ≥ no.

Remark 3.1. Let {fk} be a sequence of holomorphic functions in an open
subset Ω of Cn. Then the following three conditions are equivalent:

(1) the series
∑∞

1 |fk(z)| converges at each point z ∈ Ω, and its sum
ϕ(z) :=

∑∞
1 |fk(z)| is locally bounded on Ω;
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(2) the series
∑∞

1 fk converges locally normally in Ω, i.e. for every point
a of Ω there exists a neighborhood U of a such that the series

∑∞
1 ‖fk‖U is

convergent;
(3) the series

∑∞
1 |fk| converges locally uniformly in Ω.

Proof. It is clear that (2)⇒ (3)⇒ (1).
Suppose now (1) is true, and let E(a, r) := {z ∈ Cn; |zj − aj | < r (j =

1, . . . , n)} be a polydisk whose closure is contained in Ω. Then there is a
positive constant M such that

∑∞
1 |fk(z)| ≤ M for all z ∈ E(a, r). By the

Cauchy integral formula

|fk(z)| ≤ µk :=

(
1

πr

)n ∫ 2π

0
. . .

∫ 2π

0
|fk(a1 + reit1 , . . . , an+ reitn)|dt1 . . . dtn,

for all z ∈ E(a, r2) and k ≥ 1.
By Lebesgue monotonous convergence theorem the series

∑∞
1 µk is con-

vergent, and so is the series
∑∞

1 ‖fk‖U with U := E(a, r2). �

We shall see that our extensions of the classical Fatou–Hurwitz–Polya
Theorem (Theorem 4.2.8 in [1]) are a direct consequence of the following
Lemma 3.2 (slight modification of Lemma 5, p. 97 in [5]).

Lemma 3.2. Let X denote any of the two metric spaces {0, 1}N or {−1, 1}N.
Let {fk} be a sequence of holomorphic functions in an open neighborhood
Ω of the closure of a ball B = B(w, r) such that the series

∑∞
1 |fk(z)|

converges at every point z ∈ B. Let a be a boundary point of B.
Then, either the series

∑∞
1 fk is normally convergent on a neighborhood

of a, or there exists a subset R of X of the first category such that for every
x ∈ X \R the function fx(z) :=

∑
k xkfk(z), z ∈ B, has a singular point at

a (in other words, fx cannot be analytically continued to any neighborhood
of a).

Proof. Given a natural number m, let Rm denote the set of all x ∈ X
such that there exists a holomorphic function f̃x on Em (where Em is the
polydisk Em := E

(
a, 1

m

)
with center a and radius 1

m) such that |f̃x(z)| ≤ m
on the polydisk, and f̃x(z) = fx(z) for all z ∈ B ∩ Em. By definition, we
put Rm = ∅, if m < 1/dist(a, ∂Ω).

It is clear that the set R :=
⋃∞

1 Rm ≡ {x ∈ X ; fx has an analytic
continuation across a}.

The lemma will be proved if we show that the following two claims are
true.

Claim 1. The set Rm is closed in the space X .

Claim 2. If the interior of Rm is not empty, then the series
∑∞

1 fk is
normally convergent on a neighborhood of a.
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Indeed, if the series fx :=
∑∞

1 xkfk converges normally on no neighbor-
hood U of a, then for every m ≥ 1 the set Rm is closed and has empty
interior. Hence, the set R :=

⋃∞
1 Rm ≡ {x ∈ X ; fx has an analytic con-

tinuation f̃x across a} is of the first category, and for every x ∈ X \ R the
function fx has a singular point at a, i.e. fx has no analytic continuation
across a. We say that a function f̃x holomorphic on a polydisk E with center
a is an analytic continuation of fx across a, if f̃x(z) = fx(z) on B ∩ E.

Proof of Claim 1. Let {x(j)} be a sequence of elements of Rm convergent
to x ∈ X . Let {hj} ≡ {f̃x(j)} be a sequence of holomorphic functions on
Em such that |hj(z)| ≤ m on Em and hj(z) = fx(j)(z) on the intersection
B ∩ Em for j ≥ 1 . Observe that for every ko there exists jo such that
|fx(j)(z)− fx(z)| ≤

∑
k>ko

2|fk(z)| for all z ∈ B ∩ Em and for all j > jo. It
follows that the sequence {hj} is convergent at each point of B ∩ Em. By
Vitali’s theorem the sequence {hj} is locally uniformly convergent on Em to
a holomorphic function h bounded by m and identical with fx on Em ∩B,
which shows that x ∈ Rm.

Proof of Claim 2. If Rm has a nonempty interior, then there exist
x(0) = (x1(0), x2(0), . . . ) ∈ Rm and a natural number ko such that

(*) x ∈ X , xj = xj(0) (j = 1, . . . , ko) =⇒ x ∈ Rm.

Put

M := sup

{
k0∑
k=1

|fk(z)|; z ∈ Em

}
, uk := <fk, vk := =fk.

By implication (2)⇒ (3) of Remark 3.1 it is sufficient to show that

(**)
∞∑
k=1

|fk(z)| ≤M + 4m, z ∈ Em.

Let A be a finite subset of N \ [1, k0]. Given a fixed point z of Em, put

A1 := {k ∈ A; uk(z) ≥ 0}, A2 := {k ∈ A; uk(z) < 0}.

It is clear that A = A1 ∪A2, A1 ∩A2 = ∅. Consider two cases.
Case 1: X = {0, 1}N. Let x(j) = (x1(j), x2(j), . . . ) (j = 1, 2) be two

points of the interior of Rm defined by the formulas:

xk(j) = xk(0), k = 1, . . . , k0, j = 1, 2;

xk(j) = xk(0), k > k0, k /∈ A, j = 1, 2;

xk(1) = 1, xk(2) = 0, k ∈ A1;

xk(1) = 0, xk(2) = 1, k ∈ A2.
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Then∑
k∈A
|uk(z)| ≤

∣∣∣∣∣∑
k∈A

(xk(1)− xk(2))fk(z)

∣∣∣∣∣ = |f̃x(1)(z)− f̃x(2)(z)| ≤ 2m.

By the arbitrary property of A and z one gets
∞∑

k=k0+1

|uk(z)| ≤ 2m, z ∈ Em.

The same argument gives
∞∑

k=k0+1

|vk(z)| ≤ 2m, z ∈ Em.

Hence
∞∑
k=1

|fk(z)| =

 k0∑
k=1

+

∞∑
k=k0+1

 |fk(z)| ≤M + 4m, z ∈ Em.

Case 2: X = {−1, 1}N. Now we define two elements x(1), x(2) of the
interior of Rm by the formulas:

xk(j) = xk(0), k = 1, . . . , k0, j = 1, 2;

xk(j) = xk(0), k > k0, k /∈ A, j = 1, 2;

xk(1) = 1, xk(2) = −1, k ∈ A1;

xk(1) = −1, xk(2) = 1, k ∈ A2.

Then

2
∑
k∈A
|uk(z)| ≤

∣∣∣∣∣∑
k∈A

(xk(1)− x2(2)) fk(z)

∣∣∣∣∣ = |f̃x(1)(z)− f̃xk(2)(z)| ≤ 2m.

Hence, by the analogous argument as in the proof of the case 1, we get
∞∑
k=1

|fk(z)| ≤M + 4m, z ∈ Em,

which ends the proof of the case 2. �

Corollary 3.3. Let {fk} be a sequence of holomorphic functions on an
open set Ω ⊂ CN . Let D denote the set of all points a in Ω such that the
series

∑∞
1 fk is absolutely convergent at every point of a neighborhood of

a. Assume that the sum ϕ(z) :=
∑∞

1 |fk(z)| is locally bounded in D, and
D̄ ⊂ Ω. Let X be any of the two metric spaces {0, 1}N or {−1, 1}N.

Then there exists a subset R of X of the first category such that for every
point x ∈ X \ R the holomorphic function fx(z) :=

∑∞
k=1 xkfk(z), z ∈ D,

cannot be continued analytically across any boundary point of D.
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Proof. Let {wj} be the sequence of all rational points of D (or any count-
able dense subset of D). Let aj be a point of ∂D such that ‖wj − aj‖ =
dist(wj , ∂D). By Lemma 3.2 for every j there exists a subset Rj of X of the
first category such that for every x ∈ X \Rj the function fx has a singular
point at aj . The set R :=

⋃
Rj is again of the first category such that for

every x ∈ X \R the function fx has analytic extension across no boundary
point of D. �

Proof of Theorems 4 and 5. It is sufficient to apply Lemma 3.2 with
Ω = CN , with fk = Qk and fk = cα(k)z

α(k) (k ∈ Z+), respectively, where
α : Z+ 3 k 7→ α(k) ∈ ZN+ is a one-to-one mapping, and with D replaced by
the domain of convergence D of the corresponding power series. �

Remark 3.4. The author would like to draw reader’s attention to the fact
that, unfortunately, the proofs of Theorems 4 and 5 published in [6] contain
flaws.
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