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ABSTRACT. We study extensions of classical theorems on gap power series of
a complex variable to the multidimensional case.

1. Power series with Ostrowski gaps. Let

o
(1.1) f(z) = ZQj(z), where Q;(z) = Z anz®, a€Zl,

0 laf=j
be a power series in CV, i.e. a series of homogeneous polynomials Qj of N
complex variables of degree j.

The set D given by the formula D = {a € CV; the sequence (1.1) is

convergent in a neighborhood of a} is called a domain of convergence of
(1.1).

It is known that

(1.2) D={zeCV;¢*(2) <1},
where
(1.3) Y(z) = liii}p /1Q;(2)],

and ¥* denotes the upper semicontinuous regularization of .
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If ¥* is finite, then it is plurisubharmonic and absolutely homogeneous
(ie. v*(A2) = |Aw*(2), A € C, z € CV). Therefore, the domain of con-
vergence D is either empty, or it is a balanced (i.e. Az € D for all A\ € C
with |[A| <1 and z € D) domain of holomorphy. Every balanced domain of
holomorphy is a domain of convergence of a series (1.1).

For every balanced domain D in C" there is a unique nonnegative func-
tion h (so-called Minkowski functional of D) such that h(Az) = |Alh(z) for
all A\ € Cand z € CY, and D = {z € CV; h(z) < 1}. In particular, if D is
a domain of convergence of (1.1), then h(z) = ¢*(2).

It is known that a balanced domain in CV is a domain of holomorphy
if and only if its Minkowski functional h is an absolutely homogeneous
plurisubharmonic function.

The number

(1.4) p = 1/limsup {/[|Q; s,

J]—00

where B = {z € CV; ||z|| < 1}, is called a radius of convergence of series
(1.1) (with respect to a given norm || - ||).

If N =1, then (z) = % and D = pB. If N > 2, then pB C D but, in
general, D # pB.

Series (1.1) is normally geometrically convergent in D, i.e.

(1.5) lim sup (/||Qj||K <1, limsup V/||f — sullx <1,
Jj—o0 n—00

for all compact sets K C D, where s, = @, + --- + @, is the nth partial
sum of (1.1).

Definition 1.1. We say that a function f holomorphic in a neighborhood
of a point 2° € CV possesses at the point z° Ostrowski’s gaps (my,ny], if
1°. myg, ng are natural numbers such that my < np < mgy1 (> 1),

ks 00 as k — oo;
mg

2°. limj 00, jer ¢/|Q;lls = 0, where B is the unit ball in CV,

40 (@) (0 d \’
Qj(z) = Qg»f’ )(z) = Z fi(z)zo‘ _ <d>\> J(2° + A2)a=0,

a! !

and I = |JJ2; (mg,ng], (mi,ny] denoting the set of integers j with my, <
J < ng.

Observe that fo(z) == >_,c; Qj(z — 2°) is an entire function such that
the function g := f — f, possesses Ostrowski’s gaps (my,ng] at z° with
Qég’zo) =0 for mp < j < ng, K > 1. Hence, a holomorphic function f
possesses Ostrowski’s gaps (mg, ng| at a point z° if and only if there exists

an entire function f, such that Qg-f*f"’zo) =0 formp < j < ng, k> 1.
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Moreover, the maximal domain of existence G = G of f is identical with
the maximal domain of existence of f — f,.

Definition 1.2. We say that a function f holomorphic in a neighborhood
of a point z° possesses Ostrowski’s gaps relative to a sequence of positive
integers {ny}, if {ny} is increasing and there exists a sequence of positive
real numbers {g; } such that g — 0 as k — oo and lim;_,« jer ¢/||@;llz = 0,
where I == ;o (|grnk], ni)-

A function f possesses Ostrowski’s gaps according to Definition 1.1 if and
only if f possesses Ostrowski’s gaps according to Definition 1.2.

Indeed, if the conditions of Definition 1.1 are satisfied, then it is sufficient
to put qx = my/ng.

If the conditions of Definition 1.2 are satisfied, consider two cases. If
m = liminfy_, o gpni is finite, then the function f is entire, so that f has
Ostrowski’s gaps (my, ng] according to Definition 1 for any sequence my, ny
satisfying 1°.

If lim infy,_, oo gy = 00, then f possesses Ostrowski’s gaps (| gk, 1, |, 7k, ]
for a suitable chosen increasing subsequence k; of positive integers.

We say that a compact subset K of CV is polynomially convez if K is
identical with its polynomially convex hull K = {a € CN; |P(a)| < ||P|x
for every polynomial P of N complex variables}. We say that an open set
Q in CV is polynomially conves, if for every compact subset K of € the
polynomially convex hull K of K is contained in €.

The following theorem is known (see [7]). It is a multidimensional version
of the classical Ostrowski’s Theorem (see Theorem 3.1.1 in [1]).

Theorem 1. If a holomorphic function [ possesses Ostrowski’s gaps
(mg,ng] at a point z° € CN, then the mazimal domain of evistence G = Gy
of f is one-sheeted and polynomially convex. Moreover, for every compact
subset K of G we have

(1.6) limsup || f — s, | /™ < 1,

k—o00

where
su(2) = s70(2) = 3 Q) (2 - 2)
§=0
is the nth partial sum of the Taylor series development of f around z°.

Corollary 1.1. If

F°+2) =) Q=)
k=1

where my/mpt1 — 0 as k — oo, then ng’zo) =0 for j & {my} so that f
has Ostrowski’s gaps (my, ng| with ng == mgy1 — 1. Therefore, the mazimal
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domain of existence Gy of f is identical with the domain of convergence Dy
of the Taylor series development of f around z°, i.e.

Gy=Dj={zeCN: y*(z—2°) <1},

where ¥(z) == limsupy,_, mﬁ/ |Q,(7{,’fo)(z)|.

The following result gives an N-dimensional version of W. Luh’s Theo-
rem 1 in [4]. In particular, it says that if a function f holomorphic in a
domain G in CV possesses Ostrowski’s gaps at some point 2° € G, then f
possesses the same property at every other point a of the maximal domain
of existence of f.

Theorem 2. Let f possess Ostrowski’s gaps (my,ny] at a point 2° € CV.
Then

1°. f possesses Ostrowski’s gaps (mkl, {?H at every point a € Gy,
where the sequence of natural numbers {k;} (independent of a) is chosen in

such a way that ng, > meZQ and {%W < My, forl>1;

20, If Qg.f’zo) =0 for mi < j < ng, k> 1, then the sequence {S%}jo) —

s%,’f)} converges to zero normally with order ny on CN, i.e.

o 1/n
lim sup HS%}CZ ) _ 81(7{;:1) k <1

k—o00

for every compact set K C CN.
By 2° and Theorem 1 we get the following:

Corollary 1.2. If f possesses ordinary Ostrowski’s gaps (my,ng] at a fized

point z° € G, then
liinsup "/v Hf — s%;a) « <1
—00

for every point a € Gy and every compact subset K of Gy.

Proof of Theorem 2. 1°. Without loss of generality we may assume that
z° =0 and

ng,z") =0, mp<j<ng k>1.

Given a fixed point a € G ¢, we have

QY () = 1 / fla+Az) —sp, (a+ )\z)d/\
J )
[A|l=r

27 A+

1 such a case we say that f possesses ordinary Ostrowski’s gaps at z°
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lz|l <1, 7> mg, k> 1, where s, = 37(1];’%) (Observe that sy, is a polyno-

mial of degree at most my), and 0 < r < min(dist(a,0G}),dist(2°, 0Gy)).
By Theorem 1 there exist M > 1 and 0 < 8 < 1 such that

(17> Hf - 8”k”1@(a,r) < M@nk, k> 1.
Therefore, by Cauchy inequalities,

M
(1.8) HQg.f’“) JS GO i, k>

Let {k;} be an increasing sequence of natural numbers such that

ny ny )
mkl+1>’771-‘7 miklzl, lz].
1

By (1.8) we get
1/5 .

HQ(.f’“) /3 < %9”@/] < %91’ my, < j < [%1 , 1 >1.
J B r l ! l

The choice of the sequence {k;} does not depend on a € Gy. Therefore, f

possesses Ostrowski’s gaps (mkl, {?—H at every point a of G5 (according

to Definition 1.1). The proof of the case 1° is ended.
2°. Observe that for ||z — a|| < 37 we have

‘f(Z) — S%Zl)(z)‘ = i ‘ng,a)(z . a)‘ < i Hng,a)
me+l mp+1

which by (1.8) gives

()

e}

(L9) [£(z) = s()| < D2 2 IMo™ < Mo™, k=1, Jz—al < 7.
Prt+1

By (1.7) and (1.9) we get

(1.10) |57 s sy S2MO kL

Observe that for z € CN

(£:2°) ; (f’z")H o < S Moy o
‘sn (Z)’ < Z% HQj . |z — 2|7 < 20: i lz — 22|
]:

S e
Put M := || f|g(ze r)us(a,r) and ¢ := max{||z°||,[|al|}. Then for z € CV

1 o
u(2) = — log |s)(2) — sif(2)|

ng

1
< —log[2M (my + 1)] + X log <1 + ”Z”JFHCH> _
U N r



184 J. Siciak

It follows that the sequence of plurisubharmonic functions {uy} is locally
uniformly upper bounded in CV, and
u(z) == limsupug(z) <0, =ze€C".
k—o00
Therefore, the plurisubhamonic function u* = const.
By (1.10) ug(z) < %logZM + logf for z € B(a,r), k > 1. Hence
u* < log# in C which ends the proof of 2°. U

2. E. Fabry’s Theorem. Now we shall present a multidimensional version
of E. Fabry’s Theorem (Theorem 2.2.1 in [1]). Let f be a function of N
complex variables holomorphic in a neighborhood of 0 with a gap Taylor
series development

(2.1) F2) = Qm(2), mp <mps.
k=1

Put 9(z) = limsup,_ o, "%/|@m,(2)|, h(2) = ¥*(z). It is known that
D = {z € CN;h(z) < 1} = {a € CV; series (2.1) is convergent in a
neighborhood of a} is a domain of convergence of (2.1).

Theorem 3. If limg mik =0, then the domain of convergence D of the
series (2.1) is identical with the maximal domain of existence Gy of f.

= =

Proof. Without loss of generality we may assume that D # CV.

Due to Fabry we know that Theorem 3 is true for N = 1. It is also
well known (by Bedford—Taylor Theorem on negligible sets) that the set
E = {z € CV;(z) < ¥*(2)} is pluripolar. Therefore, in particular, the
set E is of 2N-dimensional Lebesgue measure zero.

Suppose Theorem 3 is not true for some N > 1. Then there is a function
g holomorphic in a ball B(z,, R) with z, € D, R > r = dist(z,, 0D) such
that g(z) = f(z) for z € B(z,,7).

Let b, be a fixed point of 9D such that ||b, — z,|| = r.

Since the ball B(z,,r) is non-thin at the point b,,we have

limsup () = ¥ (b).
2—bo,2E B(20,r)
Therefore, there is a sequence {z.} C B(z,,r) such that 2z, — b,, and
*(z,) — ¥*(by) as k — oo. It follows that ¢*(b,) < 1. Since b, € 9D, we
have ¢*(b,) > 1. Therefore, ¥*(b,) = 1.

We know that the 2/NV-dimensional Lebesgue measure vay (E) = 0. There-
fore, by the sub-mean-value property, for every k& > 1 there is a point
2 € B(2}, 1) N1 B(z0,7) \ E such that v(z1) = " (20), [¢*() — ()] < L.
It is clear that the sequence {z;} satisfies the following properties:

2k € B(zo,7), 2k = bo, ¥(2k) = ¥ (2k), ¥(2k) = ¥ (bo)-
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Put by = z/¢(zk) (K > 1). Then 9(b) = ¥*(by) = 1, in particular,
b € OD for k > 1, and by, — b, as k — oo.

Fix k so large that b := b, € B(z,, R). Put

Gy, ={\e€ C; \b € B(zo,7)},
Gr={\e€C; \be B(z,R)}.

One can easily check that the sets G,., Gr are open, convex, nonempty
(because A\,b € G, for A\, = 1¥(z), and G, C Gg). Moreover, G, C A =
{I\| <1}, and 1 € Gp.

The function f(Ab) (resp., g(Ab)) is holomorphic in A (resp., in Gr), and
F(Ab) = g(Ab) for X € G,. Therefore, f(Ab) = g(Ab) on A N Gg. It follows
that g(Ab) is an analytic continuation of f(Ab) across A = 1, contrary to

the Fabry Theorem for N = 1. We have got a contradiction showing that
Theorem 3 is true. U

Remark. The present proof of Theorem 3 — with no assumption on the
continuity of the function * — is a joint result of the author and Professor
Azimbay Sadullaev.

3. Fatou—Hurwitz—Polya Theorem. First we shall state Fatou—Hurwitz
—Polya Theorem for a series of homogeneous polynomials of N complex vari-
ables.

Theorem 4. Let f be a function holomorphic in a neighborhood of 0 € CN.
Let

- F9(0) ,
(3.0) f&)=)0Qi(2), Qi) =) =%
0 |o]=j
be its Taylor series development around 0. Then there exists a sequence
€ = {e;} with ¢; € {—1,1} (resp., €¢j € {0,1}) such that the function
o0
fe(z) = Zeij(z), z €D,
§=0
has no analytic continuation across any boundary point of the domain of
convergence D = {1*(z) < 1} of series (3.0), where

¥(2) = limsup {/|Q;(z)].
Jj—o0
For N = 1 this theorem (with ¢; € {—1,1}) is due to Fatou-Hurwitz—
Polya (Theorem 4.2.8 in [1]).

Now, we shall present an N-dimensional version of the Fatou—Hurwitz—
Polya theorem for N-tuple power series

(3'1) f(z) = Z caz”,

la[>0
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where ¢, 2% is a monomial of N complex variables z = (21, ..., zy) of degree
la| = a1 4+ --- + an. The set D = {a € CV; the series (3.1) is absolutely
convergent in a neighborhood of a} is called a domain of convergence of the
multiple power series (3.1).

It is known that D = {z € CV; h(z) < 1} is a complete N-circular (hence,
in particular, D is balanced) domain whose Minkowski’s functional h = hp
is given by the formula h(z) = M*(z), where

M(z) = limsup 'V/|cqz?|

|at] =00
(3.2)
= 1imsupmax{ Vcaz®); la| = k} , zeCV,
k—o0
Moreover, h(z1,...,zy) = h(|z1],. .., |2x|) for all z € CV, and h is contin-

uous (see [2], Lemma 1.7.1 (b)).

Theorem 5. If the domain of convergence D of (3.1) is not empty, then
there exists a multiple sequence € = {eo} with eo € {—1,1} (resp., with
€a € {0,1}) such that the function

fe('z) = Z €aCaz”, 2z€D,
|o|>0
has no analytic continuation across any boundary point of D.

We shall see that Theorems 4 and 5 are direct consequences of the fol-
lowing Lemma 3.2.
Let X = {0,1}N (resp. {—1,1}Y) be the space of all sequences = =

(x1,22,...) where ; = 0, or z; = 1 (resp. z; = —1, or z; = 1) for
7=1,2,.... Endow X in the topology determined by the metric
1z -yl
playy) =3 oY
jz; 21+ |z —yl;
where

|z —y|j =max{|zy —yk|; k=1,...,j}.
One can easily check that X is a complete metric space, and therefore, it
has Baire property.
Moreover, in the topology a sequence {z(n)} of elements of X' converges
to an element z € X if and only if for every k, € N there exists n, € N such
that xx(n) = x for k=1,... ko, n > ny.

Remark 3.1. Let {fx} be a sequence of holomorphic functions in an open
subset 2 of C™. Then the following three conditions are equivalent:

(1) the series > 77 |fr(2)| converges at each point z € Q, and its sum
o(2) = 31" |fe(2)] is locally bounded on €;
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(2) the series Y 7° fi converges locally normally in €, i.e. for every point
a of Q there exists a neighborhood U of a such that the series > 7 || fx|lv is
convergent;

(3) the series > 77| fi| converges locally uniformly in Q.

Proof. It is clear that (2) = (3) = (1).

Suppose now (1) is true, and let E(a,r) = {z € C"; |z; —aj| <7 (j =
1,...,n)} be a polydisk whose closure is contained in 2. Then there is a
positive constant M such that Y 7| fx(z)| < M for all z € E(a,r). By the
Cauchy integral formula

1 n 2w 2w . .
|fe(2)] < pg = <7rr> / / |fu(ar +re™, ... a, +re™)|dt; ... dt,,
0 0

for all z € E(a, ) and k > 1.
By Lebesgue monotonous convergence theorem the series » 7%y is con-
vergent, and so is the series Y 7° || fx||lo with U := E(a, §). O

We shall see that our extensions of the classical Fatou—Hurwitz—Polya
Theorem (Theorem 4.2.8 in [1]) are a direct consequence of the following
Lemma 3.2 (slight modification of Lemma 5, p. 97 in [5]).

Lemma 3.2. Let X denote any of the two metric spaces {0, 1} or {—1, 1}V,
Let {fr} be a sequence of holomorphic functions in an open neighborhood
Q of the closure of a ball B = B(w,r) such that the series Y 1~ |fr(2)]
converges at every point z € B. Let a be a boundary point of B.

Then, either the series > ;" fx is normally convergent on a neighborhood
of a, or there exists a subset R of X of the first category such that for every
x € X\ R the function fy(z) =), zrfi(z), z € B, has a singular point at
a (in other words, f, cannot be analytically continued to any neighborhood

of a).

Proof. Given a natural number m, let R,, denote the set of all x € X
such that there exists a holomorphic function f, on E,, (where E,, is the
polydisk E,, :== E(a, 2) with center a and radius 1) such that |fo(2)| <m
on the polydisk, and fx(z) = fz(z) for all z € BN E,,. By definition, we
put Ry, =0, if m < 1/ dist(a, 09).

It is clear that the set R = 7" Rm = {x € X; f; has an analytic
continuation across a}.

The lemma will be proved if we show that the following two claims are
true.

Claim 1. The set R, is closed in the space X.

Claim 2. If the interior of Ry, is not empty, then the series > 7" fr is
normally convergent on a neighborhood of a.
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Indeed, if the series f, = Y 1" ) fi converges normally on no neighbor-
hood U of a, then for every m > 1 the set R,, is closed and has empty
interior. Hence, the set R = 7" Ry = {2 € X; f, has an analytic con-
tinuation f, across a} is of the first category, and for every z € X \ R the
function f, has a singular point at a, i.e. f, has no analytic continuation
across a. We say that a function f, holomorphic on a polydisk E with center
a is an analytic continuation of f, across a, if f,(z) = fz(z) on BN E.

Proof of Claim 1. Let {x(j)} be a sequence of elements of R, convergent
tox € X. Let {h;} ={ fx(j)} be a sequence of holomorphic functions on
Ep, such that |hj(z)] < m on Ey, and hj(z) = f(;)(2) on the intersection
BNE, for j > 1. Observe that for every k, there exists j, such that
|fe()(2) = f(2)] < Dpsn, 21fk(2)] for all 2 € BN Ey, and for all j > j,. It
follows that the sequence {h;} is convergent at each point of BN E,,. By
Vitali’s theorem the sequence {h;} is locally uniformly convergent on E,, to
a holomorphic function A bounded by m and identical with f, on E,, N B,
which shows that x € R,,.

Proof of Claim 2. If R,, has a nonempty interior, then there exist
z(0) = (21(0), 22(0),...) € Ry, and a natural number k, such that

(*) reX, z;=2;0) (j=1,....k)) = xRy

Put
ko
M := sup {Z Ife(2)]; z € Em} ,  ug = Rfe, vp=Sfi.
k=1
By implication (2) = (3) of Remark 3.1 it is sufficient to show that
o0
(**) Z\fk(z” <M+4m, zE€ Ep.
k=1

Let A be a finite subset of N\ [1, ko]. Given a fixed point z of E,,, put
Ay ={k € A; up(z) > 0}, Az = {k € A; ug(z) <0}.

It is clear that A = A1 U Ay, A1 N Ay = (). Consider two cases.

Case 1: X = {0,1}. Let 2(j) = (21(j), 22(4),...) (j = 1,2) be two
points of the interior of R,, defined by the formulas:

zx(0), k=1,...,ky, 7=1,2;

ﬂjk(O), k>koy, k ¢ A, j=1,2;

0, SUk(Q) =1, ke A,.
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Then

Do) < D (@n(1) = 2r@)) fu(2)| = 1fo)(2) = far (2)] < 2m.

keA keA
By the arbitrary property of A and z one gets

oo

> jw(z)| < 2m, 2 € Ep.
k=ko+1

The same argument gives

o0

> Juk(z)| < 2m, z€ Ep.
k=ko+1

Hence

o0

00 ko
SMt@I= D+ D | <M +4m, z€En.
k=1

k=1 k=ko+1

Case 2: X = {—1,1}". Now we define two elements x(1), (2) of the
interior of R, by the formulas:

2p(j) = zk(0), k=1,...,ko, Jj=1,2;
zi(f) = 21(0), k>ko, k¢A j=12
zp(l) =1, xx(2)=-1, ke Ay
zp(l)=—=1, x(2) =1, k€ As.

Then

2 Jun(2)] < | (@r(1) = 22(2)) fi(2)| = [fo) (2) = frp2)(2)] < 2m.

keA keA

Hence, by the analogous argument as in the proof of the case 1, we get

STUf(E) <M +4m, 2 € By,
k=1

which ends the proof of the case 2. O

Corollary 3.3. Let {fr} be a sequence of holomorphic functions on an
open set Q C CN. Let D denote the set of all points a in Q such that the
series > 1 [r is absolutely convergent at every point of a neighborhood of
a. Assume that the sum ¢(z) == Y " |fi(2)| is locally bounded in D, and
D C Q. Let X be any of the two metric spaces {0,1} or {—1, 1},

Then there exists a subset R of X of the first category such that for every
point x € X \ R the holomorphic function fy(z) = > ;o zxfr(z), z € D,
cannot be continued analytically across any boundary point of D.
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Proof. Let {w;} be the sequence of all rational points of D (or any count-
able dense subset of D). Let a; be a point of 0D such that ||w; — a;|| =
dist(w;, 0D). By Lemma 3.2 for every j there exists a subset R; of X’ of the
first category such that for every x € X \ R; the function f, has a singular
point at aj. The set R := JR; is again of the first category such that for
every x € X' \ R the function f, has analytic extension across no boundary
point of D. O

Proof of Theorems 4 and 5. It is sufficient to apply Lemma 3.2 with
Q =CV, with f, = Qi and f;, = ca(k)z“(k) (k € Z,), respectively, where
a:Zy3k— alk) € Z_]X is a one-to-one mapping, and with D replaced by
the domain of convergence D of the corresponding power series. O

Remark 3.4. The author would like to draw reader’s attention to the fact
that, unfortunately, the proofs of Theorems 4 and 5 published in [6] contain
flaws.
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