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Abstract. The relation between the Jacobian and the orders of a linear
invariant family of locally univalent harmonic mapping in the plane is studied.
The new order (called the strong order) of a linear invariant family is defined
and the relations between order and strong order are established.

1. A harmonic mapping f in the unit disk D = {z : |z| < 1} has a repre-
sentation:

(1.1) f(z) = h(z) + g(z)

where h and g are holomorphic functions in D.
We assume that f is locally univalent and sense-preserving in D, which

is equivalent to Jf (z) > 0, z ∈ D, where Jf (z) denotes the Jacobian of f :

(1.2) Jf (z) =
∣∣h′(z)∣∣2 − ∣∣g′(z)∣∣2 .

For the properties of harmonic mappings we can refer to surveys [1] and [2].
The notion of an affine and linear invariant family of univalent harmonic
functions was proposed by Sheil-Small [6], and extended to local univalent
mappings and then used efficiently by Schaubroeck in [5].
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For any holomorphic automorphism ϕ of D (ϕ ∈ Aut(D)) we denote

(1.3) Tϕ (f(z)) =
f(ϕ(z))− f(ϕ(0))

ϕ′(0)h′(ϕ(0))
,

(1.4) Aε(f(z)) =
f(z) + εf(z)

1 + εg′(0)
, |ε| < 1, ε ∈ C.

The transformations (1.3) and (1.4) are called the Koebe transform and the
affine transform of a locally univalent harmonic function f = h+ g.

Put

(1.5) Sϕ,ε(f(z)) = Aε ◦ Tϕ(f(z))

In what follows L denotes a family of locally univalent and sense-pre-
serving harmonic functions f = h+ g in D which have the expansion:

(1.6) f(z) =
∞∑
n=2

an(f)zn + z +
∞∑
n=1

a−n(f)zn, z ∈ D.

A family L is called an affine and linear invariant ALIF if for any f ∈ L
the function Tϕ(f) and Aε(f) belong to L for all ϕ ∈ Aut(D) and all |ε| < 1.

A family L is called LIF (linear invariant family) if for any f ∈ L and
all ϕ ∈ Aut(D) the function Tϕ(f) ∈ L.

The order of the family L is defined as ordL = sup{|a2(f)| : f ∈ L} (see
[5] and [6]).

Example. The best known ALIF family is the class SH of univalent har-
monic mappings in D preserving orientation, as well as the subclasses KH

of convex and CH of close-to-convex mapping [2].
A simple example of a family which is LIF but not ALIF is the family

of locally univalent holomorphic functions in D.

The properties of the transformation (1.3)–(1.5) have been used in [5] to
obtain some bounds for the Jacobian Jf (z) in terms of the order of a linear
invariant family.

In this paper we give an improvement of one result from [5] (Theorem 2.1)
and establish the relations between ordL and the new order called the
strong order ordL defined below. Introduction of the new order ordL,
allow us to prove Theorem 3.1 for arbitrary family L which is an extension
of Theorem 2.1, while L is ALIF family.

These relations depend on the upper bound for the Jacobian Jf (z) in the
terms of ordL and ordL.

We end this introduction with two definitions and one lemma.

Definition 1.1. The affine hull of the family L is defined as the set of
functions

A(L) = {Aε(f) : f ∈ L, |ε| < 1}.
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Definition 1.2. The linear-affine hull of the family L is defined as the set
of functions

LA(L) = {Sϕ,ε(f) : f ∈ L, ϕ ∈ Aut(D), |ε| < 1}.

Lemma 1.1. If L is a linear invariant family of harmonic functions (LIF ),
then A(L) is affine and linearly invariant (ALIF ).

Proof. By the definition of A(L) it is enough to prove that A(L) is a (LIF ).
Every member of A(L) has the form

fε(z) =
f + εf

1 + εg′(0)
= hε + gε, ε ∈ C, |ε| < 1,

where f(z) = h(z)+g(z) ∈ L. The functions h, g, hε and gε are holomorphic
functions in D and

hε(z) =
h(z) + εg(z)

1 + εg′(0)
, gε(z) =

g(z) + εh(z)

1 + εg′(0)
.

We have to prove that Tϕ(fε) ∈ A(L) for any

ϕ(z) = eiθ
z + a

1 + az
, a ∈ D, θ ∈ R.

Let us fix ϕ. Denote Fε = Tϕ(fε) = Hε +Gε, where

H ′ε(z) =
h′(ϕ(z)) + εg′(ϕ(z))

(h′(ϕ(0)) + εg′(ϕ(0))) (1 + az)2
,

G′ε(z) =
g′(ϕ(z)) + εh′(ϕ(z))

(h′(ϕ(0)) + εg′(ϕ(0)))(1 + az)2
· e2iθ.

Analogously, denote Tφ(f) = F = H +G ∈ L, where

H ′(z) =
h′(ϕ(z))

h′(ϕ(0))(1 + az)2
, G′(z) =

g′(ϕ(z))

h′(ϕ(0))(1 + az)2
· e2iθ

and

ε1 = ε
h′(ϕ(0))

h′(ϕ(0))
· e2iθ.

We can write that Aε(F ) ∈ A(L) because writing Aε(F ) = Φε(z) =

Ĥε + Ĝε, where

Ĥ ′ε(z) =
h′(ϕ(z)) + ε1g

′(ϕ(z))

(h′(ϕ(0)) + ε1g′(ϕ(0))) (1 + az)2
= H ′ε1(z)

and

Ĝ′ε(z) =
g′(ϕ(z)) + ε1h

′(ϕ(z))

(h′(ϕ(0)) + ε1g′(ϕ(0)))(1 + az)2
· e2iθ = G′ε1(z),

we have Φε(z) = Fε1 ∈ A(L), for any ε1, |ε1| < 1, due to the fact that ε was
arbitrary and |ε| < 1. �
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Remark 1.1. As we see from the proof, the operators Tϕ and Aε do not
commute, i.e. Aε ◦ Tϕ 6= Tϕ ◦Aε. However, we have

{Aε ◦ Tϕ(f) : f ∈ L, |ε| < 1, ϕ ∈ Aut(D)}
= {Tϕ ◦Aε(f) : f ∈ L, |ε| < 1, ϕ ∈ Aut(D)}.

2. We start with a slight improvement of Theorem 3.3 from [5].

Theorem 2.1. If L is ALIF , ordL = α, α > 0 and f ∈ L, then

(2.1)

(
1− |a−1(f)|2

)(1− r)2α−2

(1 + r)2α+2
≤ Jf (z)

≤ (1 + r)2α−2

(1− r)2α+2

(
1− |a−1(f)|2

)
, |z| = r < 1.

The bounds in (2.1) are sharp and the sign of equality holds for the function

(2.2) f(z) = kα(z) + a−1kα(z),

where

kα(z) =
1

2α

[(
1 + z

1− z

)α
− 1

]
.

Observe that f(z) is univalent for α ∈ (0, 2], which follows from univalence
of kα(z) for these α and the invariance of univalent harmonic functions w.r.t.
operator Aε.

Proof. (Theorem 2.1) The proof is exactly the same as in [5], only the
value Jf (0) = 1−|a−1(f)|2 has to be taken into account. Namely, using the
inequality from [5]:

d

dr
log

(
1− r
1 + r

)2α

≤ ∂

∂r

[
log
(
Jf (reiθ) · (1− r2)2

)]
≤ d

dr
log

(
1 + r

1− r

)2α

, z = reiθ,

after integration along the segment [0, r], 0 < r < 1, we obtain (2.1).
For a linear invariant family L of holomorphic functions the inverse the-

orem holds (see [4]), i.e. inequality (2.1) implies that ordL ≤ α. �

The next theorem is in some sense inverse to Theorem 2.1. We do not
assume even the linear invariance of the family L.

Theorem 2.2. Let f ∈ L and assume that the upper bound in (2.1) holds
for some α > 0. Then there exists ε, |ε| < 1 such that

(2.3)
∣∣∣a2(f)− ε

2

∣∣∣ ≤ α.
The inequality (2.3) is sharp, which means that in the right side of the
inequality |ε| < 1 we can not write any constant smaller than 1.
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Proof. We will apply the same ideas from [3]. By the assumption, f ∈ L
satisfies (2.1) which implies that for z = reiθ,

log Jf (z)− log Jf (0) ≤ (2α− 2) log(1 + r)− (2α+ 2) log(1− r).

For r = 0 the above inequality after differentiation gives

(2.4)
1

Jf (0)
· ∂
∂r
Jf (reiθ)

∣∣∣∣∣
r=0

≤ 4α.

But

∂

∂r
Jf (z) =

[
h′′(reiθ)h′(reiθ)eiθ − g′′(reiθ)g′(reiθ)eiθ

]
+
[
h′′(reiθ)h′(reiθ)eiθ − g′′(reiθ)g′(reiθ)eiθ

]
.

Therefore, by (2.4) for every real θ we have

∂

∂r

(
Jf (reiθ)

) ∣∣∣∣
r=0

= 2 Re
{
eiθ
(
h′′(0)h′(0)− g′′(0)g′(0)

)}
≤ 4αJf (0).

Thus ∣∣∣h′′(0)− g′(0)g′′(0)
∣∣∣ ≤ 2αJf (0),

due to the fact that h′(0) = 1. The above inequality is equivalent to

(2.5)

∣∣∣a2(f)− a−1(f)a−2(f)
∣∣∣

1− |a−1(f)|2
≤ α.

Let us put

ω(z) =
g′(z)

h′(z)
= a−1(f) + 2(a−2(f)− a2(f) a−1(f))z + . . .

and

ω0(z) =
ω(z)− a−1(f)

1− a−1(f)ω(z)
=

2(a−2(f)− a2(f) a−1(f))

1− |a−1(f)|2
z + . . . .

Because ω0(0) = 0 and |ω0(z)| < 1 we have

(2.6) 2

∣∣∣∣a−2(f)− a2(f)a−1(f)

1− |a−1(f)|2

∣∣∣∣ ≤ 1.

On the other hand, (2.5) can be rewritten as∣∣∣∣a2(f)(1− |a−1(f)|2) + a−1(f)(a2(f)a−1(f)− a−2(f))

1− |a−1(f)|2

∣∣∣∣ ≤ α
or ∣∣∣a2(f)− ε

2

∣∣∣ ≤ α where |ε| =

∣∣∣∣∣a−1(f)2
a2(f)a−1(f)− a−2(f)

1− |a−1(f)|2

∣∣∣∣∣ < 1.
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In order to prove the sharpness consider the function

f0(z) = h0(z) + g0(z),

where

h0(z) = kα+ 1
2
(z), g′0(z) = k′

α+ 1
2

(z)
z + x

1 + xz
, x ∈ (0, 1).

We have a2(f0) = α+ 1
2 and

Jf0(z)

Jf0(0)
=

∣∣∣k′
α+ 1

2

(z)
∣∣∣2(1−

∣∣∣ z+x1+xz

∣∣∣2)∣∣∣∣k′α+ 1
2

(0)

∣∣∣∣2 (1− x2)
=

∣∣∣∣∣(1 + z)2(α−
1
2
)

(1− z)2(α+
3
2
)

∣∣∣∣∣ 1− |z|2

|1 + xz|2
.

Moreover,

min
|z|=r

(
|1− z|2|1 + xz|2

)
= min

θ∈R

[
(1− 2r cos θ + r2)(1 + 2xr cos θ + x2r2)

]
= (1− r)2(1 + xr)2,

and the minimum is attained for θ = 0. Therefore,

max
|z|=r

Jf0(z)

Jf0(0)
=

(1 + r)2α−1

(1− r)2α+3
· (1− r)2

(1 + xr)2
<

(1 + r)2α−2+2δ(x)

(1− r)2α+2+δ(x)
,

which implies that inequality (2.3) for f0 can be written in the form∣∣∣∣(α+
1

2

)
− ε

2

∣∣∣∣ ≤ α+ δ(x),

where 0 < δ(x)→ 0 if x→ 1−, and

ε = −a−1(f0)2
a2(f0)a−1(f0)− a−2(f0)

1− |a−1(f0)|2
= x,

because 2a−2(f0) = 1−x2+2a2(f0)x. This makes the result of Theorem 2.2
sharp. �

Remark 2.1. Theorem 2.2 is also valid for holomorphic functions f(z). In
this case we have to put in the proof ε = 0.

Remark 2.2. From the above proof we see that in the statement of Theo-
rem 2.2 it is sufficient to assume that f(z) satisfies only the right- (or left-)
hand side of inequality (2.1).

Corollary 2.1. If the family L is LIF and for any f ∈ L inequality (2.1)
holds, then ordL ≤ α+ 1

2 .
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3. Now we introduce the definition of new order ordL (we will call the
strong order) of a linear invariant family (LIF ) of harmonic mappings L.
In terms of this new order one can formulate iff version of Theorem 2.1
without assuming family L to be affine.

Definition 3.1. Let L be LIF . The strong order ordL of a family L of
harmonic mappings f is defined by the formula

(3.1) ordL = sup
f∈L

|a2(f)− a−1(f)a−2(f)|
1− |a−1(f)|2

.

Remark 3.1. In the case when f is holomorphic in D, definition (3.1)
coincides with that introduced by Pommerenke in [4].

Definition 3.2. For any fixed f ∈ L we define

(3.2) ord f = sup
ϕ∈Aut(D)

|a2 (Tϕ(f))− a−1 (Tϕ(f)) a−2 (Tϕ(f))|
1− |a−1 (Tϕ(f)) |2

.

Of course, if L is LIF , ordL = α, then ord f ≤ α for any f ∈ L.

Theorem 3.1. If f ∈ L, then ord f ≤ α if and only if for every F = Fψ :=
Tψ(f) and any z ∈ D

(3.3)
(1− r)2α−2

(1 + r)2α+2
≤ JF (z)

JF (0)
≤ (1 + r)2α−2

(1− r)2α+2
, |z| = r < 1.

Proof. Assume first that ord f ≤ α, ϕ(z) = z+a
1+az , z, a ∈ D and Tψ(f) =

F = H + G, ψ ∈ Aut(D). Consider Fa(z) = Tϕ(F ) = Ha + Ga, where
H,Ha, G and Ga are holomorphic functions in D. By direct calculations we
find

G′a(z) =
G′ (ϕ(z))

H ′(a) · (1 + az)2
, H ′a(z) =

H ′ (ϕ(z))

H ′(a) · (1 + az)2
,

and

G′a(0) =
G′(a)

H ′(a)
, G′′a(0) =

G′′(a)(1− |a|2)− 2aG′(a)

H ′(a)
,

H ′′a (0) =
H ′′(a)(1− |a|2)

H ′(a)
− 2a.

One can easily verify that

JFa(z) =
JF (ϕ(z))

|H ′(a)|2|1 + az|4
.

Moreover, for z = reiθ ∈ D we have

(3.4)
∂JFa(reiθ)

∂r

∣∣∣∣
r=0

= 2 Re
{
eiθ
(
H ′′a (0)−G′′a(0)G′a(0)

)}
,
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and by the definition of the order

(3.5)

∂JFa(reiθ)

∂r

∣∣∣∣
r=0

= 2 Re

{
eiθ

∂

∂z
JFa(z)

} ∣∣∣∣
z=0

= 2 Re
{
eiθ(2a2(Fa)− 2a−2(Fa)a−1(Fa)

}
≤ 4α(1− |a−1(Fa)|2).

Therefore, from (3.4) we obtain

∂JFa(reiθ)

∂r

∣∣∣∣
r=0

= 2 Re

{
eiθ
[
H ′′(a)(1− |a|2)

H ′(a)
− 2a

− G′(a)

|H ′(a)|2

(
G′′(a)(1− |a|2)− 2aG′(a)

)]}

= 2 Re

{
eiθ

[
(1− |a|2)
|H ′(a)|2

· ∂JF (a)

∂z
− 2a

(
1−

∣∣∣∣G′(a)

H ′(a)

∣∣∣∣2
)]}

.

Choosing first θ = a, a 6= 0, we obtain (a = %eiθ)

∂JFa(reiθ)

∂r

∣∣∣∣
r=0

=
1

|H ′(a)|2

[
(1− |a|2)∂JF (%eiθ)

∂%
− 4|a|JF (%eiθ)

]
.

Applying (3.5), we get

1

JF (%eiθ)

∂JF
∂%

(%eiθ) ≤ 4(α+ %)

1− %2
.

Choosing now θ = π + a, we obtain

1

JF (%eiθ)
· ∂JF (%eiθ)

∂%
≥ 4

%− α
1− %2

.

Writing together the above inequalities, we get

2
∂

∂%

(
log(1− %)α−1 − log(1 + %)α+1

)
≤ ∂(log JF (%eiθ))

∂%

≤ 2
∂

∂%

(
log(1 + %)α−1 − log(1− %)α+1

)
.

Integration over the interval [0, r] implies (3.3).
Assume now that the right-hand side of (3.3) holds for some α > 0 and

r ∈ (0, 1). We have to prove now that ord f ≤ α.
Because for the function F = Tϕ(f) the inequality (3.3) holds, therefore

we have

log JF (z)− log JF (0) ≤ (2α− 2) log(1 + r)− (2α+ 2) log(1− r).
This implies, as in the proof of Theorem 2.2, the validity of equality (2.5)
for the function F = Tϕ(f), and we have ord f ≤ α. �
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From the proof of the above theorem we obtain the following corollary.

Corollary 3.1. If L is LIF , then ordL ≤ α if and only if the right-hand
side of (3.3) holds for any f ∈ L and for every r ∈ (0, δ), 0 < δ < 1.

If L is LIF , then by Theorem 3.1 we can give an equivalent definition of
the ordL. Namely,

Corollary 3.2.

(3.6)
ordL = inf

{
α :

Jf (z)

Jf (0)
≤ (1 + |z|)2α−2

(1− |z|)2α+2

for any f ∈ L and any z ∈ D
}
.

From Theorem 2.1 and Corollary 2.1 we derive the next corollaries.

Corollary 3.3. If L is LIF , then

ordL ≤ ordL+ 1
2 .

Corollary 3.4. If L is LIF , then

(3.7) ordL ≤ ordA(L), ordA(L) ≥ ordL.

If L is ALIF , then

(3.8) ordL− 1
2 ≤ ordL ≤ ordL.

In particular, because the class SH of harmonic univalent functions in D is
an ALIF , we have

ordSH − 1
2 ≤ ordSH ≤ ordSH .

Indeed, since A(L) is a LIF , then by Theorem 2.1 for any f ∈ A(L)
inequality (3.3) holds with α = ordA(L) and we have ordL ≤ ordA(L).
The second inequality ordA(L) ≥ ordL follows by the relation L ⊂ A(L).

From (3.7) and the fact that LA(L) = L if L is an ALIF , we have (3.8).

Remark 3.2. The equality ordL = ordL is possible. Take for example
L = LA(kα), where kα is given by (2.2). However, the inequality ordL 6=
ordL can hold as well, as shows the following.

Example. Let kα(z) be the generalized Koebe function given by (2.2).
Put fα(z) = kα(z) + g(z), where g′(z) = zk′α(z). Consider the family

L = L (fα), the linear– invariant hull of the function fα, i.e.

L (fα) = {Tϕ(fα) : ϕ ∈ AutD}.
If F ∈ L (fα), then there exists ϕ ∈ Aut(D) such that

F (z) =
kα(ϕ(z))− kα(ϕ(0))

k′α(ϕ(0))ϕ′(0)
+
g(ϕ(z))− g(ϕ(0))

k′α(ϕ(0))ϕ′(0)
.
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Denote ordF = ord L (F ). Therefore, ordF = ord kα = α (see [4]) and
ordL = α.

Taking ϕ(z) = z+a
1+az , (a ∈ D) we find

(3.9)

JF (z)

JF (0)
=

∣∣∣∣∣∣∣
(

1 + z+a
1+az

)α−1
· (1− a)α+1(

1− z+a
1+az

)α+1
· (1 + a)α−1 · (1 + az)2

∣∣∣∣∣∣∣
2
(

1−
∣∣∣ z+a1+az

∣∣∣2)
1− |a|2

=

∣∣∣∣∣∣∣
(

1 + z 1+a1+a

)α−1
(

1− z 1−a1−a

)α+1

∣∣∣∣∣∣∣
2

· 1− |z|2

|1 + az|2
.

For z = r > 0 and a ∈ (−1, 0), when a → −1 the right-hand side of the
latter expression tends to (1+r)2α−1

(1−r)2α+3 and therefore, ordL ≥ α + 1
2 (in fact

ordL = α+ 1
2). So ordL 6= ordL.

Theorem 3.2. Assume that f1, f2 ∈ L and L is LIF . If
Jf1(z)

Jf1(0)
=
Jf2(z)

Jf2(0)

for every z ∈ D, then ord f1 = ord f2.

Proof. We conclude the proof of Theorem 3.2 by Corollary 3.2 because

inf{α : (3.3) holds for any F ∈ L (f1)}
= inf{α : (3.3) holds for any F ∈ L (f2)},

where L (f) is defined as above in the Example. �

Definition 3.3. Put

UHα =
⋃
{L : L is LIF and ordL ≤ α}

and call it the universal LIF of strong order α.

Remark 3.3. From the definition it is obvious that f ∈ UHα iff ord f ≤ α.

Theorem 3.3. The family UHα is ALIF .

Proof. We have to prove that for any f ∈ UHα and |ε| < 1, the function

Aε(f) = fε(z) =
f(z) + εf(z)

1 + εa−1(f)
∈ UHα ,

i.e. ord fε ≤ α. Putting

ε = %eiβ, % ∈ [0, 1), β ∈ R,
we can find that

(3.10)
Jfε(z)

Jfε(a)
=
Jf (z)

Jf (a)
, z, a ∈ D.
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Indeed, we have for any harmonic function f = u + iv, where u and v are
real functions: Jf = uxvy − uyvx. Therefore, for fε = Aε(f) we obtain

Jfε(z) =

=
1

|1 + εa−1(f)|2

∣∣∣∣ux(1 + % cosβ) + vx% sinβ uy(1 + % cosβ) + vy% sinβ
vx(1− % cosβ) + ux% sinβ vy(1− % cosβ) + uy% sinβ

∣∣∣∣
=

(1− %2 cos2 β)Jf (z)

|1 + εa−1(f)|2
,

which implies (3.10). By Corollary 3.2 putting |z| = r, we have

ord fε= inf

{
α :

JFε(z)

JFε(0)
≤ (1 + r)2α−2

(1− r)2α+2
for any Fε = Tϕ(fε), ϕ ∈ Aut(D)

}
.

But from (3.10)

JFε(z)

JFε(0)
=

Jfε(ϕ(z))

Jfε(ϕ(0))|1− ϕ−1(0)z|4
=
JF (z)

JF (0)
, F = Tϕ(f).

Therefore,

ord fε= inf

{
α :

JF (z)

JF (0)
≤ (1 + r)2α−2

(1− r)2α+2
for any F = Tϕ(f), ϕ ∈ Aut(D)

}
= ord f ≤ α,

because f ∈ UHα . �

Corollary 3.5. If L is LIF , then

ordL ≥ 1.

Proof. Assume on the contrary that ordL < 1. Then from the left-hand
side of (3.3) it follows that

JF (z)

JF (0)
→ +∞, as |z| = r → 1−.

This implies that the numerator of the above expression, which is |h′(z)|2−
|g′(z)|2 → +∞, and therefore, |h′(z)| → +∞. This is in contradiction with
the minimum principle because we would have

min
|z|=r<1

|h′(z)| ≤ 1,

due to the fact that h′(0) = 1. �
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